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Summary
Filamentous fungi produce a vast array of small molecules called secondary metabolites, which
include toxins as well as antibiotics. Co-regulated gene clusters are the hallmark of fungal
secondary metabolism, and there is a growing body of evidence that suggests regulation is at least,
in part, epigenetic. Chromatin-level control is involved in several silencing phenomena observed
in fungi including mating type switching, telomere position effect, silencing of ribosomal DNA,
regulation of genes involved in nutrient acquisition, and as presented here, secondary metabolite
cluster expression. These phenomena are tied together by the underlying theme of chromosomal
location, often near centromeres and telomeres, where facultative heterochromatin plays a role in
transcription. Secondary metabolite gene clusters are often located sub-telomerically and recently
it has been shown that proteins involved in chromatin remodeling, such as LaeA, ClrD, CclA and
HepA mediate cluster regulation.

Introduction
For many years it has been known that chromosomal location and histone modification have
profound effects on gene transcription in a variety of organisms from yeast to humans.
Filamentous fungi produce many bioactive small molecules, or secondary metabolites, that
range from beneficial antibiotics to harmful toxins. Genes responsible for production of
these secondary metabolites are typically clustered and co-regulated [1]. Interestingly, the
order and location of biosynthetic genes within a cluster is important for their regulation.
Additionally, secondary metabolite gene clusters have a tendency to be located near the ends
of chromosomes in areas termed sub-telomeric [2••,3•] – a region where chromatin
modifiers impact transcription of these clustered genes. Here we review the importance of
location, both specific locations of genes within a cluster, the chromosomal location of the
entire cluster itself, and putative epigenetic forces on the genetic regulation of secondary
metabolite gene clusters in fungi. We offer a view that secondary metabolite clusters are

© 2010 Elsevier Ltd. All rights reserved
*corresponding author Nancy Keller 3476 Microbial Sciences Building 1550 Linden Drive Madison, WI 53706 npkeller@wisc.edu
Phone: 1 (608) 262-9795 Fax: 1 (608) 262-8418.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Curr Opin Microbiol. Author manuscript; available in PMC 2011 August 1.

Published in final edited form as:
Curr Opin Microbiol. 2010 August ; 13(4): 431–436. doi:10.1016/j.mib.2010.04.008.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



located in regions of facultative heterochromatin, which can be silenced and activated by
both canonical and novel chromatin-mediated mechanisms.

Hallmarks of gene silencing in fungi
Eukaryotic organisms have evolved orchestrated mechanisms to regulate their large gene
networks for proper development and appropriate environmental responses. In recent years,
much interest has been focused on epigenetic and small RNA regulation of gene expression.
Common to all eukaryotes, fungi possess several cellular devices important in gene silencing
and activation. Early research in Saccharomyces cerevisiae identified the silent mating type
loci (HML/HMR), which subsequently opened the door to an extensive body of work on
positional effects in fungi as well as higher eukaryotes [4]. A key finding from the S.
cerevisiae work was that exogenous genes were repressed when integrated at the silent
mating type loci, thus indicating that the repression was due to positional effects [5]. The
mating type switching phenomenon has also been reported in fission yeast,
Schizosaccharomyces pombe, where repetitive border elements facilitate the silencing effect
[6].

An additional silencing mechanism is termed telomere position effect (TPE). This
phenomenon was first reported in yeast and occurs when sub-telomerically located genes are
repressed [7]. In fungi, TPE has been demonstrated in S. cerevisiae [8], Sc. pombe [9],
Candida glabrata [10], Neurospora crassa [11], and recently, Aspergillus nidulans [12•,
Palmer et al., unpublished results]. The extent of TPE is variable at the 32 yeast telomeres
[13], but generally extends 20 Kb indicating several hundred genes are regulated by TPE
[14].

A commonality in the above instances of positional silencing of gene expression is the
involvement of chromatin-level control, commonly termed the histone code, where residues
on the histone tails are modified, which in turn results in alterations of chromatin structure
[15]. Chromatin can exist in two states: euchromatin is transcriptionally active and
characterized by low nucleosome density, while heterochromatin is transcriptionally silent
and contains densely packed nucleosomes. Heterochromatin that can become activated
under particular circumstances is sometimes referred to as facultative heterochromatin as
illustrated by developmentally timed gene expression in Drosophila [16]. Histone tail
residues that are hyperacetylated and methylated at lysine 4 of histone 3 (H3K4) are
associated with gene transcription and euchromatin, while hypoacetylation and methylation
lysine 9 of histone 3 (H3K9) are associated with gene silencing and heterochromatin [17].
These generalities are not rigid, however, as H3K4 methylation is also associated with
silencing in yeast sub-telomeric and rDNA regions [18]. A few examples of chromatin-
mediated control affecting aspects of development in fungi are listed in Table 1.

Regulation of Secondary Metabolite Gene Clusters in Fungi
An unexpected finding upon inspection of several fungal genomes was the presence of vast
numbers of secondary metabolite gene clusters [19]. Although most remain undefined,
research on select gene clusters is quite robust and serves to illustrate several important
points on the regulation of secondary metabolite gene clusters. The reader is directed to
recent reviews detailing non-heterochromatic regulatory mechanisms employed to regulate
these clusters [1,19–21]. Briefly, many clusters contain cluster specific transcription factors,
often C6 zinc binuclear cluster proteins such as AflR for aflatoxin/sterigmatocystin
biosynthesis in Aspergillus spp. [22] or Tri6 for trichothecene biosynthesis in Fusarium spp.
[23] that function to activate biosynthetic genes in their respective cluster. Secondary
metabolite clusters are also activated, and sometimes shut down, in response to a variety of
environmental stimuli that include but are not limited to light, pH, carbon source, nitrogen
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source, ROS and temperature (Figure 1) [24]. Environmental stimuli are translated to the
nucleus through signal transduction cascades, such as the mitogen activating protein kinase
cascade (MAPK) and the cAMP mediated PkaA cascade [25–29] and have been linked to
activation of specific broad domain regulator factors including CreA (carbon metabolism),
AreA (nitrogen metabolism) and PacC (pH sensor) [1].

The first hint that locality of secondary metabolite genes plays a role in their regulation
came from characterization of one of the biosynthetic enzymes of the aflatoxin (AF) cluster
in A. parasiticus, where localization of the ver-1 gene outside of the AF cluster resulted in
500 fold lower expression than ver-1 located inside the cluster [30]. Similarly, the AF
biosynthetic enzyme nor-1 was not expressed when located at two different positions
outside of the AF cluster, which led to the conclusion that positional effects are important
for expression of AF biosynthetic genes [31]. Insight into a mechanism controlling
positional regulation of AF genes came with the discovery of LaeA, a global regulator of
secondary metabolism in filamentous fungi [32–35, B. Tudzynksi et al., personal
communication]. Recently, LaeA has been shown to be part of the velvet complex,
consisting of LaeA-VeA-VelB, that functions to regulate development and secondary
metabolism in response to light [36••]. LaeA regulation of gene clusters was found to be
location dependent as placement of aflR outside of the sterigmatocystin (ST) cluster
removes it from LaeA regulation, and conversely, placement of non-cluster gene in the ST
cluster puts it under LaeA control [37].

Although the precise function of LaeA remains enigmatic, several studies link LaeA activity
with chromatin modifications. Recent data illustrates that mutations in Aspergillus histone
modifying genes activate silent or poorly expressed gene clusters and, significantly, can
partially remediate loss of secondary metabolite production in ΔlaeA strains (Table 2). Three
deletion mutants that produce increased levels of secondary metabolites target the H3K9
residue including HdaA, a histone deacetylase (HDAC) [38,39], HepA (heterochromatin
protein 1) and ClrD (H3K9 methyltransferase) [40••]. The latter two mutations resulted in
decreased H3K9 methylation inside ST cluster, which corresponded to increased ST
production. In the same study, ChIP analysis showed that secondary metabolite deficient
ΔlaeA strains contain increased H3K9 methylation in the ST cluster [40••]. Furthermore,
HDAC inhibitors have been reported to increase secondary metabolite production in several
fungi [38,41•]. Finally, again supporting a role for chromatin-level control, the order in
which AF biosynthetic genes are transcribed mirrors increased histone H4 acetylation
patterns in the AF cluster [42•]. While these results confirm that histone modifications are
directly linked with secondary metabolite cluster activation, it remains unclear if LaeA
directly or indirectly modifies chromatin structure. It has long been speculated that LaeA
could directly change chromatin structure through methylation of histones [32,37], however,
a substrate for methylation by LaeA remains to be identified.

Chromosomal Location of Secondary Metabolite Gene Clusters
As mentioned earlier, methylation of H3K9 is associated with heterochromatin, while
methylation of H3K4 is more commonly associated with euchromatin and transcription.
However, the COMPASS complex, which methylates H3K4 in yeast, is also associated with
homothallic mating type silencing, ribosomal DNA silencing, and sub-telomeric gene
expression in this fungus [18]. Paralleling these observations, it was shown that a mutant
defective in a component of the COMPASS complex activates silent secondary metabolite
clusters in A. nidulans [43••]. These studies led to the discovery of the gene clusters
responsible for producing emodin, F9775A/F9775B, and monodictyphenone in addition to
shedding light on genome mining techniques leading to discovery of cryptic gene clusters
[43••–45]. Moreover, these advances have led to “chemical epigenetic mining” where
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incorporation of exogenous acetylase/methylase inhibitors or activators have led to
identification of novel fungal metabolites [41•,46,47••,48]. These data suggest that cryptic or
silent secondary metabolite gene clusters are located in regions of facultative
heterochromatin and can be turned on when chromatin structure is changed.

In the human pathogen A. fumigatus, null mutants of LaeA display reduced pathogenicity in
murine models of invasive aspergillosis [35,49]. An interesting feature of the LaeA regulon
was revealed by microarray analysis in A. fumigatus, which suggested there was a tendency
for LaeA regulated secondary metabolite clusters to be located in sub-telomeric regions [3•].
This observation was recently substantiated by expression profiling in A. fumigatus, which
revealed sub-telomeric regions, including toxin genes, were highly up regulated when
exposed to the murine lung compared to normal laboratory growth [2••]. There is striking
overlap between secondary metabolite clusters regulated by LaeA and the sub-telomeric
regions differentially regulated upon exposure to the murine model [2••]. Taken together,
these data imply that sub-telomeric location of secondary metabolite clusters may be
important for their genetic regulation and biological function.

A conserved feature of sub-telomeric DNA sequences, including secondary metabolite gene
clusters, is the presence of repetitive elements (RE) composed of active transposable
elements or transposon relics. Because active transposons have the potential to be disruptive
in the genome, organisms employ complex regulatory mechanisms to limit their expression,
such as RNAi mediated heterochromatin formation [6]. A possible role for transposon
regulation of a sub-telomeric gene clusters was recently reported for the penicillin (PN) gene
cluster [12•]. The PN cluster consists of only three genes and is located ~ 30 Kb from the
telomere of chromosome VI. Disruption of large areas of repetitive DNA sequences resulted
in mutants producing significantly less PN. Characterization of one area, a 3.7 Kb repeat
termed PbIa (penicillin boundary element Ia) containing two transposons/transposon relics,
showed its removal decreased PN production, whereas control strains harboring marker gene
insertions to either side of PbIa had no effect on PN production. Subsequent trans-
complementation experiments were unable to restore PN production. In contrast, deletion of
the HDAC HdaA in the ΔPbIa background was able to restore production of PN, suggesting
that a transposon mechanism of secondary metabolite cluster expression could involve
localized chromatin modifications [12•].

Conclusions
This review highlights work suggestive of epigenetic regulation of secondary metabolite
gene clusters in filamentous fungi. Recently there has been an increase in the number of
examples of gene cluster regulation mediated by chromatin remodeling enzymes, including
chemical epigenetic approaches. These studies reveal the importance of positional effects,
both location effects within a cluster and chromosomal location effects on cluster regulation.
Future studies are warranted to tease out the molecular mechanisms of epigenetic regulation.
Interesting questions remain to be answered: Which happens first - chromatin remodeling
leading to transcription factor activation or transcription factor binding leading to chromatin
remodeling? Does RNAi have a role in chromatin-mediated regulation of secondary
metabolism? What role do repetitive elements that flank gene clusters have in regulation?
Does LaeA directly or indirectly modify chromatin structure?
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Figure 1. A proposed model for chromatin mediated control of secondary metabolite gene
clusters
Secondary metabolite gene clusters are often flanked by repetitive elements (RE) and
located in sub-telomeric regions of the genome. The epigenetic marks of H3K4 methylation
(H3K4-CH3) and general histone acetylation have been shown to be associated with active
gene transcription [17]. Thus, histone acetyltransferases (HAT) and the H3K4 methylation
protein complex (COMPASS) are involved in initiation of transcription through RNA
polymerase II (Pol II) [18]. Environmental stimuli are translated by signal transduction
cascades, including but not limited to MAPK and PkaA, to trigger production of secondary
metabolites [19]. These signals work independently and dependently through the LaeA
containing velvet complex [25,26]. On the other hand, in several eukaryotic systems
heterochromatin protein 1 has been shown to bind H3K9 methylation (H3K9-CH3) and is
associated with gene silencing. In Aspergillus nidulans, null mutants of the H3K9
methyltransferase (ClrD) and heterochromatin protein 1 (HepA) result in derepression of the
ST gene cluster [40••]. Currently, the genetic components involved in initiation of
heterochromatin at secondary metabolite gene clusters is unknown, RNAi mediated
heterochromatin formation could function this way as well as DNA binding repressors.
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Table 1

Selected examples of chromatin-level control affecting aspects of fungal development

Developmental aspect: Organism: Phenotypic Description: Reference:

Nitrate and Proline utilization Aspergillus nidulans • Nitrate and proline genes are clustered

• Inducing/repressive conditions alter nucleosome
positioning in promoter and histone H3 acetylation
patterns

[50,51].

Adhesion Candida glabrata • Adhesins important pathogenicity factors in C. glabrata

• Adhesins are produced by telomerically located EPA genes

• EPA genes regulated by TPE and HDAC's

[52]

Growth and Reproduction
Defects

Neurospora crassa • Severe growth defects in null mutants of the H3K9
methyltransferase and heterochromatin protein 1.

[53,54]

Aspergillus fumigatus • Null mutant of H3K9 methyltransferase shows impaired
growth and delayed asexual development

[55]
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Table 2

Genes involved in chromatin-mediated control of secondary metabolism in Aspergillus nidulans

Gene Function Secondary Metabolism Phenotype* Reference

hepA Heterochromatin protein 1 ΔhepA results in increased production of ST [40••]

clrD H3K9 methyltransferase ΔclrD results in increased production of ST, partial remediation of ST in ΔlaeA
background

[40••]

hdaA Histone deacetylase ΔhdaA results in increased production of ST and PN. Partial remediation of ST/PN
in ΔlaeA background

[38]

cclA H3K4 methyltransferase (part of
COMPASS complex)

ΔcclA resulted in production of secondary metabolites from cryptic clusters [43••]

laeA unknown ΔlaeA results in loss of several secondary metabolites (ST, PN, TQ) and increased
H3K9 methylation in the ST cluster

[37,40]

*
ST = sterigmatocystin, PN = penicillin, TQ = terrequinone A
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