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Summary
The CCN proteins contain six members, namely CCN1 to CCN6, which are small secreted
cysteine-rich proteins. The CCN proteins are modular proteins, containing up to four functional
domains. Many of the CCN members are induced by growth factors, cytokines, or cellular stress.
The CCNs show a wide and highly variable expression pattern in adult and in embryonic tissues.
The CCN proteins can integrate and modulate the signals of integrins, BMPs, VEGF, Wnts, and
Notch. The involvement of integrins in mediating CCN signaling may provide diverse context-
dependent responses in distinct cell types. CCN1 and CCN2 play an important role in
development, angiogenesis and cell adhesion, whereas CCN3 is critical to skeletal and cardiac
development. CCN4, CCN5 and CCN6 usually inhibit cell growth. Mutations of Ccn6 are
associated with the progressive pseudorheumatoid dysplasia and spondyloepiphyseal dysplasia
tarda. In stem cell differentiation, CCN1, CCN2, and CCN3 play a principal role in osteogenesis,
chondrogenesis, and angiogenesis. Elevated expression of CCN1 is associated with more
aggressive phenotypes of human cancer, while the roles of CCN2 and CCN3 in tumorigenesis are
tumor type-dependent. CCN4, CCN5 and CCN6 function as tumor suppressors. Although CCN
proteins may play important roles in fine-tuning other major signaling pathways, the precise
function and mechanism of action of these proteins remain undefined. Understanding of the
biological functions of the CCN proteins would not only provide insight into their roles in
numerous cellular processes but also offer opportunities for developing therapeutics by targeting
CCN functions.
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Introduction
The CCN (CYR61/CTGF/NOV) family is a small group of structurally similar matrix
proteins composed of six members (CCN1 to CCN6). The extracellular protein products of
this CCN gene family are approximately 40 kDa and regulate numerous biological
processes, such as differentiation, migration, proliferation, and cell adhesion (Katsube et al.,
2009). The roles of CCN proteins in cancer, injury repair, and embryonic development have
led to a surge in research surrounding CCN proteins since their discoveries. The first reports
of CCN proteins began in the early 1990s (Erwin, 2008). The first three CCN members that
were discovered include cysteine rich 61 (CYR 61/CCN1), connective tissue growth factor
(CTGF/CCN2), and nephroblastoma overexpressed (NOV/CCN3). The names of these first
three proteins were used to derive the acronym CCN to establish a name for this family of
proteins sharing a similar structure.

In 2003, a common nomenclature for the CCN family was proposed to simplify the
numerous names that had been assigned to each multifunctional protein (Brigstock et al.,
2003) (Table 1). The proteins are numbered based on the order of their discovery. For
example, cysteine rich 61 is now called CCN1, which was first reported in 1991 as an early
gene activated by platelet-derived growth factor in mouse fibroblasts (O’Brien et al., 1990).
As the 61st gene identified it was given the name cysteine rich 61 (cyr61). CCN2 was
discovered in the cDNA library of an human umbilical vein endothelial cell and was termed
connective tissue growth factor (Bradham et al., 1991). In 1992, CCN3 was discovered in
myeloblastosis-associated virus type 1 (MAV1)-induced nephroblastomas where it regulated
cell growth (Joliot et al., 1992). Since their initial discoveries, the CCN family has added
three additional members that exhibit the basic structure of CCN founding members. The
three additional members are involved in the Wnt-1 inducible signaling pathway and include
Wnt-1 induced secreted protein-1 (WISP-1/CCN4), Wnt-1 induced secreted protein-2
(WISP-2/CCN5), and Wnt-1 induced secreted protein-3 (WISP-3/CCN6) (Pennica et al.,
1998). In this review, we use the CCN nomenclature for each of the CCN family members.

Functional domains of the CCN proteins
The members of the CCN family exhibit similar structural properties at both the gene and
protein levels. The Ccn genes share approximately 30 to 50% overall nucleotide sequences
and CCN proteins share about 40 to 60% similar amino acid sequences (Rachfal and
Brigstock, 2005) (Fig. 1). The basic gene structure for the CCN family contains five exons
and four introns. The origin of the CCN family gene goes back over 40 million years in the
evolutionary history of vertebrate. The CCN proteins have been found in a diverse collection
of vertebrate including humans, zebra fish, mice, rats, and chickens (Desnoyers, 2004). The
gene is conveniently structured such that each exon codes a modular domain in the resulting
translational product. This translational organization suggests that the CCN family evolved
through exon shuffling (Bork, 1993). The resulting CCN proteins have numbers of amino
acids ranging from 348 to 381 with the exception of CCN5 (Brigstock, 1999).

The CCN proteins are mosaic proteins characterized by four unique globular modules that
share homology with various extracellular mosaic protein domains (Fig. 1). Module I
contains high homology to insulin-like growth factor (IGF) binding domain. Despite
conformational similarities at module I, it has been shown that CCN2 exhibits a much lower
affinity for insulin-like growth factor than expected (Vorwerk et al., 2002). CCN2 IGF
binding module may interact with other factors (Desnoyers, 2004). Module II is a von
Williebrand factor type C (VWC) repeat module and plays a role in oligomerization.
Module III is a thrombospondin type 1 repeat domain (TSP-1) and plays a role in cell
attachment in most CCN proteins. It has been found that an amino acid residue in Module III
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is involved in the binding of CCN1 to integrins. Module IV is a C-terminal domain that
contains a cystine knot (CT). CCN5 lacks the CT domain (Desnoyers, 2004). The CT
domain may play a role in the initial dimerization followed by the von Williebrand factor
type C domain carrying out the following oligomerization (Bork, 1993). The two N-terminal
modules (Modules I & II) of the CCN proteins are separated from the two C-modules
(Modules III & IV) by a linker with variable sequence of amino acids (Desnoyers, 2004).
Despite the structural similarities to other protein’s domains, the CCN proteins have unique
interactions through modulation with extracellular factors.

Interactions with signaling molecules by the CNN proteins
The CCN proteins are involved in numerous biological processes (Fig. 2). The modular
property of CCN proteins gives them the ability to bind and interact with a broad range of
factors. It is known that these modules can bind to molecules such as heparan sulfate
proteoglycans (HSPGs), integrins, and lipoprotein receptor-related proteins (LRPs) (Rachfal
and Brigstock, 2005). It is mainly through the direct binding of CCN proteins to cell
adhesion receptors that CCN proteins bring about their regulation of numerous cell functions
(Fig. 2). CCN1 was the first CCN protein to demonstrate a direct ligand binding by its
divalent cation association with integrin αvβ3 in the adhesion of human umbilical vein
endothelial cells (Kireeva et al., 1998;Chen and Lau, 2009). The ability of CCN proteins to
bind low density lipoprotein receptor-related proteins has been specifically important to
CCN2. Module III has been credited for the binding between CCN2 and low density
lipoprotein receptor-associated protein, suggesting that module III may be responsible for
other low density lipoprotein receptor interactions in CCN proteins (Gao and Brigstock,
2003). The diverse but specific interactions of CCN proteins with cell surface receptors give
them the ability to participate in a broad spectrum of cellular processes.

The role of the CCN1 protein in development, angiogenesis and cell adhesion
CCN1 has been found to play a regulatory role in several physiological processes within
vertebrates, most importantly cell migration, angiogenesis, cell adhesion, and apoptosis (Fig.
2). CCN1 interacts with an assortment of cell surface integrins including α6β1, αvβ5, αvβ3,
αMβ2, and αIIbβ3 to regulate these processes (Desnoyers, 2004). During gastrulation,
correct levels of CCN1 are imperative in regulating the rearrangement and migration of
cells. Overexpression or presence of antisense CCN1 causes a disruption in gastrulation and
results in defects in morphogenesis in zebrafish. It is suspected that CCN1 exhibits this
disruption in gastrulation through the stimulation or repression of the Wnt signaling pathway
and the inhibition of the BMP pathway at various levels (Latinkic et al., 2003). The Ccn1-
null mice most commonly died due to placental vascular inefficiency and compromised
blood vessels (Mo et al., 2002), suggesting that CCN1 may play a prominent role in
angiogenesis. In fact, the Ccn knockout mice showed the worst vascular development (Mo et
al., 2002). Both CCN1 and CCN2 have been found to regulate angiogenesis through
integrins αvβ3 and α6β1 (Lau and Lam, 1999). Their function as angiogenesis promoters or
inhibitors may be dependent on the induction of TGFβ or fibroblast growth factor (Holbourn
et al., 2008). CCN1 is also up-regulated at injury sites.

CCN1 also plays a role in cell adhesion along with several other CCN proteins. The CCN
proteins interact with integrins or HSPGs to regulate the adhesion and migration of cells in
endothelial cells, smooth muscle cells, and fibroblasts (Babic et al., 1999; Leu et al., 2004;
Kubota and Takigawa, 2007). In endothelial cells, CCN1 regulates adhesion and migration
through integrins (Babic et al., 1999; Leu et al., 2004) and HSPGs while CCN2 regulates
through integrin αv3β (Chen et al., 2001; Leu et al., 2004). In smooth muscle cells, CCN1
also interacts with integrin α6β1 and HSPGs to regulate adhesion and migration (Leu et al.,
2004). At cutaneous injury sites, CCN1 along with CCN2 is up-regulated in response to
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growth factor to stimulate fibroblast adhesion. CCN1 and CCN2 have been found to mediate
fibroblast adhesion signaling through integrin α6β1 and HSPGs (Chen et al., 2001). CCN1
may act on the integrin receptor and HSPGs of the cells to cause an increase in cellular
reactive oxygen species (ROS) resulting in cell death (Juric et al., 2009).

Regulatory roles of CCN2 in development and cell adhesion and migration
CCN2 is mainly expressed in endothelial, smooth muscle, and cartilaginous cells (Ihn,
2002). Mice lacking Ccn2 showed a deficit of pro-adhesive, pro-inflammatory, and pro-
angiogenic gene expression in fibroblasts (Kennedy et al., 2007). The Ccn2 knockout mice
were found to die at birth, because of respiratory failure that was resulted from hypoplastic
lungs and poor thoracic development (Baguma-Nibasheka and Kablar, 2008).
Phenotypically, these mice expressed skeletal dysmorphisms, decreased extracellular matrix
components, and decreased chondrocyte proliferation (Katsube et al., 2009). Ccn2
knockdown zebrafish expressed similar phenotypes with bone defects and disruption in
notochord development (Chiou et al., 2006). The upregulation of CCN2 is responsible for
diabetic nephropathy in humans. CCN2 brings about diabetic nephropathy phenotype
symptoms by inhibiting BMP-7 signaling and contributing to abnormal gene expression in
kidney cells (Nguyen et al., 2008).

The CCN3 protein in skeletal and cardiac development and cell adhesion
CCN3 shares a similar role as CCN1 and CCN2 in vertebrates. CCN3 is expressed in a
diverse collection of tissues, including muscle, cartilage, bone, and nervous tissue, and
provides a regulatory function in their development (Katsuki et al., 2008). Ccn3 mutant mice
exhibit skeletal and cardiac abnormalities, such as cardiomyopathy, muscle atrophy, and
cataract formation (Heath et al., 2008). In the endothelial cells of human umbilical veins,
CCN3 was found to promote adhesion through integrins αvβ3, α5β1, α6β1, and HSPGs
while regulating cell migration only through integrins αvβ3 and α5β1 (Lin et al., 2003).
CCN3 can be secreted by hematopoietic progenitor cells into the serum of humans where it
can form a complex with fibulin-1 in blood (Thibout et al., 2003).

Inhibition of wnt signaling pathway by CCN4
CCN4 is expressed in developing mesenchymal, pre-osteoblastic, and cartilage cells (French
et al., 2004). It is believed to serve an important regulatory function in skeletal growth and
bone repair. The truncated form of CCN4, WISP1v, has been found to regulate the
differentiation of chondrocytes towards endochondral ossification (Yanagita et al., 2007).
CCN4 prevents apoptosis in cells by inhibiting c-Myc in the Wnt/β-catenin signaling
pathway and p53 induced apoptosis (Su et al., 2002; You et al., 2002).

Inhibition of cell growth and motility by CCN5
CCN5 is expressed in nearly all tissues of developing mice and human embryos until protein
levels eventually differentiate with growth (Jones et al., 2007). This diverse expression in
unique tissue types at varying levels suggests that CCN5 may play a multifunctional and
tissue specific regulatory role. In adult mice, CCN5 expression is varied with the highest
levels being found in the heart, brain, spleen, lung and uterus (Gray et al., 2007). CCN5 is a
heparin induced gene in vascular smooth muscle cells with anti-proliferative properties
(Lake et al., 2003). The binding of heparin to vascular smooth muscle surface receptors
increases the expression of CCN5 and results in the inhibition of cell growth and motility,
without a noticeable effect on cell adhesion and apoptosis (Lake et al., 2003). CCN5
overexpression decreases the motility of vascular smooth muscle by reducing matrix
metalloproteinase-2 (MMP- 2) level. In contrast, cell motility and MMP-2 level increases as
CCN5 expression is reduced (Lake and Castellot, 2003). In vivo studies on the uterus
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smooth muscle cells of rats found that CCN5 gene expression is positively regulated by
estrogen, as CCN5 expression increases in ovariectomized rats up to eight fold in response
to estrogen administration (Mason et al., 2004), suggesting that CCN5 may play a regulatory
role in uterine maintenance in vertebrate.

Role of CCN6 in Musculoskeletal Development and Disorders
Mutations in the Ccn6 gene are associated with human diseases, such as the progressive
pseudorheumatoid dysplasia (PD), an autosomal recessive skeletal disorder. The PD disease
is marked by cartilage loss and destructive bone changes as young patients age through
childhood (Hurvitz et al., 1999). Ccn6 gene mutation is also responsible for
spondyloepiphyseal dysplasia tarda with progressive arthropathy, which is marked by
symptoms of cartilage loss (Yang and Liao, 2007). However, in contrast to humans, CCN6
is not an essential participant during skeletal growth or homeostasis in mice (Kutz et al.,
2005). Ccn6-null mice and Ccn6 overexpression mice exhibit no gross abnormal
phenotypes; and the developing Ccn6-null mice show mature endplates throughout their
skeletal system (Kutz et al., 2005). Overexpression of CCN6 in human chondrocyte lines
C-28/I2 and T/C-28a2 is associated with an increased production of type II collagen and
aggrecan matrix molecules (Sen et al., 2004), which may be caused by CCN6-mediated
inhibition of IGF-IR, IRS-1, and ERK kinase signaling pathways (Cui et al., 2007). CCN6
also regulates the cellular level of reactive oxygen species (ROS) in cells, as abnormal
CCN6 levels or mutations in the Ccn6 gene cause the accumulation of ROS and disturb
balances in cellular homeostasis (Miller and Sen, 2007).

CCN proteins and stem cell differentiation
CCN proteins as important mediators of major signal pathways in stem cells

Mesenchymal stem cells are pluripotent progenitors that can give rise to osteogenic,
chondrogenic, adipogenic, myogenic, and fibroblastic lineages upon the stimulation with
appropriate differentiation cues (Deng et al., 2008; Tang et al., 2008). A complex interaction
of signaling molecules is required to orchestrate the dynamic processes of stem cell
differentiation, proliferation, and migration. CCN proteins participate and interact with
several important signaling pathways to regulate differentiation of progenitor cells and the
development, maintenance, and repair of the skeletal system (Ivkovic et al., 2003; Safadi et
al., 2003; Katsuki et al., 2008) (Fig. 2). The expression of CCN proteins has been shown to
be coordinated with many components of Wnt, BMP, and TGF‚ pathways (Abreu et al.,
2002; Si et al., 2006; Maeda et al., 2009). The Wnt pathway is activated by the binding of
secreted Wnt ligands to Wnt receptors, followed by a cascade of intracellular signaling (Luo
et al., 2007). The best known Wnt pathway is canonical Wnt/β-catenin pathway that begins
with the binding of Wnt ligands to Frizzled receptors and co-receptor LRP5 or 6. The Wnt/
β-catenin pathway has been shown to regulate many cellular processes, such as bone
formation (Krishnan et al., 2006).

CCN1, CCN2, and CCN5 are up-regulated in the early stages of mesenchymal stem cell
differentiation by Wnt3A stimulation. CCN1 has been shown to be an important target of
canonical Wnt/β-catenin signaling and plays a regulatory role in the migration and
differentiation of the mesenchymal stem cells into osteoblasts (Si et al., 2006; Schutze et al.,
2007). CCN1 protein is believed to regulate cell migration through binding to cell surface
integrins in Xenopus (Latinkic et al., 2003). In human primary mesenchymal progenitor
cells, CCN1 promotes cell proliferation (Schutze et al., 2005). CCN1 also plays a regulatory
role in the formation of blood vessels where it acts as an important regulatory signal for
endothelial progenitor cells (Yu et al., 2008). The similarities between Ccn1 knockout mice
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and Notch knockout mice in exhibiting poor vascular development and defects suggest that
CCN1 may regulate the Notch/VEGF pathway (Katsube et al., 2009).

CCN2 in chondrogenenic and osteogenic differentiation of MSCs
CCN2 plays an important role in embryogenesis and bone formation. The skeletal system of
the developing vertebrae forms through the process of endochondral ossification, which
originates with mesenchymal cells that differentiate into chondrocytes. As the chondrocytes
embed in the extracellular matrix they differentiate into pre-hypertrophic and hypertrophic
cells, and eventually ossified to form bone (Maeda et al., 2009). CCN2 is found at its highest
levels in the vascular tissue and the maturing chondrocytes of the embryo (Ivkovic et al.,
2003). CCN2 promotes the steps of proliferation, maturation, and hypertrophy in these
chondrocytes. It has been shown that CCN2 is a mutual target of both Wnt and BMP
signaling pathways (Luo et al., 2004). CCN2 has shown to interact with BMP-2 to form a
complex that regulates the proliferation and differentiation of pre-hypertrophic and
hypertrophic chondrocytes (Maeda et al., 2009). CCN2’s binding to BMP-4 prevents BMP-4
from binding to BMP receptors and hence modulates the activity of BMP-9 (Abreu et al.,
2002; Luo et al., 2004). CCN2 also modulates the Wnt pathway in Xenopus embryos by
binding to LRP6 co-receptor (Mercurio et al., 2004). The expression of CCN2 in
chondrocytes is controlled by both Rac1 and actin pathways mediated by TGFβ/Smad
signaling (Woods et al., 2009). In adult skeletal systems, CCN2 is most highly expressed in
the osteoblasts lining metaphyseal trabeculae and in osteogenic surfaces lining fracture
calluses, suggesting that increased CCN2 may play an important role in bone growth and
fracture repair (Safadi et al., 2003). Additionally, CCN2 and CCN3 may function in
chondrocytes with concerted but opposite roles in regulating gene expression. Studies of null
mice suggest that CCN2-stimulated proliferation and differentiation is balanced by CCN3-
mediated inhibition of growth and differentiation (Kawaki et al., 2008).

Interaction between CCN3 and Notch1 in regulating osteogenesis and hematopoiesis
CCN3 is an important secreted extracellular protein in regards to mesenchymal stem cell
differentiation, and regulates differentiation, growth, and maturation of osteogenic,
chondrogenic, and hematopoietic progenitor cells. CCN3 functions as a positive mediator
while acting inhibitory in both muscle and osteoblast differentiation (Katsuki et al., 2008).
CCN3 may regulate differentiation of mesenchymal stem cells through binding with Notch1
in a co-activator manner. CCN3 has been shown to upregulate the downstream members of
the Notch signaling pathway, namely Hes/Hey and p21, by binding with Notch1 by the
fourth module and inhibiting osteogenic activity (Katsuki et al., 2008). A study on CCN3
overexpression in ST-2 cells found that CCN3 prevents BMP-2 from phosphorylating
Smad1/5/8 in BMP signaling (Rydziel et al., 2007), resulting in the inhibition of
osteoblastogenesis. CCN3 also plays an important role in regulating primitive hematopoietic
stem cells, as studies involved in CCN3 knockdown or forced expression in CD34+ cells has
demonstrated that the presence of CCN3 is necessary for the functional self-renewal of
hematopoietic stem cells (Gupta et al., 2007).

CCN4 as an Important Mediator of Wnt Signaling in MSCs
CCN4 is a target of the Wnt1 pathway and plays a major role in controlling the expression
of key regulators in the chondrogenic and osteoblastic differentiation (Pennica et al., 1998).
CCN4 is expressed at the highest levels in osteoblasts and its progenitor cells during
embryonic development. CCN4 may promote mesenchymal proliferation and osteoblastic
differentiation while inhibiting chondrogenic differentiation (French et al., 2004). In human
bone marrow, CCN4 has been found in both full-length and WISP-1va truncated forms.
CCN4 may regulate osteoblast proliferation by limiting the activation of the TGF-β1
signaling member, Smad-2 (Inkson et al., 2008). The truncated version of CCN4, WISP1v,
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is also expressed in human chondrosarcomas, and is believed to play a role in endochondral
ossification (Yanagita et al., 2007). Upon injury, CCN4 expression is up-regulated by the
signaling activity of nitric oxide at the site of inflammation to partake in tissue repair (Wang
et al., 2009). To date, CCN5 and CCN6 have no known roles in stem cell differentiation.
Experiments to study the possible role of CCN5 in pre-adipocyte 3T3-L1 cells have found
that CCN5 plays little to no functional role in adipogenic differentiation (Inadera et al.,
2009).

Roles of CCN proteins in tumorigenesis
Increased CCN1 expression associated with cancer aggressiveness

While abnormal levels or altered forms of CCN proteins have been widely reported in
human cancers, it has been shown that CCN proteins can play either as a positive growth
regulator or growth inhibitor of cancer cells; and their functional outcomes are often
dependent on cell and/or tissue types (Fig. 2).

CCN1 is overexpressed in prostate cancer, gliomas, pancreatic cancer, and breast cancer.
Overexpression of CCN1 levels in prostate cancer cells and samples is closely associated
with the status of p53 gene. CCN1 levels in prostate cancer cells with mutant or null p53
genes are much higher than that of wild-type (Lv et al., 2009). This overexpression of CCN1
may be responsible for the uncontrolled growth of some prostate cancer (Lv et al., 2009).
Overexpression of CCN1 in U343 glioma cells rapidly increases cell growth and the
possibilities to form large tumors. It has been subsequently found that CCN1 activates both
β-catenin-TCF/Lef and Akt signaling pathways in these cells (Xie et al., 2004). CCN1 levels
have been found to be over two times higher in metastatic lesions than in primary pancreatic
tumors, suggesting that CCN1 may be responsible for the development of the pancreatic
metastasis (Holloway et al., 2005).

CCN1 has also been associated with the increased aggressiveness, vascularization, and
estrogen independence in breast cancer, suggesting a major role of CCN1 in breast cancer
progression (Babic et al., 1998; Tsai et al., 2002). A recent study suggests that hypoxia may
induce alternative splicing in CCN1 in which intron 3 is retained in the breast cancer, and
this alternative splicing could subsequently lead to tumorigenesis (Hirschfeld et al., 2009). It
has been reported that overexpression of CCN1 causes the development of breast cancer
through up-regulating the expression of the enzyme MMP-1 in adjacent stromal fibroblasts,
which subsequently activates on protease-activated receptor 1 to promote cancer cell
migration and invasion (Nguyen et al., 2006). Nonetheless, below normal levels of CCN1
have been detected in lung cancer samples and in rhabdomyosarcomas (Chen et al., 2007).

Tumor- and Tissue-Specific Roles of CCN2 and CCN3
In the majority of ovarian tumors it has been found that CCN2 expression is reduced
(Kikuchi et al., 2007). The restoration of normal CCN2 levels in ovarian cancer cells has
been shown to inhibit cancer cell growth while the deletion of CCN2 expression has
accelerated cancer cell growth, suggesting that the inactivation of the CCN2 gene though
hypermethylation of CCN2 promoter may play a prominent role in ovarian tumorigenesis
(Kikuchi et al., 2007). Unlike in ovarian cancer, CCN2 is over-expressed in pancreatic
cancer and breast cancer (Jiang et al., 2004; Bennewith et al., 2009). In pancreatic cancer,
increased CCN2 expression was found in hypoxic cells in vitro, and cancer cells with higher
levels of CCN2 are more resistant to hypoxia-mediated apoptosis in vivo (Bennewith et al.,
2009). Studies suggest that CCN2 is also associated with breast cancer metastasis. In breast
cancer cells, CCN2 can increase in levels in response to prometastatic cytokine TGFβ. The
combinational increase of CCN2 and interleukin-11 expression in response to TGFβ
positively correlates with osteolytic metastasis of breast cancer (Kang et al., 2003). In
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chondrosarcomas and enchondromas, the level of CCN2 also correlates with the grade of
malignancy (Shakunaga et al., 2000). In astrocytomas, CCN2 levels correlate strongly with
mitogenic activity of tumor cells (Rubenstein et al., 2003).

CCN3 has been found to promote the growth of prostate cancer, Wilm’s tumors, and
osteosarcomas (Glukhova et al., 2001; Maillard et al., 2001; McCallum and Irvine, 2009).
While in rhabdomyosarcoma and cartilage tumors the level of CCN3 expression correlates
with level of tumor differentiation (Manara et al., 2002). In contrast, CCN3 has been found
to suppress the proliferation and growth of glioma cells, Ewing’s sarcoma, melanoma, brain,
and adrenocortical tumors (McCallum and Irvine, 2009). In glioma cells, in vivo and in vitro
studies have shown that with the increase in the gap junction protein, Connexin-43, the
expression of CCN3 is increased in the glioma cells, and tumor growth is halted (Gupta et
al., 2001). CCN3 also inhibits tumor growth of Ewing’s sarcoma in nude mice (Benini et al.,
2005). Interestingly, despite the decreased growth the Ewing’s sarcoma cells still exhibit
increased migration and invasion characteristics (Manara et al., 2002; Benini et al., 2005). It
is noteworthy that the expression of truncated forms of CCN3 may also be associated with
tumorigenesis, given the fact that an amino-truncated form has been found in MAV-induced
nephroblastoma (Perbal, 2001).

Tumor suppression role of CCN4, CCN5 and CCN6
CCN4 was initially identified by using differential display method in comparing high and
low metastatic K-1735 mouse melanoma cells. CCN4 inhibits growth and metastasis of the
K-1735 melanoma cells; and CCN4 was up-regulated in the low metastatic cells in
comparison to high metastatic cells (Hashimoto et al., 1996). When the high metastatic
K-1735 cells were transfected with the CCN4 expression vector, the growth rate and
metastatic potential of these cells decreased in vivo (Hashimoto et al., 1998). CCN4 may
also be a tumor suppressor of breast cancer (Davies et al., 2007). In lung cancer,
overexpression of CCN4 inhibits cancer metastasis and cell motility, probably through
inhibiting the activation of Rac (Soon et al., 2003). While CCN4 functions as a tumor
suppressor in its full form, truncated forms of CCN4 may act as oncogenes and promote
tumor growth. For example, CCN4 lacking the second domain (WISP1v) is associated with
invasive cholangiocarcinomas in humans and aggressive progression of scirrhous gastric
carcinoma (Tanaka et al., 2001, 2003). WISP1v may activate p38 and p42/44 mitogen-
activated protein kinases (MAPKS) in cholangiocarcinoma cells (Tanaka et al., 2001, 2003).

CCN5 seems to play a preventive role in the progression of breast cancer. CCN5 is not
expressed in normal cells while it is expressed at increased levels in noninvasive breast
lesion samples (Banerjee et al., 2008). Thus, CCN5 acts as a negative inhibitor of migration
and invasion and inhibits the progression from noninvasive to invasive cancer type
(Banerjee et al., 2008). The activation of p53 mutants may be responsible for the silencing
of CCN5 expression in both breast cancer and pancreatic adenocarcinoma (Dhar et al.,
2007a, 2008). CCN5 may preserve estrogen-dependent growth in many breast cancer cells,
as the estrogen independent growth has been observed in CCN5 knocked down MCF-7
breast cancer cells (Fritah et al., 2008). CCN5 controls cell growth by modulating signaling
activity of insulin-like growth factor-1 (IGF-1) in estrogen receptor positive breast tumor
cells (Dhar, 2007b). Down-regulation of CCN5 is correlated with the development of
salivary gland tumors and the formation of leiomyomas in women, suggesting that the loss
of CCN5 may be the cause for uncontrolled cell growth in these tumor cells (Mason et al.,
2004; Kouzu et al., 2006).

Mutations in the Ccn6 gene are closely correlated with the development of colorectal
carcinomas, inflammatory breast cancer, and hepatocellular carcinomas (van Golen et al.,
1999; Thorstesen et al., 2001; Cervello et al., 2004). In inflammatory breast cancer, CCN6
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levels are reduced in over 80% of the samples (van Golen et al., 1999). Restoration of CCN6
inhibits tumor growth and invasiveness in inflammatory breast cancer cells (Kleer et al.,
2004). Mechanistically, CCN6 is believed to inhibit tumor motility and invasion by
preserving cell-cell to junctions in mammary epithelial cells, as CCN6 can increase E-
cadherin protein levels through possible transcriptional regulators Snail and ZEB1 (Huang et
al., 2008).

Concluding remarks and future directions
The CCN proteins are multifunctional proteins that play important roles in skeletal
development, angiogenesis, tumorigenesis, cell proliferation, adhesion, migration, and
survival. Many of the CCN family members are induced by growth factors, cytokines, and
cellular stress, such as hypoxia. CCN proteins are modular proteins, containing up to four
distinct functional domains, at least two of which are involved in binding to cell surfaces
molecules, including integrins, HSPGs, and LRP. The involvement of integrins in mediating
CCN signaling allows for considerable plasticity in context-dependent responses in distinct
cell types, as certain integrin subtypes and integrin signaling are coordinated with other
signaling pathways in the cell. CCNs show a wide and highly variable expression pattern in
adult and embryonic tissues. Most studies have focused on their principal role in
osteogenesis, chondrogenesis, and angiogenesis from the aspect of mesenchymal cell
differentiation. Furthermore, CCN proteins can integrate and modulate the signals of
integrins, BMPs, vascular endothelial growth factor, Wnts, and Notch by direct binding.

Although most CCN family members were discovered over a decade ago, the precise
physiological function and mechanism of action of these proteins remain elusive. Future
directions should focus on the basic studies and translational aspects of CCN proteins. As
matrix proteins, CCN proteins may play important roles in fine-tuning other major signaling
pathways, such as TGFβ/BMP and Wnt signaling. It is important to investigate how CCN
proteins modulate these pathways. Similarly, little is known about what factors determines
the tissue and/or cell-type specific response to CCN proteins. On the clinical application
fronts, it remains to be determined if some of CCN proteins can serve as anti-cancer targets.
It is conceivable that some of the CCN proteins may be used as wound healing agents, while
some (e.g., CCN2) can be targeted with inhibitors or antibodies to treat fibrotic disorders in
clinical setting. Therefore, a thorough understanding of the biological functions of the CCN
proteins would not only provide insight into their roles in numerous cellular processes but
also offer opportunities for developing potential therapeutics by targeting CCN functions.
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Fig. 1.
Structural comparison of the six CCN proteins. The amino acid sequences of the six human
CCN proteins were compared. The locations of the four structural domains are shown. It is
noteworthy that slicing variants of some CCN transcripts are not shown.
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Fig. 2.
Schematic representation of the interplays between the CCN proteins and other signaling
networks. A partial list of potential upstream regulators or factors that may directly interact
with the CCN proteins is shown on the top row. Downstream signaling pathways or
interacting factors are also shown.
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