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Abstract

Herpesviruses, which cause many incurable diseases, infect cells by fusing viral and cellular
membranes. While most other enveloped viruses use a single viral catalyst, called a fusogen,
herpesviruses, inexplicably, require two conserved fusion-machinery components, gB and the
heterodimer gH—gL, plus other non-conserved components. gB is a class 111 viral fusogen but,
unlike other members of its class, does not function alone. We determined the crystal structure of
the gH ectodomain bound to gL, from herpes simplex virus 2. gH—gL is an unusually tight
complex of a novel architecture that, unexpectedly, does not resemble any known viral fusogen.
Instead, we propose that gH-gL activates gB for fusion, possibly through direct binding.
Formation of a gB—gH-gL complex is critical for fusion and is inhibited by a neutralizing
antibody, making gB—gH-gL interface a promising antiviral target.

The Herpesviridae family contains eight important human pathogens including herpes
simplex viruses 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus, cytomegalovirus
(CMV), Epstein-Barr virus (EBV), and Kaposi’s Sarcoma virus. These enveloped viruses
enter cells by fusing their envelopes with host cell membranes. This event delivers the
icosahedral capsid containing the dsDNA viral genome into the cell and initiates infection.
Unlike most other enveloped viruses, which use a single fusogen, all herpesviruses use the
conserved core fusion machinery that consists of glycoproteins gB and the gH-gL
heterodimer. Some herpesviruses employ additional receptor-binding glycoproteins (e.g.,
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HSV gD and EBV gp42)1,2, and others require further gH-gL-associated proteins, e.g.
UL128-131 of CMV3. Thus, the fusion machinery of herpesviruses is clearly more complex
than that of most enveloped viruses and is, perhaps, reminiscent of the fusion machinery
involved in cellular fusion processes, e.g., neurotransmitter release4, in that it also engages
multiple proteins.

Previously, we determined the crystal structure of the gB ectodomain from HSV-15. gB is a
class Il viral fusion protein or fusogen6, presumably directly involved in bringing the viral
and the cellular membranes together, but unlike other members of this class, glycoprotein G
of vesicular stomatitis virus7 and baculovirus gp648, it cannot function on its own. Less is
known about the role of gH—gL in fusion. It is highly conserved among herpesviruses and a
major target of virus-neutralizing antibodies9, emphasizing its importance for virus
infection. Several reports have previously suggested that gH may have inherent fusogenic
properties. For example, when cells are transfected with expression plasmids for gH-gL
from HCMV, VZV, or KSHV, cell fusion is observed in the absence of any other viral
proteins10-12. Also, in HSV-1, gH—gL can cause hemifusion in the absence of gB13.
Nevertheless, both gB and gH—gL are required for efficient viral entry and cell fusion in all
herpesviruses, and in HSV, gB and gH—gL are thought to interact in response to receptor
binding by glycoprotein D14,15.

HSV-2 gH is an 838-residue protein with a signal peptide and a single C-terminal
transmembrane region; gL is a 224-residue protein with a signal peptide, but no
transmembrane region. In HSV-infected cells and on mature virions, gH and gL are always
found together, in a stable 1:1 complex9. Here, we report the crystal structure of the gH
ectodomain bound to full-length gL from HSV-2, determined to 3.0-A resolution. The
structure reveals an unusually extensive interaction between gH and gL such that the two
proteins clearly need each other to fold properly. Unexpectedly and contrary to previous
ideas, the complex revealed by the crystal structure does not resemble any known viral
fusogen. We propose that, instead of acting as a fusogen, gH-gL activates the fusogenic
potential of gB by binding it directly. A potent anti-gH—gL neutralizing antibody inhibits
formation of the gB—gH—-gL complex, suggesting that the gB-binding site in gH—gL could be
located in the vicinity of its epitope. The gB-binding site is an attractive target for antiviral
design, and we propose its possible location. Moreover, the structure of gH—gL suggests a
new paradigm for how viral fusion with cell membranes is accomplished.

Crystal structure of the gH—gL complex

The expressed HSV-2 gH—gL complex contains residues Gly48 to Pro803 of gH, followed
by a C-terminal Hisg tag, and residues Gly20 to Asn224 of gL. Removal of residues His19
to Thr47 of gH from the expression construct was necessary to obtain diffraction quality
crystals. These missing N-terminal residues could be located at the top of the molecule
(Supplementary Fig. 1). Removal of these residues does not affect cell-cell fusion or viral
entry16. Thus, the structure is a good representation of the native HSV-2 gH—gL.
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The crystal structure was determined using single anomalous dispersion and a
selenomethionine derivative (Table 1 and Supplementary Fig. 2). The final model contains
residues Arg49 to Pro797 of gH, except for three disordered loops Gly116 to Pro136,
Thr328 to Asp331, and Arg720 to Arg724, and residues Thr24 to Asn203 of gL, except for
two disordered loops Phel12 to Alall4 and Leul66 to Pro196 (Fig. 1a).

The gH-gL heterodimer has the overall shape of a “boot”, approximately 80-A high and 70-
A long (Fig. 1b,c). The C terminus of the gH ectodomain, which would normally lead into
its transmembrane region, is located near the “sole” side of the “toe”. Using cryoelectron
tomography of the HSV-1 virions, Griinewald and colleagues observed 15-20 nm
glycoprotein spikes, which emerge from the envelope at an angle and often appear curved17.
Although the identity of these spikes was not determined, their unusual shape is highly
reminiscent of the gH-gL structure. Different projections of the gH-gL spike would yield
curved or straight images, depending on the orientation. So, on the virion surface each gH-
gL molecule is probably oriented such as to appear standing on its “toe” and leaning to the
side (Supplementary Fig. 3a). The gH-gL heterodimer is smaller than gB, but larger than gD
(Supplementary Fig. 3b).

Architecture of gH

gH has three distinct domains — the N-terminal domain that binds gL (domain H1), the
central helical domain (domain H2), and the C-terminal f-sandwich domain (domain H3)
(Figs. 1, 2 and Supplementary Fig. 4). None of the domains have any previously described
structural homologues18.

Domain H1 is located in the upper part of the gH—-gL “boot” and consists of subdomains
H1A and H1B that are connected by a linker, residues Gly116 to Pro136, missing from the
structure. Subdomain H1A, residues Arg49 to Leul15, contains a -hairpin that forms a six-
stranded mixed B-sheet with four strands coming from gL (B2-p1-Lp4—-LB5-LB6-Lp2), plus
three short helices, al-a3. Subdomain H1B, residues Alal37 to Pro327, contains a six-
stranded antiparallel §-sheet (B12-f6—37-f8—9-p10), in which five strands come from
domain H1 and one, 12, from domain H2. This p-sheet curves around the upper boundary
of the central helical domain and has the appearance of a “diaphragm” that separates the
bulk of domain H1 and almost all of gL from the helical domain H2. Subdomain H1B also
includes a three-stranded antiparallel B-sheet (B3—p5—6), a short strand p4 that makes a
small two-stranded antiparallel f-sheet (34—11), and two short helices, a4 and a5. Residues
Arg176 to Thr230 have almost no contacts with the rest of the H1 domain. They form a
long, sling-like extension that loops around the “heel” of the gH—gL boot, tethering domain
H1 to domain H2. Domain H1 does not have a folded core, with the possible exception of
the six-stranded B-sheet, which likely accounts for the misfolding of gH in the absence of
gL16,19.

The central domain H2, residues Asn332 to Phe644, is globular and mostly helical. It
contains 13 a-helices and three short 319 helices, a6 through a21. In addition to helices,
domain H2 has a strand 12, which participates in the six-stranded p-sheet within the
subdomain H1B, and a short strand $11 that makes a small antiparallel B-sheet with strand
{34 of the subdomain H1B.
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The C-terminal domain H3, residues Val645 to Pro797, is located at the “toe” end of the
“boot”. It is a 10-stranded B-sandwich where each side is composed of a five-stranded -
sheet. The outward-facing sides of the sandwich are decorated with many extended loops
giving the domain an elongated appearance. One side has an extension that leads to the
transmembrane region. The other side has three loops, two of which are connected with a
disulfide (C7-C8).

Although gH proteins are conserved among different herpesviruses, the sequence
conservation is uneven across the protein (Supplementary Fig. 5a). Domain H1 is the most
divergent, which is unsurprising given that only about 30% of its residues adopt regular
secondary structure. Domain H2 and especially domain H3 are more conserved and
probably have the same fold in different gH proteins. Domain H3 is the most highly
conserved (Supplementary Fig. 5a) and thus is likely to be functionally important. Indeed,
several non-functional mutations map to this domain20.

Six of the seven cysteines in HSV-2 gH form three disulfide bonds. Their pairwise
assignment (C2—-C4, C5-C6, and C7-C8) in our structure agrees with that previously
surmised from genetic studies21. Unpaired C1 is present only in HSV-1 and HSV-2 (Fig. 1
and Supplementary Fig. 5a), but gH proteins from other herpesviruses also contain non-
conserved unpaired cysteines. C2 and C4 are conserved in most alphaherpesviruses. C5 and
C6 are completely conserved; mutation of either residue causes HSV gH—gL to misfold21.
While C8 is completely conserved, C7 is positionally conserved in all herpesviruses except
pseudorabies virus (PRV), which uses another nearby cysteine as C7 (Supplementary Fig.
5a). Several non-conserved cysteines in other herpesviruses, when mapped onto our
structure, closely approach each other and would require only minor conformational changes
to make disulfide bonds. This provides further evidence that gH proteins from different
herpesviruses share a conserved fold, especially domains H2 and H3.

Architecture of gL and its role in the gH—-gL complex

Like domain H1 of gH that it binds, gL does not have a stable core. Only ~30% of gL
residues adopt regular secondary structure, which include three helices Lal-La3 and two f-
sheets (Figs. 1, 2 and Supplementary Fig. 4). One four-stranded antiparallel 3-sheet forms a
six-stranded B-sheet with two strands from gH. Another is a short three-stranded mixed f3-
sheet (LB3-LP1-LB7). Four cysteines in gL form two disulfide bonds (LC1-LC2 and LC3-
LC4), which are conserved in HSV-1 (Supplementary Fig. 5b), and all are critical for proper
processing and activity of gH-gL21. In the structure, the disulfides clearly maintain the
proper fold of gL. Most residues within the Leul166 to Asn224 region of gL are missing
from the structure, except for a 7-amino-acid peptide. Its sequence has been tentatively
assigned to residues Pro197 to Asn203. Removal of residues Gly162 to Asn224 from either
HSV-2 gL (Supplementary Fig. 6) or HSV-1 gL 22 reduces the cell surface expression of the
gH—gL complex but not its activity in cell fusion, because cell fusion decreased in
proportion to the cell surface expression. Therefore, residues Gly162 to Asn224 do not
appear critical for fusion in either HSV-1 or HSV-2. Further, these residues are absent from
gL proteins in closely related alphaherpesviruses PRV, bovine herpesvirus (BHV), and VZV
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(Supplementary Fig. 5b). Thus, the missing C-terminal region of gL is probably of limited
functional importance.

gL is required for correct folding and trafficking of gH19,23 but is not a true chaperone.
Chaperones assist the non-covalent folding/unfolding and the assembly/disassembly of other
macromolecules but do not remain bound to them when the latter perform their normal
biological functions24. By contrast, the gH—gL complex is very stable, so gL is more of a
scaffolding protein for gH, perhaps, with some additional function. In the structure, gL
interacts almost exclusively with the H1 domain of gH, consistent with our previous data9.
Subdomains H1A and H1B clamp gL like tongs (Fig. 3a) and make extensive contacts.
Formation of the gH—gL complex buries a large accessible surface area, 7326.8 A2 25, most
of which is hydrophobic (Fig. 3b,c). Subdomain H1A packs very well into the V-shaped
groove on top of the gL molecule (Fig. 3a) and shares a six-stranded mixed -sheet with gL,
in which two strands are contributed by gH and four are contributed by gL. The interacting
surfaces are highly complementary; thus, the two proteins need each other to fold correctly.

gH-gL does not resemble a viral fusogen

Previously, several reports suggested that gH may have inherent fusogenic properties10-13.
Moreover, some have proposed that gH may be a viral fusogen, based on studies carried out
with peptides corresponding to predicted heptad repeats and fusion peptides26—33. The
overall architecture of the gH-gL complex revealed by the crystal structure does not
resemble any known viral fusogens. Currently, 3 classes of viral fusogens are recognized34.
These proteins have different architecture and form trimers (class I and 111) or dimers (class
I1) in their prefusion form. Despite differences in architecture, all form trimeric rod-like
structures in their postfusion form.

We analyzed the locations of predicted heptad repeats and fusion peptides in the structure of
gH-gL. Figure 4a highlights two predicted heptad-repeat peptides, residues 444-479 and
542-582, that inhibit cell fusion30. Both peptides form helical hairpins and appear important
for the stability of the helical core of domain H2. We want to emphasize, however, that
heptad repeats are commonly found in helices that form coiled coils and helical bundles.
Although many helices within domain H2 of gH form helical bundles, the trimeric hairpin
bundle that is characteristic of the postfusion form of class | and class I11 fusogens34 is
absent from the gH—gL structure.

Fusion peptides are hydrophobic stretches within viral fusogens that are capable of binding
to membranes. Several fusion peptides have been proposed in gH, some of which have been
shown to bind liposomes as synthetic peptides, with modest affinity26,27,31. This is,
perhaps, not surprising given the hydrophobicity of these peptides. But in the gH—gL
structure, these putative fusion peptides are buried helices or B hairpins that participate in
multi-stranded sheets. For example, residues 626—-644 compose 2 helices that are mostly
buried (Fig. 4b). As another example, residues 766-802 form two strands in the middle of a
5-strand Jp sheet in conserved domain H3 (Fig. 4b). Obviously, removing these two strands
would completely destroy the B sheet. It is difficult to envision how either residues 626—-644
or 766-802 be “yanked” out of the hydrophobic core to promote fusion in the context of the
entire protein. Further, we have been unable to pinpoint any fusion peptides in the gH—gL
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structure based on known fusion peptides. For example, N-terminal helical fusion peptides,
characteristic of class | fusogens, are generated from a precursor protein by proteolytic
cleavage. But currently, there are no data to suggest that any fusion-relevant proteolytic
cleavage takes place in gH. Likewise, we have been unable to identify internal fusion
peptides of class Il and 111 viral fusogens - loop-like structures with hydrophobic residues at
their tips - within the structure of gH—gL.

The mechanism that underlies the ability of some synthetic peptides to inhibit fusion is
currently unclear. Some regions of these peptides are exposed on the surface, however
(Supplementary Fig. 7), and if they were involved in interactions with other proteins, this
could, perhaps, explain the ability of corresponding synthetic peptides to inhibit cell fusion.

Epitopes of anti-gH—gL neutralizing antibodies

gH-gL is a major target of virus-neutralizing antibodies9. LP11 and 52S are two potent
neutralizing antibodies against HSV-1 gH-gL35-37. The high sequence identity between
the gH and gL proteins from HSV-1 and HSV-2 (Supplementary Fig. 5¢) implies that their
structures are very similar and that the epitopes of anti-HSV-1 antibodies can be mapped
onto the structure of the HSV-2 gH—gL. The LP11 epitope is present only on the intact
HSV-1 gH-gL. Five LP11 mar mutant viruses have been isolated, and each contain on of
the following mutations38: E86K, D168G, D168N, R329W, or R329Q. HSV-1 gH residues
Glu86, Asp168, and Arg329 correspond to HSV-2 gH residues Ala86, Asp168, and Pro329.
In the structure, two of the HSV-2 gH equivalents, residues Asp168 and Pro329, are located
near each other, but the third, Ala86, is on the opposite face of the molecule (Fig. 5a,b).
Insertions that destroy LP11 binding20 map to the region of the molecular surface that
contains residues Asp168 and Pro329 (Fig. 5a). Therefore, the LP11 epitope is likely located
near residues Asp168 and Pro329 (Fig. 5a). Resistance to LP11 neutralization in mar
mutants D168G, D168N, R329W, and R329Q is probably due to a loss of a charge that
affects LP11 affinity for its epitope. It is harder to explain the mechanism of resistance in the
E86K mutant because residue 86 is located far from the proposed LP11 epitope (Fig. 5a,b).

Two 52S mar mutant viruses have been isolated; they contain mutations S536L and A537V,
respectively38. HSV-1 residues Ser536 and Ala537 are the same in HSV-2, and these
adjacent residues define the 52S epitope, located on the opposite face of the gH molecule
from the LP11 epitope (Fig. 5b). Thus, the epitopes of LP11 and 52S do not overlap (Fig.
5a,b), consistent with previous observations that LP11-resistant viruses are sensitive to 52S
and vice versa38.

A neutralizing antibody inhibits interactions between gB and gH—gL

Formation of the gB—gH—-gL complex is necessary for fusion39 and is inhibited by certain
anti-gB neutralizing antibodies39. Thus, to gain insight into the role of gH—gL in fusion, it is
important to know where gB binds gH—gL. An anti-gH or anti-gL neutralizing antibody can
possibly inhibit infectivity by preventing gH or gL from binding gB or other entry
glycoproteins. To map a gB-binding site on gH—gL, we tested two anti-HSV-1 gH-gL
neutralizing antibodies, LP11 and 52S, as well as 6 non-neutralizing antibodies in a bi-
molecular fluorescence complementation assay (BiMC) (Supplementary Table 1). In this
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assay, two inactive halves of enhanced yellow fluorescent protein (EYFP) are fused to the C
termini of gB and gH, respectively, and the resulting proteins are transiently expressed in
receptor-bearing cells. If gB and gH associate, the two EYFP halves are brought together
and fluorescence is restored. Fusion can be monitored in the same experiment by observing
the formation of syncytia. This assay was used previously to show that gB and gH-gL
interact and that fusion occurs only if gD is also expressed or added as a soluble
protein15,39.

In the absence of gD, only background green fluorescence and no syncytia were observed
(Fig. 6a). In the presence of soluble gD306, bright EYFP fluorescence was observed, along
with syncytia (Fig. 6b), indicating BiMC and thus interactions between gB and gH-gL.
Non-neutralizing antibody 53S did not affect the number of syncytia or BiMC (Fig. 6c¢). The
rest of the non-neutralizing antibodies had the same effect as 53S (Supplementary Table 1).
Neutralizing antibody LP11 visibly reduced BiMC (Fig. 6d), while neutralizing antibody
52S did not (Fig. 6€). Both LP11 and 52S markedly inhibited fusion, however, reducing the
number of syncytia from 35 to 4 and 6, respectively. To summarize, none of the tested non-
neutralizing antibodies could inhibit BiMC or formation of syncytia. By contrast, both
neutralizing antibodies, LP11 and 528, inhibited formation of syncytia but only LP11
inhibited BiMC. We conclude that LP11 blocks interactions between gB and gH—gL and
prevents fusion, while 52S does not block gB—gH-gL interactions but nonetheless inhibits
fusion. Thus, 52S probably blocks a step in the entry process that occurs after the gB—gH-
gL interaction.

DISCUSSION

Herpesvirus gH—gL is a conserved component of the fusion machinery with a yet unassigned
function. Whether gH-gL is a fusogen has been a subject of much speculation26-33. It is
also a target of potent neutralizing antibodies. We have determined the crystal structure of
the gH—gL complex from HSV-2, which has an unusual boot-shaped architecture. The
structure reveals extensive interactions between gL and the N-terminal domain H1 of gH.
Both lack stable cores and are clearly required for each other’s folding, which explains why
gH and gL are always found in a complex. The sequences of domain H1 and of gL vary
substantially among herpesviruses. For example, gL proteins from alpha-herpesviruses
cannot be aligned at all with those from either beta- or gamma-herpesviruses. Not
surprisingly, gL cannot be functionally swapped between different herpesviruses, with the
exception of gL proteins from closely related HSV-1 and HSV-221,40. It appears that the
gH—gL pairs in each herpesvirus have co-evolved to form tight complexes, while presenting
quite variable surfaces, perhaps, for binding other viral or cellular proteins. By contrast,
domains H2 and H3 of gH are independently folded entities. Being more highly conserved,
these domains likely have similar folds in gH-gL from different herpesviruses and have
conserved functional roles.

What is the function of gH-gL? Most enveloped viruses require only one viral fusogen.
Fusion can be triggered by pH or by receptor binding, but typically, the receptor-binding
function is performed by the fusogen. In paramyxoviruses, fusogen F is thought to be
activated by a homotypic viral attachment protein, e.g., HN41, but HN-independent fusion
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has been observed for some paramyxovirus F proteins42. In contrast, gB requires the
presence of gH—gL for function. Two exceptions to this rule have been reported. First, EBV
gB containing truncated cytoplasmic domain has been showed to mediate fusion with
epithelial cells in the absence of gH-gL, possibly due to increased surface expression43.
Second, either gB or gH-gL can mediate membrane fusion during nuclear egress of
HSV-144. But, neither observation has yet been confirmed in gB proteins from other
herpesviruses.

Previously, gH—gL has been proposed to be a fusogen in its own right. Given that gH-gL
appears to be able to mediate cell-cell fusion in some herpesviruses10-13, even if
inefficiently, we cannot exclude the possibility that gH-gL has some intrinsic fusogenic
properties. However, the gH-gL complex revealed by the crystal structure does not resemble
any known viral fusogen, and based on our analysis of the structure, we conclude that it is
not a viral fusogen. Moreover, for efficient membrane fusion during viral entry and cell-cell
fusion, both gB and gH—gL are required. We propose that in this biologically more relevant
scenario, gH—gL regulates the transition of gB into its fusion-active state. gH—gL could, in
principle, function as a negative or a positive regulator of gB. If gH-gL were a negative
regulator of gB, it would keep gB in an inactive prefusion state, and gD binding to its
receptor would de-repress gB by overcoming the inhibitory effect of gH—gL. If gH-gL were
a positive regulator, its role would be to activate gB into a fusion-active state; receptor-
bound gD could then be a co-activator. The latter role is more likely because gB and gH-gL
interact only when gD and a gD receptor are also present14,15. This implies that gB and
gH-gL are not normally associated on the cell surface or in the mature virion, which
conflicts with the “negative regulator” model.

Formation of the gB—gH—-gL complex is necessary for fusion and is inhibited by certain anti-
gB neutralizing antibodies39. Here, we determined that formation of the gB—gH-gL
complex is inhibited by a potent anti-gH—gL neutralizing antibody LP11 (Fig. 6d).
Moreover, at least one anti-gH—gL neutralizing antibody blocks fusion but not the
interaction. These data suggest that formation of the gB—gH-gL complex likely occurs prior
to fusion. The fact that non-neutralizing antibodies do not block the interaction supports the
idea that formation of a gB—gH-gL complex is a critical step in the fusion mechanism. This
makes the interface of the gB—gH-gL complex a promising target for the future antiviral
design efforts.

Because LP11 competes with gB for binding to gH-gL, we propose that the gB-binding site
on gH-gL likely overlaps the LP11 epitope, unless LP11 interferes with gB binding due to a
long-range steric hindrance. Several insertions that inhibit LP11 binding20 map to one
margin of the LP11 epitope (Fig. 5a). These insertions do not interfere with gB binding,
because they do not affect fusion20. Therefore, we propose that gB binds near the other
margin of the LP11 epitope, in a large groove, highly conserved between HSV-1 and HSV-2
gH (Fig. 5c). gB-binding site is expected to be conserved because gB proteins from HSV-1
and -2 can substitute each other in fusion assays40. Future work will map the exact location
of the gB-binding site on gH-gL. Whether the gB-binding site overlaps the LP11 epitope or
is located nearby remains to be determined. Also, although we are convinced that BiMC
reflects a direct interaction between gB and gH-gL, future work is necessary to
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unequivocally demonstrate that gB and gH-gL interact directly rather than through a partner
protein such as gD. We have proposed a possible location of the gB-binding site on gH—gL;
future work will map its exact location. Recent studies show that the gH-gL-binding site in
gB is likely located in domain | or domain 1139, but it also awaits precise mapping.

The structure of the gH—gL complex does not suggest a direct role in fusion but rather that
gH-gL may activate gB for fusion through direct binding. Two other class Il viral fusogens,
VSV G and baculovirus gp64, use proton binding as a trigger for fusogenic conformational
changes. gH—gL may fulfill a role that functionally substitutes for proton binding. If indeed
the function of gH—gL is to enable the transition of gB into its proper fusogenic state, it will
establish a new paradigm for how viral fusion with cell membranes is accomplished.
Nevertheless, much remains unknown about the fusion mechanism in herpesviruses. For
example, does gH—gL normally dissociate from gB upon activating it or does it remain
bound to gB during subsequent steps? Additional questions that beg answers are how fusion
is activated in herpesviruses that lack gD or its analog, and how gB is kept inactive prior to
fusion.

METHODS

Methods and any associated references are available in the online version of the paper at
http://www.nature.com/nsmb/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Structure of HSV-2 gH-gL complex
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C

(a) Domain arrangement. Regions present in the expression construct but missing from the
final model are shown as dashed lines. gH domains are in green (H1), yellow (H2) and red
(H3); gL is in blue. The numbering scheme for gH cysteines is based on HSV-1 gH, which
has eight cysteines. HSV-2 gH has seven cysteines, lacking C3. (b) Side view of gH-gL
structure showing disordered segments (dotted lines), disulfides (yellow spheres and red
sticks), and sugars (grey). (c) gH—gL in molecular surface representation. View in the top
panel is the same as in (b). View in the bottom panel was generated by 180° rotation around

the vertical axis.
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Fig. 2. Domains of gH and gL
(a) domain H1, (b) domain H2, (c) domain H3, (d) gL. The coloring scheme is the same as

in Fig. 1. Disulfides are shown as yellow spheres and red sticks and labeled. All secondary
structure elements are labeled. Disordered segments are shown as dotted lines. Labeled
residues indicate the limits of individual domains and the disordered loops.
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|:| Buried surface area

Residues in intermolecular
H bonds

Fig. 3. gH-gL interface
(a) The gH “clamp”. The molecular surface of gH is shown in beige; gL is rendered as a

blue ribbon. Inset: up-close view of the H1/gL interface. Secondary structure at the H1/gL
interface is labeled. (b) “Open-book” view of the HLA/gL interface viewed from the “heel”
of the gH—gL “boot”. (c) “Open-book” view of the H1B/gL interface viewed from the top of
the gH—gL “boot”. Intermolecular interactions in (b) and (c) are color-coded as follows:
buried hydrophobic surface (light blue), buried hydrophilic surface (green), and negatively
charged (red) and positively charged (blue) residues, in salt bridges.
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444-479

D | H1B

Fig. 4. Locations of several predicted heptad repeats and fusion peptides in gH
(a) predicted heptad repeat sequences in gH that inhibit cell-cell fusion as synthetic peptides,

residues 444-479 and 542-582, are shown in purple and labeled. Domain H3 is shown as a
light pink surface. (b) putative fusion peptide sequences of gH, residues 626—644 and 766—
797, are shown in purple and labeled. Domain H3 is shown as light pink ribbon. Secondary
structure elements within domains H2 and H3 are numbered according to Figs. 2 and 3.
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Fig. 5. The epitope of the HSV-1 neutralizing antibody LP11 defines the gB-binding site
(a) gH—-gL in surface representation, gH (beige) and gL (grey). The proposed LP11 epitope

is boxed and enlarged in the inset. (b) gH-gL is color-coded as in (a). The view in (b) is
rotated 180° around the vertical axis relative to (a). Residues with a star are not conserved
between HSV-1 and HSV-2. (c) gH—-gL is colored by sequence conservation between
HSV-1 and HSV-2, with identical residues in red. The view is as in (a). LP11 epitope is
boxed. mar is monoclonal antibody resistance mutation.
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Fig. 6. Effect of anti-gH antibodies on gB—gH BiMC
Top panels show gB surface expression (red) detected using immunofluorescence. Bottom

panels show EYFP BiMC (bright green fluorescence). (a) no gD, (b) gD306, (c) gD306 plus
mAb 53S, (d) gD306 plus mAb LP11, and (e) gD306 plus mAb 52S. n is the number of
syncytia from a representative experiment. EYFP is enhanced yellow fluorescent protein.
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Table 1

Data collection and refinement statistics

Native SeMet
Data collection
Space group P41212 P41212
Cell dimensions
a b, c(A) 88.26,88.26,  88.34,
33341 88.34,
332.84
aBy (®) 90, 90, 90 90, 90, 90
Peak
Wavelength (A) 0.9795 0.9789
Resolution (A) 39.20-3.00 40.00-3.30

Rsym OF Rinerge

I /ol
Completeness (%)

Redundancy

Refinement
Resolution (A)
No. reflections
Fework / Rfree
No. atoms
Protein
Ligand/ion
Water
B-factors
Protein
Ligand/ion
Water

R.m.s. deviations

Bond lengths (A)

Bond angles (°)

(3.05-3.00)°  (3:36-3.30)
0.131(0.873)  0.188

(0.648)
31.0 (1.94) 19.3 (5.2)
99.8 (100) 100 (100)
5.9 (6.0) 16.3 (16.4)

39.20-3.00
25,991 (2,475)
0.1701/0.2425

6567
66
52

53.78
98.74
33.78

0.009
1.217

A single crystal was used to collect the Native and the Semet SAD datasets, each.

*
Values in parentheses are for highest-resolution shell.
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