
Emerging concepts in the pharmacogenomics of arrhythmias:
ion channel trafficking

William T Harkcom1 and Geoffrey W Abbott1,†
1Department of Pharmacology, Weill Medical College of Cornell University, 520 E 70th Street,
New York, NY 10021, USA

Abstract
Continuous, rhythmic beating of the heart requires exquisite control of expression, localization
and function of cardiac ion channels – the foundations of the cardiac myocyte action potential.
Disruption of any of these processes can alter the shape of the action potential, predisposing to
cardiac arrhythmias. These arrhythmias can manifest in a variety of ways depending on both the
channels involved and the type of disruption (i.e., gain or loss of function). As much as 1% of the
population of developed countries is affected by cardiac arrhythmia each year, and a detailed
understanding of the mechanism of each arrhythmia is crucial to developing and prescribing the
proper therapies. Many of the antiarrhythmic drugs currently on the market were developed before
the underlying cause of the arrhythmia was known, and as a result lack specificity, causing side
effects. The majority of the available drugs target the conductance of cardiac ion channels, either
by blocking or enhancing current through the channel. In recent years, however, it has become
apparent that specific targeting of ion channel conductance may not be the most effective means
for treatment. Here we review increasing evidence that suggests defects in ion channel trafficking
play an important role in the etiology of arrhythmias, and small molecule approaches to correct
trafficking defects will likely play an important role in the future of arrhythmia treatment.
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Execution of an action potential requires the coordinated activity of numerous cardiac ion
channels (Figure 1A) [1]. The initial, depolarizing upstroke of an action potential is
generated by the inward movement of positively charged sodium ions through voltage-gated
sodium (Nav) channels, primarily Nav1.5 (SCNSA; Phase 0). These channels rapidly
inactivate, and the cell depolarization triggers the opening of voltage-gated calcium (Cav)
channels (Phase 1). Calcium influx, in addition to calcium release from intracellular stores,
facilitates myocardial contraction. Cellular depolarization also triggers voltage-gated
potassium (Kv) channels to open, allowing an efflux of potassium down its electrochemical
gradient, beginning myocyte repolarization. The initial transient outward current (Ito) is
generated by Kv channels such as Kv4.3 (KCND3; Phase 1). Repolarization continues with
the delayed rectifier currents (IKr and IKs), generated by the human ether-a-go-go-related
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gene (hERG; KCNH2) and Kv7.1 (KCNQ1). The balance of calcium influx and potassium
efflux generates the plateau phase of the action potential (Phase 2). Repolarization finishes
and the action potential ends as IKs and IKr reach peak density and inward rectifying
channels (Kir), such as Kir2.1, open, allowing potassium efflux to overcome the calcium
influx (Phase 3). These channels and their associated currents are tightly regulated to ensure
proper action potential morphology [2]. Additionally, some currents are specific to certain
regions of the heart, such as expression of the ultra-rapid delayed rectifier (IKur) current in
human atria but not ventricles (Phase 1) [3–5]. Dysfunction in any of the channels
responsible for the cardiac action potential can lead to cardiac arrhythmia [6].

Cardiac arrhythmias can manifest in a number of ways. The best studied example is an
arrhythmia due to a delay in ventricular repolarization and an increase in action potential
duration (APD). Increased APD presents as an increased QT interval (Figure 1B) on an
ECG, known as long QT syndrome (LQTS) [7]. While the presentation, a lengthened QT
interval, is quite simple, the underlying cause can be more complicated. A delay in
repolarization can be due to defects in Nav1.5 that result in increased sodium flux. An
increase in sodium current can have a number of causes, including increased conductance,
impaired inactivation, increased surface expression, or spontaneous opening and early
reopening. A repolarization delay can also be caused by a decrease in potassium flux. Thus,
loss-of-function mutations in both hERG and KCNQ1, which reduce repolarization capacity,
are known to cause LQTS. On the other hand, atrial fibrillation (AF), the most common
cardiac arrhythmia, can result from an increase in repolarization capacity and thus a
decrease in APD [8]. This is largely due to reduced L-type Ca2+ current, although rare gain-
of-function mutations in KCNQ1 [9], hERG [10], Kir2.1 [11] and KCNE ancillary subunits
[12] have also been associated with AF due to increases in channel conductance. Various
mutations in other cardiac ion channels and associated proteins are linked to a number of
other arrhythmias, including Brugada syndrome, catecholaminergic polymorphic ventricular
tachycardia, short-QT syndrome and Wolf–Parkinson–White syndrome.

Treating and correcting the cause of these disorders is preferable to merely masking the
symptoms, and it is clear that an understanding of the underlying genetic mechanism is
necessary to achieve this. Unfortunately, most of the available antiarrhythmic drugs lack the
necessary specificity and have numerous adverse effects [13,14]. For example, drugs used to
treat AF, such as quinidine and sotalol, block the hERG potassium channel and increase the
APD. While this is desirable for AF, the lack of atrial specificity often leads to prolonged
ventricular QT interval, causing the potentially fatal polymorphic ventricular tachycardia
Torsades de Pointes (TdP) [15]. In fact, most drugs are now screened for hERG blockade
due to this side effect. Other commonly used drugs, such as amiodarone, have a broad range
of effects including sodium, calcium and potassium channel blockade as well as
noncompetitive β-blockade. These numerous effects make the drug surprisingly effective at
treating AF; however, the list of side effects is quite extensive. More recent efforts have
focused on developing drugs with increased specificity. A promising target for the treatment
of AF is Kv1.5, which is responsible for the atrial-specific (in human heart) IKur. Many new
drugs are currently in clinical trials, but they have yet to achieve the desired selectivity,
efficacy, bioavailability and safety [16]. Fortunately, evidence is now emerging that
suggests that targeting the pathways that control ion channel surface density may provide an
alternative to traditional antiarrhythmic therapies that target channel conductance. In this
article, we review the association of LQTS and ion channel trafficking, the best understood
association of abnormal trafficking with arrhythmia, and we then present Kv1.5 (KCNA5) as
an example of an emerging target in channel trafficking (see Table 1 for a more
comprehensive list).
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Trafficking & LQTS
Ion channel biogenesis, trafficking and degradation are quite complex, and there are many
steps where disruption of the system can occur. As with all proteins, newly transcribed
channel subunit mRNA associates with ribosomes in the cytosol and begins translation. As
the nascent peptide exits the ribosome, a signal sequence in the peptide binds a signal-
recognition peptide (SRP) that targets the complex to the endoplasmic reticulum (ER). There
it binds the translocon, a complex that forms an aqueous pore through which the nascent
peptide either passes into the ER or integrates into the ER membrane [17]. It is here that the
channel’s transmembrane topology is defined [18], and the ER membrane also aids in
folding, tetramerization and ancillary subunit assembly [19–21]. A number of mechanisms
then control release from the ER, including retention/retrieval signals in the protein [22],
anterograde signals [23], phosphorylation state [22,24] and association with other accessory
proteins [25]. Channels then pass through the Golgi apparatus and on to the plasma
membrane via kinesin motors [26]. Finally, channels can be endocytosed and either recycled
or degraded [27,28]. For a more comprehensive review on channel ontogeny, see [29,30].

Human ether-a-go-go-related gene
Long QT syndrome commonly results from either a loss of function of KCNQ1 or hERG or
a gain of function of Nav1.5. Each of these defects can result in a delay in ventricular
repolarization, prolonging the QT interval and leading to TdP, ventricular fibrillation (VF),
syncope and sudden death [7]. To date, over 200 KCNH2 mutations have been identified
that associate with LQTS [31]. While inherited mutations sufficient to cause LQTS are rare
due to negative selection, benign mutations that evade selection are often present that lead to
QT prolongation in the presence of a drug, a condition known as drug-induced TdP (diTdP).
While the most common cause of diTdP is blockade of cardiac Kv channels (reviewed in
[32]), increasing evidence suggests alteration of channel trafficking plays an important role
in the hereditary form of this disease. In fact, a study by Anderson et al. in 2006 examined
34 missense mutations associated with LQTS and identified trafficking deficiency as the
most common mechanism for hERG-associated LQTS [33]. Furthermore, in most cases, the
deficiency could be rescued by treatment with E4031 (a hERG blocker), thapsigargin (a
sarcoplasmic/endoplasmic reticulum Ca2+-ATPase [SERCA] inhibitor) or incubation at
27°C, although the effectiveness of each depended on the particular mutation present.
Importantly, it was demonstrated that hERG blockade is not necessary for pharmacologic
rescue. Terfenadine and fexofenadine are H1 receptor antagonists that are structurally
similar, and each rescues the hERG trafficking mutant N470D. While terfenadine causes
significant hERG blockade in addition to H1 antagonism, fexofenadine retains its H1
antagonist function with much less hERG inhibition. It is able to restore trafficking at a
concentration that is 350-fold less than the IC50 for hERG inhibition[34].

Evidence suggests that most hERG missense mutations result in the production of an
immature, misfolded form of the protein that is retained in the ER, where quality control
mechanisms target the channel for degradation by the proteasome [35,36]. Indeed, it has
been demonstrated that hERG trafficking mutants activate the unfolded protein response
(UPR), an ER stress pathway associated with numerous disease states [37]. In some cases,
the mutation present prevents normal tetrameric channel assembly, and rescue by channel
blockers is unsuccessful. When the channel tetramer forms properly, it is likely that rescue
occurs through a chaperone mechanism that stabilizes the protein and promotes surface
expression, such as with E4031. Once inserted into the membrane, the (unblocked) channels
appear to function normally [38,39]. Retention in the ER can also be facilitated by
interaction with chaperones such as heat-shock protein (Hsp) 70 and Hsp90. Mutations such
as R752W and G601S strengthen the interaction of hERG with Hsp70 and Hsp90. In these
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cases, lower incubation temperature or drug binding can interfere with Hsp interaction,
releasing the channel and restoring proper trafficking. There is a fine balance, however, as
Hsp90 interaction is still necessary for proper folding and maturation [40]. For example, the
reactive oxygen species (ROS) generated during hypoxia have been shown to inhibit protein
folding and maturation by interfering with the interaction between hERG and the Hsp90
chaperone complex [41]. Another important hERG chaperone has also been identified:
FKBP38 [42]. Evidence suggests FKBP38 interacts with Hsp90, and the two may function
in opposition to control hERG retention or release from the ER. Overexpression of FKBP38
was also able to partially rescue a hERG trafficking mutant, F805C.

In contrast with hERG missense mutations, nonsense mutations generate a stop codon that
results in a truncation of the channel’s C-terminus. These mutations typically result in
nonfunctional channels, and they can exert a dominant-negative effect on the wild-type
(WT) channel subunits. Depending on the length of the truncation, the channel may either
reach the cell surface but lack proper function (shorter truncations) or be retained in the ER
(longer truncations). It has been reported that the cyclic nucleotide binding domain (residues
750–870) is necessary for proper trafficking of hERG, and mutations in this region result in
ER retention. Indeed, all LQTS-associated mutations, both missense and nonsense, in this
region result in trafficking defects [43]. In the case of nonsense mutations, however, simple
release from the ER will not restore function. For these channels, restoring the full-length
protein requires an intervention that will result in read through of the premature stop codon.
Yao et al. have recently reported success in correcting some nonsense mutations using
aminoglycoside antibiotics, a class of drugs known to reduce the accuracy of translation
[44]. Using G-418 and gentamicin, they demonstrate rescue of protein truncation in the
W927X and R1014X mutant hERG channels [45]. While the treatment was not successful in
rescuing all of the tested mutations, it represents a proof-of-principle that trafficking defects
due to protein truncation could also be corrected.

hERG trafficking has also been observed to be disrupted by cardiac glycosides [46]. These
compounds act by interfering with Na+/K+ pumps and not through direct interaction with
hERG. While a number of signaling pathways are activated by Na+/K+ pump inhibition,
none is connected to hERG trafficking. By contrast, cardiac glycosides affect hERG
trafficking by decreasing intracellular potassium concentrations, and normal potassium
levels appear necessary for proper folding of hERG [47]. The authors suggest K+ is likely to
bind to the conductive filter early in channel biogenesis and help form a properly folded
protein. The lower K+ levels lead to misfolding in the filter region (and possibly in the rest
of the protein), resulting in ER retention. Furthermore, Guo et al. demonstrate that low
serum [K+] leads to increased internalization and degradation of hERG by the lysosomal
pathway [48]. Their study suggests that a serum [K+] associated with clinical hypokalemia
results in increased ubiquitination and endocytic degradation of hERG. This recent
information provides a potential alternative mechanistic explanation for the association of
hypokalemia and LQTS [49]. It will be interesting to see how other LQTS mutations
associated with hypokalemia, such as hERG V822M [50] or T10M in the hERG ancillary
subunit KCNE2 [51], fit this new model.

KCNQ1
Another Kv channel α subunit associated with LQTS is KCNQ1, which generates cardiac
myocyte IKs. Many KCNQ1 mutations have been identified that associate with inherited
arrhythmias such as Jervell and Lange-Nielsen syndrome (JLNS) and Romano–Ward
syndrome (RWS), and most of these mutations result in impaired channel function [52].
Early reports suggested KCNQ1 mutations resulted in channels that reached the surface but
were nonfunctional [53]; however, recent evidence suggests that KCNQ1 trafficking defects
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may also play a role in disease. Subsequent reports identified that the mutations T587M,
ΔS276 and A178fs/105 each result in trafficking deficiency [54–56]. A more thorough
report by Wilson et al. examined numerous mutations associated with either JLNS or RWS
and discovered that a majority of them led to some degree of ER retention [57]. The
mutations occurred throughout the protein and ranged from simple point mutations to
frameshift nonsense mutations, so the retention is likely due to quality control mechanisms.
While still not as extensively studied as hERG trafficking, emerging research studies
continue to examine the contributions of KCNQ1 trafficking to cardiac arrhythmia.

Sato et al. describe two KCNQ1 mutations identified in a LQTS family: one mutant results
in the deletion of a valine at position 595 (delV595) and the other, owing to the insertion of
a cytosine, results in a frameshift after residue 631 that causes 19 novel amino acids
(P631fs/19) [58]. In the case of ΔV595, there is impaired subunit assembly, which leads to a
loss of surface expression. This also suggests that subunit assembly is necessary for proper
trafficking. In the case of P631fs/19, the inserted amino acids generated an RXR motif that
resulted in ER retention. These both represent novel mechanisms for trafficking dysfunction.
Another mutation, KCNQ1-H258R, when coexpressed with the ancillary subunit KCNE1,
forms channels with accelerated activation, slowed deactivation and a negatively shifted
voltage dependence, all of which would be predicted to cause short QT syndrome. However,
these effects are counteracted by an additional effect on channel trafficking, as the mutation
also results in intracellular retention [59]. At slow rates or low plateau voltages, the gain-of-
function in channel kinetics is balanced by the trafficking defect. However, at faster rates,
such as those seen during exercise, the altered kinetic properties of the channel become
saturated and the trafficking defect dominates, leading to QT prolongation. This
demonstrates the importance of examining all aspects of channel function when evaluating
the effects of novel mutations.

Importantly, once seemingly disparate Kv channel α subunits can also impart trafficking
defects on each other. Ehrlich et al. previously described an interaction between KCNQ1
and hERG that promoted hERG membrane expression [60], and it has now been
demonstrated that mutations in KCNQ1 can result in a decrease in hERG membrane
expression [61]. The KCNQ1-T587M mutation results in a loss of membrane trafficking,
and while the mutant can still interact with hERG, it no longer promotes membrane
expression. This coordinated decrease could account for the severe clinical phenotype seen
with this particular mutant. This discovery further underscores the complexity of channel
trafficking and arrhythmias.

Kir2.1, Cav1.2, Cav-3 & Ankyrin-B
While relatively little is known about how trafficking defects in other LQTS-associated
proteins contribute to the disease, some research does suggest a role. Mutations in the
inward rectifier potassium channel Kir2.1 associated with Andersen–Tawil syndrome (ATS)
were characterized, and some were found to result in intracellular retention [62]. The
V302M mutation appears to result in misfolding and improper maturation, and deletion of
residues 314–315 also resulted in a loss of membrane trafficking. Mutations in this region
appear to interfere with phosphatidylinositol 4,5-bisphosphate (PIP2) binding, which is
necessary for proper channel function [63]. Another mutation, M307I, was identified in
Korean ATS patients and also appears to interfere with PIP2 binding and channel
trafficking[64]. This interaction may also be targeted by certain drugs. Indeed, tamoxifen, an
estrogen receptor antagonist used to treat breast cancer, was recently discovered to inhibit
Kir2.1 indirectly by interfering with the PIP2-channel interaction [65].
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In addition to Kir2.1, other LQTS proteins have also been associated with trafficking
dysfunction. The A39V mutation in Cav1.2 (CACNA1C), a calcium channel associated with
LQTS and other cardiac arrhythmias, results in a loss of surface trafficking [66]. A T78K
mutation in Cav-3 (CAV3), a caveolin important in muscle physiology, also causes
intracellular retention [67]. Finally, an E1425G mutation in Ankyrin-B (ANKB), an adapter
protein important for proper channel targeting, has been associated with a loss of ion
channel coordination [68]. While these mutations have yet to be directly associated with
LQTS, they all follow a common theme of disrupted trafficking in cardiac arrhythmia.

Trafficking & AF
Kv1.5

Much like LQTS, AF is a complex disease potentially arising from a number of causes.
Under normal sinus rhythm, an electrical impulse from the sinus node triggers contraction of
the atria. This signal is then passed through the atrioventricular (AV) node and ventricular
contraction occurs. During AF, this coordinated electrical signaling is replaced by multiple
re-entrant waves in the atria that result in disorganized, rapid and repetitive atrial contraction
(reviewed in [13,69]). Studies of AF patient populations have identified mutations in
numerous ion channels, including hERG, KCNQ1 and Kir2.1, that associate with the disease
[9,11,70–72]. As discussed previously, loss-of-function mutations in these genes can lead to
an increase in APD and QT prolongation; however, in the AF populations, evidence
suggests that the identified mutations lead to an increase in function and shortening of the
action potential, which can predispose to AF. Unfortunately, targeting many of these
channels leads to numerous unintended effects. One of the most widely used AF drugs,
amiodarone, blocks sodium, calcium and potassium channels, in addition to β-blockade.
Even if channel subunit specificity is achieved, expression of these channels in the ventricles
as well as the atria means effective AF correction will likely cause an increase in ventricular
APD. Owing to the off-target effects seen with current AF therapies, much research has
focused on identifying and developing atrial-specific therapeutics. A key emerging target is
Kv1.5 (KCNA5), which underlies the IKur current in humans. Importantly, this current has
atrial-specific expression in the heart, making it a very promising target [69,73]. Over the
last decade, many small molecule inhibitors for Kv1.5 have been developed in the hope of
providing a safer, more effective treatment for AF. Ford and Milnes review many of the
more recent entries into clinical development, but none have been able to achieve all of the
characteristics desired, including selectivity, efficacy, bioavailability and safety [16].
Clearly, there is still an enormous unmet need for AF therapy, and to achieve that, we need a
stronger understanding of Kv1.5 function. Fortunately, the research efforts relating to Kv1.5
biology as it relates to AF are steadily increasing [16], and, much like hERG and KCNQ1,
evidence is beginning to suggest an important role for Kv1.5 trafficking in the development
and maintenance of AF.

The first association of Kv1.5 and AF came from the discovery that chronic AF patients had
a more than 50% reduction in Kv1.5 expression in the atria [74]. This reduction in
expression did not correlate with a decrease in mRNA levels, however, suggesting
regulation at the post-transcriptional level [75]. These results suggested that the change was
a consequence of AF rather than a cause. The first report suggesting a causal relationship
came when a nonsense mutation in KCNA5 was identified in an AF family [76]. The
mutation, E375X, generates a premature stop codon, and the truncated protein had a
dominant-negative effect on the expression of IKur. The mutation increased the susceptibility
to early afterdepolarization and arrhythmogenic activity. This was also the first report to
suggest that an increase in atrial APD could also lead to AF. Additional KCNA5 mutations
were later discovered that also linked a loss of function with AF [77]. By contrast,
overexpression of Kv1.5 in rat cardiomyocytes significantly decreases APD [78], which
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agrees with other reports describing gain-of-function mutations in Kv channels that lead to
AF [11,12,79]. These studies highlight the importance of tightly controlled Kv1.5 surface
expression; indeed, both increases and decreases in function can lead ostensibly to the same
disease, and proper ion channel density is regulated by a fine balance between trafficking to
and removal from the cell surface. Additionally, this underscores the importance of
understanding the genetic basis for disease on a case-by-case basis, as Kv1.5 inhibitors,
currently being pursued for AF therapy, will likely be ineffective in patients with a loss of
channel function.

Despite little evidence of a direct connection between Kv1.5 trafficking and AF, it is clear
that improper channel expression and surface density can lead to a disease state, and it is
likely that controlling expression levels therapeutically will play an important role in the
future of AF treatment. Fortunately, numerous reports are emerging that have begun to
develop a picture of Kv1.5 regulation. Potassium channel ancillary subunits, such as the
KCNE family of proteins, are known to be involved in channel regulation; however, they
have also been implicated in atrial disease states. In fact, a gain-of-function mutation, R27C,
in KCNE2 was identified in two AF families that caused an increase in KCNQ1 current
[12]. In addition, we discovered that KCNE2 can also interact with Kv1.5 and promote its
targeted surface expression in vivo in ventricular myocytes. In Kcne2−/− mice, we observed
a complete loss of Kv1.5 trafficking to the ventricular intercalated discs and a predisposition
to QT prolongation [80]. By contrast, KChIP2, another potassium channel ancillary subunit,
has been shown to decrease the surface expression of Kv1.5, probably by causing retention
in the ER [81]. The mechanism of action and role in AF that these ancillary subunits have is
not yet clear, but disruption of channel surface expression certainly has a role in the etiology
of cardiac arrhythmias.

In addition to potassium channel ancillary subunits, a number of other interacting proteins
have been identified that may regulate Kv1.5 trafficking. Eldstrom et al. discovered an
increase in Kv1.5 current with the addition of SAP97, a PDZ domain protein that can help
anchor proteins at the membrane [82]. SAP97 likely interacts with Caveolin-3, a scaffolding
protein present in lipid rafts, and together they recruit Kv1.5 to specific microdomains [83].
Once Kv1.5 reaches these lipid raft microdomains, interactions with cholesterol modify the
steady-state kinetics of the channel [84]. In addition, caveolin trafficking mutants can retain
Kv1.5 intracellularly. Indeed, caveolin mutants have been associated with LQTS and
pacemaker dysfunction [85,86]. Another scaffolding protein, four and a half LIM protein 1
(FHL1), was also shown to interact with Kv1.5 and promote surface expression [87]. It is
clear that numerous protein–protein interactions are necessary for proper Kv1.5 expression,
and disruptions in any could potentially lead to cardiac dysfunction. Along with these
protein interactors, some post-translational modifications have been identified that regulate
Kv1.5 surface expression. Phosphorylation by Src tyrosine kinase leads to current
suppression [88]; however, PKA activity can increase basal Kv1.5 currents [89]. S-
acylation, the attachment of fatty acid side chains to cysteine residues, promotes surface
expression, and inhibition of S-acylation results in proteasomal degradation of the channel
[90].

Ion channel surface density can be regulated by a multitude of other mechanisms. The
kinesin I isoform Kif5b, a molecular motor, has been shown to increase surface expression
of Kv1.5, and a dominant-negative form of the protein blocks surface expression, suggesting
an important role in forward trafficking [26]. Mutations in other kinesin isoforms have
already been associated with a disease state [91], and it is likely that Kif5b mutations could
lead to cardiac arrhythmia. Once in the membrane, channels can be regulated by endocytosis
and either degradation or recycling. Endocytosis occurs under normal conditions, but recent
evidence suggests some antiarrhythmic drugs may also promote the process [92]. An
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increase in Kv1.5 internalization was observed following treatment with the antiarrhythmic
drug quinidine, and while acute treatment was reversible, chronic treatment led to channel
degradation. These data are similar to those seen with drug-induced hERG internalization, as
mentioned previously. Once internalized to early endosomes, Kv1.5 has been shown to
interact with the dynein motor complex for transport along microtubules [93], suggesting
dynein dysfunction as well as microtubule disruption could be a contributing factor in
arrhythmia, especially considering cytoskeletal changes are seen in myocytes of patients
with congestive heart failure [94]. Internalized Kv1.5 can then either be targeted for
degradation by the Nedd4–2 ubiquitin ligase [27] or recycled back to the membrane in a
process mediated by the small GTPases Rab4 and Rab11 [28].

Channel trafficking as a therapeutic target
It was only a decade ago that Furutani et al. described the first trafficking defect associated
with cardiac arrhythmia. The hERG glycine-to-serine missense mutation (G601S) identified
in a LQTS family results in the production of an immature form of the channel that fails to
exit the ER and therefore does not reach the plasma membrane [95]. Importantly, it was then
shown that some hERG channel blockers, including cisapride, E4031 and quinidine, were
able to rescue hERG surface trafficking defects [38]. While most of these drugs are much
more effective as channel blockers than chaperones, some, such as C6-TEA and C8-TMA,
were efficient chaperones and poor blockers. This suggested that channel blockade and
trafficking can be independently targeted.

On the other hand, instead of rescuing defective hERG surface trafficking, a number of
drugs are also known to decrease hERG surface density. Ketoconazole, an antifungal, and
fluoxetine, a selective serotonin reuptake inhibitor, have been shown to reduce surface
density by at least 50% after 48 h of treatment, in addition to their channel-blocking
properties. Other drugs, however, have been shown to reduce surface expression without
blocking conductance through the channel. Pentamidine, an antiprotozoal agent, and
probucol, a cholesterol-lowering drug, have long been known to induce LQTS and TdP, and
the mechanism of action was assumed to be channel blockade. Recently, it was
demonstrated that clinically relevant concentrations of these drugs cause a reduction in
hERG surface expression, which is the most likely cause of the QT prolongation [96,97].
These studies demonstrate that pharmacological treatments can both cause and correct
channel trafficking defects. They also highlight the necessity of encompassing trafficking
issues in pharmacogenomic considerations for cardiac arrhythmia treatment.

Expert commentary
Defects in protein trafficking have been implicated in many different human diseases,
including cystic fibrosis, diabetes and Alzheimer’s disease [98–100]. More recently, protein
trafficking has also been recognized as a cause for cardiac arrhythmia. Early work identified
mutations in the hERG potassium channel that lead to intracellular retention. Numerous
following studies discovered additional mutations with similar defects, and trafficking
dysfunction is now suggested as the most common mechanism for hERG-induced LQTS. A
considerable number of trafficking mutations have also been identified for KCNQ1, but
most other arrhythmia-associated proteins have yet to be fully explored in this respect.
While research is currently being conducted on the trafficking mechanisms of many
arrhythmia-related proteins, in this article, we chose to highlight the known trafficking
mechanisms associated with LQTS, and then focus on the emerging field of Kv1.5
trafficking research. The channel’s atrial-specific expression in human heart makes it an
important target for AF therapy, and a better understanding of how channel localization is
regulated will surely have a role in future drug development. Additionally, many of the
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known mechanisms controlling Kv1.5 surface expression will likely be conserved across
other channels and proteins, making it an excellent example (Figure 2).

Many of the current treatment options for cardiac arrhythmia rely on small molecule
inhibitors of ion channels. Unfortunately, these inhibitors often lack specificity, and their
effectiveness is quite variable. Much of that variability is likely due to the unpredictable
nature of the disease. Indeed, inhibition of a channel that is no longer trafficked properly to
the surface is not likely to be successful. Fortunately, channel trafficking is now being
recognized as an important factor in arrhythmia pathogenesis, and targeting trafficking
rather than conductance is emerging as a viable alternative for arrhythmia therapy. Small
molecules have already been demonstrated to both inhibit and promote channel surface
expression. As these drugs were not originally designed or tested to target trafficking, it is
certainly possible that a more directed approach could lead to even better results. Of course,
a more complete understanding of the trafficking mechanisms is necessary before improved
treatment options can be fully explored.

Five-year view
As has been discussed here and elsewhere, pharmacogenomic considerations are necessary
if the specificity and efficacy of current arrhythmia treatments are to be fully addressed. The
underlying mechanisms of cardiac arrhythmia vary greatly, and a single arrhythmogenic
phenotype can be caused by both gain-of-function and loss-of-function mutations in the
various different channels underlying cardiac action potentials. This variability cannot easily
be addressed by the broad treatments currently available. Successful therapy will require the
use of treatments targeting the underlying cause of the disease; proper identification of these
causes, both as general mechanisms and specific disruptions in patients, is necessary for
assigning the right treatment to the right person. To achieve this, we first need to identify
more of the proteins and processes involved in channel trafficking. While much work is
already underway to achieve this goal, advances in the way we study trafficking will also be
important. In particular, studying trafficking in heterologous systems suffers from the
possibility that necessary interacting proteins that are present in the native environment are
absent from the study system. Experiments using isolated myocytes address these concerns;
however, introducing exogenous DNA into these systems still proves technically
challenging. Often, isolated myocytes will undergo significant dedifferentiation during the
transfection process, and new techniques that allow the use of healthy, fully differentiated
myocytes will greatly aid in the study of protein trafficking. Further advances in imaging
techniques will also aid in trafficking studies, as current technology often limits the spatial
resolution of fluorescent proteins. Finally, the use of new PCR techniques will aid in
identifying novel arrhythmia mutations [101]. Once identified, we will need to utilize
advances in diagnostic genotyping to decide which patients receive which treatments. There
have already been great advances made in the past 5 years, and surely those made in the next
5 years will bring us even closer to achieving our goal.

Key issues

• Cardiac arrhythmias affect millions of people and are potentially lethal.

• The underlying causes of arrhythmia are quite variable, but most current
treatment options do not account for this variability.

• Numerous mutations have been identified in arrhythmia patients that alter ion
channel subunit trafficking.
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• Defects in hERG trafficking are the most common cause of long QT syndrome
type II.

• hERG trafficking defects can be both caused and corrected by pharmacological
treatment.

• Kv1.5 is a key emerging target for atrial fibrillation therapy, and evidence is
beginning to suggest that targeting Kv1.5 trafficking may be a viable alternative
to targeting channel conductance.

• A more complete understanding of channel trafficking mechanisms will be
necessary for future drug development.

• Advances in technology will further facilitate the study of protein trafficking in
native cardiac myocyte environments.
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Figure 1. Representative cardiac waveforms
(A) Typical human ventricular myocyte action potential, with phases 0–4 labeled. (B)
Surface ECG from a normal heartbeat, including the P wave, QRS complex and T wave.
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Figure 2. Some of the possible ways Kv1.5 trafficking is regulated
(A) ER retention, (B) post-translational modifications, (C) forward trafficking along
microtubules, (D) membrane insertion, (E) protein–protein interactions, (F) internalization,
(G) recycling and (H) degradation.
ER: Endoplasmic reticulum.
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Table 1

Mutations associated with trafficking defects in cardiac arrhythmia.

Gene Disease Mutations Proposed mechanism Ref.

KCNQ1 LQT1 Y148X Channel truncation [55]

A178fs/105 † [56]

L191P Exposure of a hydrophobic residue [102]

H258R † [59]

E261D † [57]

E261K † [57]

L273F † [57]

F275S † [103]

ΔS276 † [55]

Q357R † [104]

R518X † [57]

M520R Impaired calmodulin interaction [105]

Q530X † [57]

T587M Blocks interaction with hERG [61]

G589D Disruption of a trafficking motif [106]

R591H Disruption of a trafficking motif [106]

R594Q Disruption of a trafficking motif [106]

ΔV595 Impaired subunit assembly [58]

R863X Channel truncation [107]

P631fs/19 Generation of an RXR retention motif [58]

1008delC † [57]

KCNH2 LQT2 I31S † [33]

T65P PAS domain disruption [108]

del234–241 † [109]

A422T † [33]

A429P † [109]

D456Y † [33]

F463L † [77]

N470D † [33]

T474I † [33]

Y493F † [109]

R534C † [33]

A561T † [33]

A561V † [33]

H562P † [33]

I571L † [33]

G572S † [33]
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Gene Disease Mutations Proposed mechanism Ref.

KCNH2 LQT2 I593R Activates the UPR pathway [37]

P596R † [33]

G601S Altered chaperone interactions that promote
degradation

[31]

G604S † [110]

Y611H † [33]

V612L † [33]

A614V † [33]

T623I † [33]

N629D † [33]

N629S † [33]

V630A † [33]

V630L † [33]

F640V † [33]

R725W Strengthened interaction with
ER-associated chaperones

[40]

Q725X Channel truncation with impaired
subunit assembly

[111]

R744fs † [112]

2398+1G>C 18 amino acid insertion that disrupts CNBD [113]

F805C † [33]

S818L † [33]

V822M † [33]

R823W † [33]

p.Pro872fs Channel truncation that retains WT
channel intracellularly

[114]

A915fs+47X † [115]

R1014X Channel truncation [45]

1122fs/147 † [116]

SCN5A Brugada R282H † [117]

T353I † [118]

E1053K Impaired interaction with ankyrin-G [119]

R1232W/
T1620M

† [120]
[121]

G1406R † [122]

R1432G † [123]

G1734R † [124]

M1766L † [125]

CCD 5280delG Misfolding [126]

SCN5A CCD P1008S † [127]

SCN3B IVF V54G Intracellular retention of Nav1.5 [128]

GPD1- L Brugada A280V Intracellular retention of Nav1.5 [129]
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Gene Disease Mutations Proposed mechanism Ref.

ANKB LQT4 E1425G Loss of ion channel coordination [68]

KCNE1 LQT5 L51H Misfolding and retention by quality control
mechanisms

[130]

T58P/L59P Disrupted KCNQ1 interaction [131]

R98W Disrupted KCNQ1 interaction [131]

KCNJ2 Andersen
syndrome

Δ95–98 † [62]

C101R † [132]

V302M Loss of PIP2 binding [63]

Δ314–315 † [62]

CACNA1C LQT8 A39V † [66]

Cav-3 LQTS T78K † [67]

HCN4 SND G480R † [133]

D533N † [134]

CACNB2b CCD D601E † [127]

†
Mechanism is unknown.

CCD: Cardiac conduction disorder; CNBD: Cyclic nucleotide binding domain; ER: Endoplasmic reticulum; IVF: Idiopathic ventricular fibrillation;
LQT1: Long QT syndrome type 1; LQT2: Long QT syndrome type 2; LQTS: Long QT syndrome; PAS: Per–Arnt–Sim; PIP2:
Phosphatidylinositol-4,5-bisphosphate; SND: Sinus node dysfunction; UPR: Unfolded protein response; WT: Wild-type.
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