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Abstract
Therapeutic immunization leading to cancer regression remains a significant challenge. Successful
immunization requires activation of adaptive immunity, including tumor specific CD4 + T cells
and CD8+ T cells. Generally speaking, the activation of T cells is compromised in patients with
cancer due to immune suppression, loss of tumor antigen expression, and dysfunction of antigen
presenting cells (APC). APC such as dendritic cells (DC) are key for the induction of adaptive
anti-tumor immune responses. Recently, attention has focused on novel adjuvants that enhance
DC function and their ability to prime T cells. Agonists that target toll-like receptors (TLR) are
being used clinically either alone or in combination with tumor antigens and showing initial
success both in terms of enhancing immune responses and eliciting anti-tumor activity. This
review summarizes the application of these adjuvants to treat cancer and the potential for boosting
responses in vivo.
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Background
Considerable evidence exists showing that the immune system protects the host against
progressive growth of primary non-viral cancers and influences the immunogenicity of
tumors, a concept known as immune surveillance (1). This has propelled studies to identify
effective immune therapeutic approaches to eradicate or reduce outgrowth of human
cancers. Immunotherapies fall into two broad categories: those that target antigen presenting
cells (APC) by enhancing their ability to stimulate the immune system, and those that target
the adaptive immune response i.e. T cells and B cells. In this review we discuss approaches
that enhance the activity of APC such dendritic cells (DC). DC are the most potent APC and
function to activate innate (e.g. natural killer cells (NK)), and adaptive immune responses
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which are mediated by B cells and T cells (Figure 1). Both innate and adaptive arms of the
immune system are key for recognizing and eliminating tumor cells. Since vaccines
generally elicit humoral and T cell responses, efforts are being directed towards approaches
that elicit tumor-specific, integrated B cell, CD4+ and CD8+ T cell responses in vivo. A
challenge in the field of cancer vaccines has been how to elicit these responses and ensure
they are not only antigen-specific, but effective, durable and safely administered. In this
review we discuss the use of Toll-like receptor agonists, novel compounds that activate DC
and other members of the immune system in vivo, and are showing promise in the clinic as
vaccine adjuvants in cancer patients.

Toll-like receptors (TLR)
Toll like receptors (TLR) are a family of pattern recognition receptors (PRR) that function
as primary sensors of the innate immune system to recognize microbial pathogens. They
were initially discovered as factors involved in the embryonic development and resistance of
the fly Drosophila to bacterial and fungal infection (2,3). TLR recognize distinct structures
in microbes, often referred to as “PAMPs” (pathogen associated molecular patterns). Ligand
binding to TLR invokes a cascade of intra-cellular signaling pathways that induce the
production of factors involved in inflammation and immunity (4,5). PRR also include
intracellular proteins e.g. Nod-like receptors, RIG-1 like helicases (RLHs) as well as
extracellular receptors, e.g. scavenger receptors and C-type lectin receptors (4,5). TLR, the
topic of this review, are typically activated by microbial signals but may also be activated by
endogenous ligands (e.g. heat shock proteins, fibronectin and fibrinogen) or synthetic
compounds (Table 1). TLR can be expressed on members of the innate and adaptive
immune system (DCs, macrophages, granulocytes, T cells, B cells, NK cells and mast cells),
as well as by endothelial and epithelial cells (5). More recently, TLR have been found on
tumor cells, including melanoma (6). In humans, ten TLR have been identified (Figure 1).
These receptors comprise a family of conserved membrane spanning molecules containing
an ectodomain of leucine-rich repeats, a transmembrane domain and an intracellular TIR
(Toll/IL-1R) domain (7). TLR that are expressed on the surface of cells detect pathogens
within the local environment (TLR1,-2,-4,-5,-6). TLR4 recognizes bacterial cell wall
component lipopolysaccharide (LPS) through its ectodomain (8), in addition to MPL A
(monophosphoryl lipid A). Lipoprotein and lipoteichoic acid are recognized by TLR2 in
combination with TLR1 and TLR6, respectively (9). TLR5 recognizes bacterial flagellin
(10). In contrast, certain TLR (TLR-3, -7/8, -9) are located within the endoplasmic reticulum
(ER) and rapidly recruited to endosomal-lysosomal compartments, where they can detect
microbial nucleic acids (dsRNA, ssRNA and ss DNA containing unmethylated CpG motifs,
respectively (4,5)).

Ligand binding to TLR induces the recruitment of intracellular adaptors which form signal
transduction complexes within the cytoplasm (7). This leads to the activation of signaling
pathways including NF-KB and the MAP kinases p38 and JNK, which regulate the
expression of genes involved in inflammation (cytokines) and immunity (MHC molecules,
adhesion molecules). As different TLR signal through different combinations of adaptors,
there is recruitment of dissimilar transcription factors and diverse gene induction. The
endosomal receptors TLR7, -8, -9 are activated after ligand engagement and interact with
the adaptor MyD88 (myeloid differentiation primary response gene), following which there
is association with several signaling complexes ultimately leading to the activation of IRF7,
NF- KB and MAP kinases (Figure 2, (7)). The expression of IRF7 facilitates the induction of
high levels of type I interferons (IFN). TLR3, also located within endosomes, recognizes
dsRNA or its synthetic mimic poly I:C. Unlike other TLR, TLR3 binding induces signal
transduction via a MyD88 independent pathway, associating with the TRIF adaptor,
signaling through IRF3, and inducing IFNβ production (7). LPS, after engaging TLR4,
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recruits several adaptors (TIRAP, MyD88, TRAM and TRIF) to the TIR intracellular
domain. These adaptors subsequently engage both the MyD88 and TRIF- dependent
signaling pathways (7).

Basis for using TLR agonists to treat cancer
William Coley, a NY surgeon, was a pioneer in using bacterial components “Coley’s toxins”
to treat cancer. He documented an association between infection and cancer (11), and
subsequently tested extracts of Streptococcus pyogenes and Serratia marcescens in his
patients, thus laying the foundation for using synthetic PAMPs in cancer therapy. PAMPs
function by activating many types of APCs through their effects on epithelial and tumor
cells. Human DC subsets express distinct TLR, and their response to stimulation is
correspondingly differential. When stimulated, the myeloid or “conventional” subset of DC
(mDC) which expresses TLR 1–8, upregulates activation markers (e.g. CD80, CD86, MHC
class I and II, CCR7), produces pro-inflammatory cytokines and chemokines (e.g. TNF,
IL-1, IL-6, MIP-1α, MIP-1β, MIP-3α) and primes antigen-specific CD4+ and CD8+ T cells
(Figure 2). Moreover, these DCs acquire an enhanced capacity to take up antigens and
present them in an appropriate form to T cells shown in Figure 3 (12). The plasmacytoid
subset of DC (pDC) expresses only TLR7 and TLR9. Following activation via TLR7 or -9,
pDC produce high levels of type I IFNs and chemokines, prime and boost T cells, and
activate NK cells (13,14). Therefore, TLR ligation of these APCs are likely to have
consequential effects on stimulating immunity in the host. Given that dying tumor cells may
adversely affect DC function (15,16), activating DC with TLR agonists may be critical for
priming anti-tumor immunity. TLR are also expressed on other immune related cells
(macrophages, NK cells), epithelial cells and even some epithelial cell derived cancers,
including breast cancer, squamous cell cancers, and melanoma (17). While the biological
function of TLR expression remains to be determined, it has been suggested that TLR
ligation may promote tumor progression, through induction of immune suppressive factors,
by conferring resistance to apoptosis stimulating, regulatory T cell function or even
promoting angiogenesis. Other studies involving TLR3 and TLR9 agonists, however, have
shown enhanced production of pro-inflammatory cytokines and even induction of apoptosis
(6,18,19). There is increasing evidence that TLR polymorphisms also influence the risk to
cancer. Certain TLR4 polymorphisms for example have been associated with an increased
risk in prostate cancer (TLR4), gastric cancer (TLR4), and colorectal cancer in certain
populations. Follicular lymphoma has been associated with TLR2 polymorphisms, while
variants of TLR3 and TLR10 may influence susceptibility to nasopharyngeal carcinoma in
Chinese (17). There is evidence to suggest that the efficacy of radiation and chemotherapy in
breast cancer requires TLR4 activation via endogenous agonists (high mobility group box-1,
HMGB-1) released by dying tumor cells (Table 1). The TLR4 polymorphism (TLR4
Asp299Gly) is associated with worse outcomes in breast cancer patients receiving
chemotherapy (20). Altogether, these findings provide a strong rationale for using TLR
agonists in the clinic to promote anti-tumor immune responses.

Clinical application and efficacy of TLR agonists
Although TLR agonists have shown great promise in early stage cancers, their anti-tumor
activity remains to be established in the adjuvant or metastatic setting. Furthermore, the
mechanism(s) of anti-tumor activity has not been fully elucidated and will require further
investigation. Agonists either in synthetic form, or as components of bacterial or viral
vectors have been evaluated in the clinic. They have been studied either as single agents or
in combination with tumor antigens (21). Evidence obtained thus far is consistent with
findings in animal models, namely that they can induce potent immunity in humans in

Bhardwaj et al. Page 3

Cancer J. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



addition to clinical responses. Below, we summarize pre-clinical and clinical experience,
including our own, with various TLR agonists.

Synthetic TLR agonists
TLR3 agonists—TLR3 is expressed on tissue and blood dendritic cells, monocytes, mast
cells, NK cells and epithelial cells. Polyribosinic:polyribocytidic acid (Poly I:C), is a
synthetic dsRNA complex, which directly activates DC and also triggers NK cells to kill
tumor cells (22). In addition to being recognized by endosomal TLR3 (23), it induces high
levels of type I interferons and activates several nuclear and cytoplasmic enzyme systems
(oligoadenylate synthetase [OAS], the dsRNA dependent protein kinase [PKR], RIG-I
Helicase, and MDA5 [melanoma differentiation associated gene]. that are involved in
antiviral and antitumor host defenses (5). It has been shown to have broad gene regulatory
actions as well. Poly I:C induces prolonged survival of tumor bearing rodents following IP
or IV administration, and enhances antigen-specific responses to viral antigens, especially
with anti-CD40 (24–27). It appears to exert its therapeutic effects through eliciting antibody
responses (28,29), enhancing cross-priming (23), stimulating anti-tumor CD8+ T cells (30–
32), and antigen-specific CD4+ T cells (33). Relative to several other toll-like receptor
(TLR) agonists, poly IC is the most effective inducer of type I interferon (IFN), which seems
to be required for DC maturation and development of CD4+ T cell mediated immunity.
Besides TLR3, poly I:C also relies on the intracellular signaling molecule MDA5, to
optimize the production of type I IFN (33). It is the TLR3 agonist formulation most
extensively tested as a single agent in humans with infectious diseases and cancers including
glioblastoma, renal cell cancer, melanoma, leukemia, ovarian cancer, breast cancer (34–41)
(A. Salazar personal communication).

Other molecular TLR3 mimics include polyadenosine-polyuridylic acid (poly AU)
Ampligen (polyI:polyC (12)U; Hemispherx Biopharma) and Polyinosinic-Polycytidylic acid
stabilized with poly-L-lysine and carboxymethylcellulose (Poly-ICLC, Hiltonol®). The
latter is a more stable version of the TLR3 agonist and has been given IV or IM, 2 to 3 times
weekly at doses of 10 to 50 µg/kg in patients with gliomas (42). A phase II study in adult
patients with recurrent supratentorial anaplastic glioma treated with single agent poly-ICLC,
showed no improvement in 6-month progression free survival compared to a historical
database. Furthermore no objective radiographic response rates were observed. The authors
suggested that poly-ICLC may confer a better outcome in combination with agents such as
temozolomide. Administration of poly IC-LC in subjects with melanoma (35) and advanced
renal cell cancer (43), was also well-tolerated and while no clinical benefit was observed, it
was possible to consistently detect type I IFN in the serum 8 h after a single injection
(median titer 199 U/ml), indicating a systemic effect. (35). Ongoing clinical trials are
evaluating this agent more extensively in melanoma, prostate, cervical, ovarian, breast,
colon and pancreatic cancers, including by intra-tumoral administration. Poly-ICLC has also
been used nasally in a recent phase I randomized dose escalation trial in humans (N=50),
and was well tolerated at all doses (A. Salazar personal communication). The most common
side effects of low-dose Poly-ICLC are temporary discomfort at the injection site and
occasional transient malaise, with flu-like symptoms in some patients.

Surprisingly, the agonist is only now being evaluated in humans directly in conjunction with
tumor antigens. A phase I/II trial of patients with recurrent malignant glioma receiving intra-
lymph-node injections of DCs loaded with HLA-A2 restricted peptides (derived from
various glioma-associated antigens such as gp100, and 13Rα2) is currently under review. In
addition participants received twice weekly IM injections of 20 ug/kg poly-ICLC. The
frequency of CD8+ cells reactive to EphA2- or IL-13Rα2-tetramers was increased post-
vaccination in the blood mononuclear cells in 9 of 11 participants evaluated. An interim
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analysis showed an association between positive tetramer response and 6-month
progression-free survival, suggesting a possible correlation between antigen-specific
responses and clinical response (44). In our own laboratory, we have found that poly I:C of
most TLR agonists tested is the most potent activator of human mDC in vitro, and elicits
strong anti-tumor immune responses to melanoma antigens (45). These data provide strong
support for testing poly I:C together with tumor antigens in humans with cancer.

TLR4 agonists—Bacterial (LPS) and its derivatives are a commonly used vaccine
adjuvants. Monophosphoryl lipid A (MPL) a detoxified component of LPS is derived from
Salmonella minnesota, and contains the lipid A moiety that ligates TLR4 (46). Because it is
substantially less toxic than LPS, has a history of safety and potently activates human DC, it
has been incorporated into several vaccines. It also produces a different pro-inflammatory
profile compared to LPS, including the production of type I IFNs, possibly because it may
preferentially activate the TRIF vs. MyD88 signaling pathways (47). MPL has been
approved for inclusion in a vaccine for Hepatitis B, Fendrix™ (48) and cervical cancer,
Cervarix™ (49,50). Cervarix, a GSK product, is indicated for the prevention of diseases
caused by oncogenic human papillomavirus (HPV) types 16 and 18, including cervical
cancer, cervical intraepithelial neoplasia (CIN) grade 1 and 2 or worse and adenocarcinoma
in situ. Besides MPL, the vaccine contains L1 capsid proteins from HPV and the adjuvant
aluminum hydroxide. 100% protection of the vaccine was demonstrated in phase II trials
against types 16 and 18 HPV, (51). Over 30,000 women have received this vaccine and it is
now approved in both Europe and America. Vaccination offers protection for >6 years,
making this vaccine a milestone in the prevention of cancer. A clinical trial to determine
whether Cervarix is more effective than Merck's HPV vaccine Gardasil™, which contains
L1 capsid proteins and aluminum hydroxyphosphate sulfate, in addition to a yeast protein is
under evaluation. MPL is also a component of Glaxo Smith Kline’s vaccine formulations for
NSCLC and melanoma in combination with TLR9 agonists (see below). Phase IIB studies
showed improved median survival time in patients with stage IIIB NSLC devoid of
metastases (52).

MPL is a constituent of the DETOX adjuvant, an oil-droplet complex which also contains
purified mycobacterial cell-wall skeleton (CWS) and has been used in combination with
melanoma cell lysates (MelacineTM) or irradiated tumor cells (53). Melacine was granted
approval in Canada based upon Phase III results demonstrating superior quality of life
during active therapy for Stage IV melanoma as compared to a four-drug chemotherapy
control, although both therapies achieved similar efficacy results. Furthermore, a meta-
analysis of therapies for Stage IV melanoma showed that amongst Melacine recipients, the
median survival of 11 months was better than that achieved by other therapies. Moreover,
patients who were clinical responders to Melacine had a longer median survival. Melacine
was also tested in resected stage II melanoma in a study conducted by the Southwest
Oncology Group (SWOG). The primary endpoint was disease-free survival (DFS) in
patients who received Melacine or no adjuvant therapy after surgical resection. While
Melacine vaccination had no significant benefit in terms of prolongation of disease free
survival in the total patient population, 38 percent of patients who expressed two or three of
five different HLA genes (HLA-A2, HLA-A28, HLA-B44, HLA-B45, and HLA-C3)
showed some benefit from vaccination (54).

Sialyl-Tn (STn) is a carbohydrate associated with the MUC1 mucin on a number of human
cancer cells, is associated with more aggressive disease and has been incorporated into
cancer vaccines for breast cancer and other epithelial tumors (THERATOPE, Biomera Inc.,).
When linked to the neoantigen keyhole limpet haemocyanin (KLH), and given with
DETOX, it is safe and may lead to occasional tumor regression in subjects with breast
cancer (55). Immune responses in the form of both antibodies or cellular responses have
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been observed in patients with breast, colon and pancreatic cancers using sialyl-Tn (STn) or
ras epitopes as antigens and DETOX (55–58) verifying the ability of MPL to stimulate an
immune response to tumor associated antigens. MUC1 has also been incorporated into
vaccines (BLP25, Stimuvax, Biomira/Merck) targeting non small cell lung cancer (NSCLC).
These vaccines are composed of MUC1 peptide incorporated into liposomes containing
MPL (52). In a randomized phase IIB trial, sc immunization with Stimuvax improved
medium survival time by 17.3 months for patients with stage IIIB NSLC. Phase III studies
are in progress.

Finally, results of a placebo controlled randomized phase II study testing GSK’s AS-02b
vaccine platform, (comprising MPL and the additional adjuvant QS21, a saponin), and the
cancer testis antigen, MAGE A3, showed prolonged disease free survival in patients with
resected stage Ib-IIIa NSLC (59,60). Ongoing randomized phase III studies are now
evaluating MPL in GSK’s advanced adjuvant platform AS-15 which also includes TLR9
agonists (see below).

TLR7/8 agonists—Imiquimod (3M)and Resiquimod (R848; 3M) are imidazoquinolines,
synthetic immune modulators which target TLR7 and TLR8, TLR that typically recognize
viral ssRNA (13,14,61,62). They have the advantage of activating both mDC and pDC
stimulate innate and adaptive immune responses, while also activating NK cells (63,64).
Type I IFN production by pDC facilitates direct priming of CD8+ T cells, as well as cross-
priming through promotion of MHC and transporter of antigen peptides (TAP) molecules on
DC (65,66). Interestingly, both compounds can activate caspase-1 through intracellular
PRRs Nod-like receptors (NLR): cryopyrin/Nalp 3 to induce the production of IL-1β and
IL-18 (67) which also facilitate adaptive immune responses. Imiquimod (formulated as 5%
cream, Aldara™) is the only approved TLR7 agonist for treatment of genital warts (C.
acuminata), actinic keratoses, basal cell carcinoma, and lentigo maligna (reviewed in (68)),
where it has proven efficacy. It has also been used off-label to treat other HPV-associated
lesions, as well as cutaneous melanoma (68). Imiquimod has been useful as adjunctive
therapy to treat HIV-infected patients with intra-anal cancer by reducing recurrences of
lesions (69). Resiquimod, related to Imiquimod binds to both TLR7 and -8, is a considerably
more potent analog, and is in testing stages for treatment of genital HSV. In animal models,
when administered together with peptides, proteins, or bacterial vectors and DNA constructs
encoding tumor antigens (e.g. melanoma associated antigens, MAA), these agents augment
anti-tumor activity (70). DC activity against tumor antigens, including MAA, can also be
substantially enhanced in vivo if the APC are first activated with TLR7/8 agonists (71–73).

In humans, topical Imiquimod treatment enhanced the immunogenicity of a melanoma
peptide vaccine when given with systemic Flt-3 ligand, which mobilizes DC systemically
(74). Injection of immature human DCs into imiquimod-pretreated skin lead to DC
activation in situ and enhanced migratory capacity to draining lymph nodes in cancer
patients (75). Recently, we and other investigators demonstrated that imiquimod rapidly
recruits significant numbers of human mDC and pDC into topically treated areas (Figure 4;
(76)), enhances their survival, induces their trafficking to draining lymph nodes (73,77), and
confers human mDC and pDC with cytolytic acivity against tumors in a perforin/granzyme
B and TRAIL dependent fashion, respectively (78). Topical application of Imiquimod also
caused reversal of T regulatory cell infiltration and suppressive activity in squamous cell
cancers of the skin and restored the expression of E-selectin in skin blood vessels (79). In a
vaccine trial, our group showed that intradermal injection of the CT antigen NY-ESO-1, as
whole protein, into Imiquimod-treated skin of resected melanoma patients, primed new
humoral and helper T cell responses and induced local infiltration of T, B, NK and activated
mDC and pDC subsets (Figure 4 (21,76)). This study demonstrated, for the first time, the
safety and adjuvant activity of Imiquimod when administered simultaneously with protein
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antigen. It also confirmed the agonist’s mDC and pDC activating potential in vivo. Of note,
no indoleamine 2’3’-dioxygenase (IDO) was detected in vivo. We have shown that IDO is
triggered in vitro by ligation of TLR7/TLR9 on pDC. IDO metabolizes tryptophan to
kynenurenine, which is responsible for the induction of T regulatory cells (14).

We are currently undertaking a randomized controlled study evaluating the immunogenicity
of topical Resiquimod in combination with the cancer testis antigen NY-ESO-1 protein
delivered SC in Montanide ISA 51. Given the proven efficacy of Imiquimod in treating
cutaneous pre-malignant and malignant lesions, it is likely that these agents, in the absence
of potent systemically administered formulations (80,81) will gain greater use in the
treatment of additional cutaneous pre-malignant and malignant conditions e.g. cervical
intraepithelial neoplasia.

TLR9 agonists—We and others have shown that synthetic oligonucleotides containing
unmethylated CpG dinucleotide (CpG-ODN) bind TLR9 on pDC, leading to their activation
and type I IFN production (13,14). Ligation of TLR9 on B cells induces their activation and
proliferation (82). CpG-ODNs have been classified into three families: D-, K or C-type
ODNs. These differ based on their backbones (phosphodiester or phosphorothioate),
location and number of CpG dinucleotides, and palindromic sequences. In animal models,
these constructs have anti-tumor effects when given either as monotherapy, or together with
vaccines or other treatments (82–85). In humans, the responses to monotherapy, whether
used to treat HCV (86) or cancers (non small cell lung cancer, cutaneous T-cell lymphoma,
renal cell cancer, non-Hodgkin’s lymphoma, chronic lymphocytic leukemia) regardless of
delivery route (i.v., s.c, or intratumorally) or if given with adjunct chemotherapy have been
generally low (68,82,87,88). Early phase 1 trials have shown that CPG ODN are well-
tolerated at levels that can stimulate immune activation: NK cell activation, inflammatory
cytokine production and reduction of regulatory T cell number in draining lymph nodes
(89). These findings suggest that CpG should be used with additional agents to achieve
maximal effects. Indeed, Romero et al., (90,91) showed that the addition of CpG to a Melan
A/MART-1 HLA A2-restricted peptide and the “water in oil” adjuvant Montanide,
dramatically increased the number of antigen-reactive cells elicited (upto 1.15% of
circulating CD8+ T cells). Moreover, enhanced tumor-reactive CD8+ T-cell responses were
also observed after vaccination with NY-ESO-1 peptide, CpG 7909 and Montanide ISA-51
in patients with NY-ESO-1 expressing tumors and responses were associated with survival
(92).

In a similar manner, we tested the immunogenicity of CpG plus NY-ESO-1 antigen
emulsified in Montanide in patients with resected melanoma. Specific and strong integrated
CD4+ T cell and antibody responses were elicited in most vaccinated patients, along with
CD8+ T cell responses in approximately half the patients (93). These findings clearly
established that protein antigen, presented on the right platform can elicit class I restricted
responses. Given that peptide/Montanide combinations are significantly immunogenic
(90,91), it will be important to dissect the precise contribution of Montanide vs. CpG agonist
in additional trials.

Recently, GSK reported on immune responses in subjects with metastatic melanoma in a
phase II randomized trial receiving their vaccine AS02B comprising MPL, MAGE A3
antigen, QS21 in oil/water emulsion vs. AS15, comprising CpG in addition to MPL,
MAGEA3 antigen, QS21 and liposome formulation. The addition of CpG to the vaccine
formulation significantly enhanced the induction of antigen-specific CD4+ T cell and
antibody responses. A difference between arms in time to treatment failure was also
documented (94). Phase III trials of MAGE A3/AS15 are in progress in patients with
resected stage 1b-IIIa NSCLC and resected, high risk melanoma.
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TLR9 agonists have also been used in combination with chemotherapy, radiotherapy or
monoclonal antibodies targeting CD20 molecules on B cells (Rituximab) with evidence of
clinical activity. However, Phase III studies exploring the combination of PF-3512676 (a
Pfizer product formerly known as CpG7909) with paclitaxel/carboplatin or gemcitabine/
cisplatin vs. chemotherapy alone as first-line treatment of patients with advanced NSLC
indicated no improvement in progression free survival or overall survival with the addition
of the CpG-ODN (86,89)

Overall TLR9 agonists appear to be generally well tolerated with side effects including flu-
like symptoms local injection site reactions and in some cases hematological side effects.
Evidence is accumulating that they have potential as components of immunotherapies that
are administered in the adjuvant setting, and are likely to work best when combined with
other immunomodulators or treatments.

Pathogens expressing TLR agonists
Several inactivated or attenuated pathogens are components of vaccines against infectious
agents (Table 1). Many are now also being tested as vectors for cancer vaccines.
Mycobacterium bovis, (Bacillus-Calmette Guérin, BCG), is the only vaccine currently
available for tuberculosis and is also approved to treat superficial bladder cancer and bladder
cancer in situ. BCG cell wall skeleton and peptidoglycan activate TLR 2 and TLR4
signaling (95), and induce local inflammation in addition to tumor-specific immunity
(96,97). Addition of BCG to vaccination with NY-ESO-1 protein has also led to induction of
antibody and CD4+ T cells in humans (98). Yellow fever vaccine stimulates innate and
adaptive immune responses through its ability to activate DC via TLR2, -7, -8 and -9 (99),
and is being actively investigated as a vaccine adjuvant. Pox vectors, such as vaccinia or
canarypox are being evaluated as vaccine vectors in melanoma and ovarian cancer amongst
other tumors. Pox vectors expressing the cancer testis antigen NY-ESO-1 have proven
immunogenicity (100) and current modifications involving the inclusion of co-stimulatory
molecules may enhance their function further. Fowlpox vectors (ALVAC) have recently
been used as a component of a preventive vaccine for HIV infection and may have a modest
beneficial effect, (101). Pox vectors (e.g. Modified Vaccinia Ankara, MVA) can signal APC
via TLR2 (102–104). Bacterial vectors recombinant for cancer-testis antigens such as
Salmonella typhimurium may provide efficient stimulation by engaging multiple TLRs
(105). Finally, adenovirus vectors expressing various tumor associated antigens including
telomerase and cancer-testis antigens are in evaluation in the clinic. Adenovirus is reported
to activate DC via TLR9 (106,107). Besides BCG, it remains to be seen whether other
pathogens expressing TLR agonists will prove to be efficacious in treating either early or
advanced stages of cancer.

Prospects for TLR agonists
We predict that synthetic TLR agonists will be most efficacious when used in optimal
combinations together with antigen(s) and combined with other modalities including other
vaccines, adjuvants and immune modulators. Activation of TLR9 with CpG ODNs for
example, increases the immunogenicity of peptide-, DNA-, tumor cell- or DC-based
vaccines (108). Fusion of antigen to the TLR agonist presents yet another attractive
approach to enhance the immune response to poorly immunogenic antigens (109–111)

Route of injection is also likely to influence outcome. Intra-tumoral administration of TLR
agonists may directly activate locally infiltrating DC, directly promote tumor cell apoptosis
or sensitize tumor cells to cytotoxic agents. Intratumoral injection is safe when delivered in
combination with rituximab (anti-CD20), an antibody which targets B cells (112,113), and
the effects of local injection of poly I:C into cutaneous melanoma is currently under
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evaluation. Although clinical efficacy has not yet been shown, with the advent of more
potent analogs it seems likely that intratumoral injection approaches in combination with
other interventions will yield clinical responses of targeted lesions. Imiquimod, for example,
is used off label to treat small in transit melanomas

Therapeutic interventions such as chemotherapy and radiation induce cell death leading to
the release of tumor antigens and endogenous cellular factors (e.g. heat shock proteins,
HMGB-1) that activate TLRs on DC, in addition to triggering various intracellular signaling
pathways through the release of ATP (e.g. NLR members of the inflammasome, (114).
Tumor antigens released as a consequence of cell death can be acquired by DC and
crosspresented to T cells (20,115). In animal models, lymphodepletion (through radiation or
chemotherapy) activates TLR4, an essential step in promoting the effectiveness of
adoptively transferred T cells in preclinical models (116). Preclinical models also indicate
that combining chemotherapy or radiation with systemic administration of synthetic TLR
agonists, or vaccines which incorporate synthetic TLR agonists, are synergistic and enhance
stimulation of anti-tumor immunity as well as tumor regression.

Certain adjuvants selectively activate other cellular non-TLR sensors a prominent example
being aluminum hydroxide, an adjuvant that is the component of many FDA approved
vaccines, (117). Alum formulations induce the secretion of IL-1β and IL-18 in vitro, and in
vivo (IL-1β) and recruit and activate monocytes and granulocytes (118). Their role as
inducers of the inflammasome has come under question but it is clear that they exert pro-
inflammatory effects (117). Sharp et al. found that poly(lactic-co-glycolic acid) (PLGA) and
polystyrene microparticles activated the NLRP3 pathway of the inflammasome (119), and
TLR agonists (e.g. LPS) in conjunction with these experimental adjuvants or approved
adjuvants such as aluminum hydroxide may be more effective when given in combination,
as they mimic viruses and other pathogens which can target multiple pathways (118,120).
Moreover, as TLR agonists may sensitize tumor cells to cytotoxic agents, their future lies in
combination with other therapies including cancer vaccines and monoclonal antibodies.
Interestingly, GSK’s Cervarix vaccine contains MPL and aluminum hydroxide while its
AS15 vaccine platform contains MPL, CpG ODN and QS21 (QuilA, a saponin extracted
from the bark of the Quillaria saponaria tree) which triggers IL-1 release in an
inflammasome-dependent way (121). New immune modulators such as anti-CTLA-4 and
anti-PD-1 which block regulatory molecules on T cells and improve their anti-tumor
function, may also improve the immunogenicity of TLR agonists.

Preclinical models indicate that combinations of TLR agonists are superior to individual use
in vivo (122,123). TLR4 agonists act synergistically with TLR7, TLR8 or TLR9 agonists in
the induction of a selected set of genes, including the Th1 polarizing cytokines IL-12 and
IL-23, thereby conferring potent Th1 polarizing activity to human DC. Ligands for 3 TLRs
(TLR2/6, TLR3, and TLR9) increased protective efficacy in mice towards a viral protein by
enhancing the avidity of antigen-specific T cells, when compared with using ligands for any
2 of these TLRs (122). On the other hand, ligation of TLR2 and the PRR dectin-1 with
zymosan, induces DC to produce IL-10 but not IL-12 or IL-6, and in vivo administration of
zymosan suppresses antigen-specific responses response in a IL-10, and TGFβ dependent
manner (124). Studies are needed to carefully evaluate stimulatory vs. inhibitory
combinations of TLR agonists. In humans trials are investigating a combinatorial approach
which include GSK’s AS15 platform which includes agonists that activate both TLR4 and
TLR9, thereby targeting both mDC and pDC subsets and allowing for optimal activation of
both. The next decade is likely to bring several new synthetic agonists into the clinic such as
acylated monosacharides that are structurally related to lipid-A, flagellin and novel TLR7
and TLR8 agonists. By taking advantage of the divergent signaling pathways used by
various TLR to enhance DC activation, it should be possible to improve the overall immune

Bhardwaj et al. Page 9

Cancer J. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



response. An important goal will be to ascertain which combination of TLR agonists induces
desirable anti-tumor immune responses (Th1, cytolytic T cells, NK cell activation)
overcomes tolerance and reverses the immunosuppressive effects of T regulatory cells.

Challenges for the future
For TLR agonists to achieve recognition in the clinic it will be critical to undertake side-by-
side comparisons against the same antigen using selected immune monitoring assays that
measure the quantity and quality of responses (e.g. avidity, memory cell generation,
durability). Through a program of the Cancer Vaccine Collaborative, a joint program of the
Cancer Research Institute and the Ludwig Institute for Cancer Research, a coordinated
global network of clinical trial sites has been conducting a series of parallel early-stage
clinical trials to identify the optimal composition of successful therapeutic cancer vaccines.
The antigens selected for these trials were primarily cancer/testis antigens, such as NY-
ESO-1 and MAGE-A3, as well as melanoma differentiation antigens, such as Melan-A/
MART-1. As discussed above, various forms of these antigens (peptides, protein, long
peptides) have been mixed or co-administered with a series of Toll-like receptor ligands:
CpG, Imiquimod, Resiquimod, PolyIC-LC, OK-432, Monophosphoryl lipid A (MPL),
ISCOMatrix®, BCG. Additionally, these antigens have also been formulated as recombinant
viruses (Vaccinia, Folwpox) or DNA endowed with natural CpG signals. Efforts such as
these will yield important new information regarding successful vaccine platforms. Despite
this progress, these studies highlight an endemic problem in the field of cancer vaccines: the
lack of commercial availability of most of the TLR ligands discussed in this review. Efforts
to systematically test these reagents, let alone to combine them, are thwarted by proprietary
issues that should hopefully become less pronounced as these reagents prove their value in
the clinic and become readily available.
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Figure 1. Expression of Toll-like receptors on innate immune cells
TLR 1,-2,-4, -5 and -6 are expressed in the plasma membrane where TLR2 associates with
either TLR1 or TLR6. TLR3, -7, -8 and -9 traffic from the endoplasmic reticulum to the
endosome where they encounter their ligands. MYD88 (myeloid differentiation primary
response protein 88) and TRIF (TIR domain-containing adaptor protein inducing IFN) are
signalling adaptors that link Toll-like receptors (TLRs) are to downstream kinases that
define a given signalling pathway. All TLRs use MyD88, except for TLR3 which uses
TRIF. The sorting adaptor TIRAP (TIR domain-containing adaptor protein) is used by
TLR1, TLR2, TLR4 and TLR6 and links the TIR domain to MyD88, whereas TRIF is
recruited by both TLR4 and TLR3. An additional adaptor TRAM, links the TIR domain of
TLR4 with TRIF. TLRs which use the MyD88 dependent pathway recruit the IRAK family
of proteins and TRAF6 resulting in the activation of TAK1. This in turn leads to the
activation of NFKB and the MAPK pathway and results in the induction of pro-
inflammatory cyokines and upregulation of phenotypic markers of activation (CD80,
CD86). TLR4 (which relies on additional accessory molecules MD2 and CD14) and TLR3
both trigger the TRIF-dependent pathway, which also leads to activation of inflammatory
cytokines via NFKB and MAP Kinase. In addition, TRIF recruits TRAF, leading to the
activation of TBK1/IKKi, IRF3 and IRF7 and transcription of type I IFN. MyD88 also
associates with the IRAK family of proteins. A complex of proteins (TRAF3, IRAK1 and
Ikkα) subsequently activates IRF7. Examples of ligands binding the TLRs are shown.
(Adapted from Kumar et al.,(125)).
Abbreviations: LPS, lipopolysaccharide; PtdIns(4,5)P2, phosphatidylinositol-4,5-
bisphospate; TRAF3, TNFR-associated factor 3.
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Figure 2. Major DC subsets in blood
There are two subsets in blood, the myeloid DC (mDC) or the plasmacytoid DC (pDC).
They are distinguished by surface marker expression, TLR expression, cytokine production
and primary functional roles. It is now appreciated that pDC can also participate in the
induction of adaptive immune responses although their precise roles need to be determined.
While pDC do not synthesize IL-12, mDC can produce type I IFN via TLR3 ligation.
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Figure 3. DC undergo activation following ligation of TLR and prime CD4+ and CD8+ T cells
A. DC are most efficient at acquiring antigen when they are in their immature state through
mechanisms that include phangocytosis, endocytosis and receptor mediated uptake. After
encountering TLR ligands, they undergo maturation and upregulate HLA molecules (which
present peptide antigens to T cell receptors on T cells) as well as co-stimulatory molecules
such as CD80 and CD86, which interact with CD28 on T cells. DC also produce cytokines
(IL-12, type I IFN) that aid in priming of CD4+ helper cells and cytolytic T cells. B. DC
utilize endogenous and exogenous pathways to process and present antigens to CD8+ T
cells. In the endogenous pathway, exemplified by virus infection or transduction of cells
with RNA or DNA encoding antigens, antigen is processed in the cytoplasm by the
proteosome and then transported into the ER where further processing can take place and
peptides access newly synthesized HLA class I molecules. The peptide-HLA complex is
then transported to the cell surface where it can interact with the T cell receptor. In the
exogenous pathway, dying virus- infected cells or tumor cells (e.g. following chemotherapy
or irradiation) are phagocytosed by DC and crosspresented to T cells. Dying tumor cells also
release factors that activate DC via TLRs or components of the inflammasome. Antigens
from these cells may access the cytoplasm and intersect with the conventional endogenous
pathway of antigen processing. Alternatively, they may be processed within the endosomes
themselves and acquired by recycling class I molecules which return to the cell surface. The
exogenous pathway explains how antigens from dead cells can be acquired and presented to
T cells.
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Figure 4. Imiquimod induces local inflammation and NY-ESO-1 specific CD4+ T cell responses
A. Representative H and E stained sections of control skin and Imiquimod treated skin (left
panels). Right upper panels show inflammation at the Imiquimod treated of one patient.
Representative immunohistochemistry sections for three tested markers are shown (CD3: T
cells; CD83: mature DC; CD123: plasmacytoid DC). B. Quantification of IFNγ-secreting
NY-ESO-1-specfic CD4+ T cells. Representative before and after vaccine samples for one
patient are shown. Following a one week in vitro stimulation with pooled NY-ESO-1
overlapping peptides, cells were re-stimulated and stained for intracellular IFNγ. CD4
staining is shown on the y axis and IFNγ staining is shown on the x-axis.(76). Copyright
2008. The American Association of Immunologists, Inc.
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Table 1

Natural and synthetic ligands of Toll-like receptors

Receptor Pathogen Associated ligands (PAMPs) Endogenous ligands Synthetic ligands

TLR 1/2 Triacylated lipopeptides (Bacteria and Mycobacteria)* Not known Pam3Cys *

TLR 2 Peptidoglycan (gram positive bacteria);
Bacterial lipoprotein;
Lipoteichoic acid;
LPS (Porphyromonas gingivalis, Leptospira interrogans);
GPI-anchor proteins (Trypanosoma cruzi);
Neisserial porins,
Hemagglutinin (MV); phospholipomannan (Candida); LAM
(Mycobacteria)

Not known CFA
MALP2**

Pam2Cys**

FSL-1**
Hib-OMPC

TLR 3 ssRNA virus (WNV),
dsRNA virus (RSV, MCMV)

Not known Poly I:C; poly A:U

TLR 4 LPS (Gram-negative bacteria);
F-protein (RSV);
Mannan (Candida);
Glycoinositolphospholipids
(Trypanosoma);
Envelope proteins (RSV and MMTV)

Hsp60, Hsp70,
fibronectin domain A
surfactant protein A,
hyaluronan; HMGB-1

AGP
MPL A
RC-529
MDF2β
CFA

TLR 5 Flagellin (Flagellated bacteria) Not known Flagellin

TLR 2/6 Phenol-soluble modulin (Staphylococcus epidermidis)
Diacylated lipopeptides (Mycoplasma);
LTA (Streptococcus);
Zymosan (Saccharomyces)

Not known MALP-2**

Pam2Cys**

FSL-1**

TLR 7 Viral ssRNA (Influenza, VSV, HIV, HCV) Human RNA Guanosine analogs;
imidazoquinolines
(e.g. Imiquimod,
Aldara ®
R848, Resiquimod®);
Loxoribine

TLR 8 ssRNA from RNA virus Human RNA Imidazoquinolines;
Loxoribine; ssPolyU
3M-012

TLR 9 dsDNA viruses (HSV, MCMV);
Hemozoin (Plasmodium);
 Unmethylated CpG DNA (bacteria and viruses)

Human
DNA/chromatin,
LL37-DNA

CpG-oligonucleotides

TLR10 Not known Not known Not known

*
Ligands recognized by TLR1 and TLR2

**
Ligands recognized by TLR2 and TLR6

Adapted from: (68,108,125)
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