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A key circuit in the response of cells to damage is the p53–mdm2
feedback loop. This circuit shows sustained, noisy oscillations in
individual human cells following DNA breaks. Here, we apply an
engineering approach known as systems identification to quantify
the in vivo interactions in the circuit on the basis of accurate meas-
urements of its power spectrum. We obtained oscillation time
courses of p53 and Mdm2 protein levels from several hundred cells
and analyzed their Fourier spectra. We find characteristic spectra
with distinct low-frequency components that arewell-described by
a third-order linear model with white noise. The model identifies
the sign and strength of the known interactions, including a nega-
tive feedback loop between p53 and its upstream regulator. It also
implies that noise can trigger and maintain the oscillations. The
model also captures the power spectra of p53 dynamics without
DNA damage. Parameters such as noise amplitudes and protein
lifetimes are estimated. This approach employs natural biological
noise as a diagnostic that stimulates the system at many frequen-
cies at once. It seems to be a useful way to find the in vivo design of
circuits and may be applied to other systems by monitoring their
power spectrum in individual cells.

Understanding the in vivo design of protein circuits is a general
biological challenge (1–6). Here, we address this by focusing

on one of the best-studied circuits in human cells, the p53–mdm2
feedback loop and its response to DNA damage (7–10). This
system responds to DNA double-stranded breaks: breaks are
sensed by the kinase ATM, which activates p53 (11). As a result,
p53 transcriptionally activatesmdm2. Negative feedback is formed
because Mdm2 targets p53 for degradation. A second negative
feedback loop important for this response is the down-regulation
of ATM by wip1, a p53 target gene (12–16).
The p53 circuit shows sustained oscillations following gamma

irradiation which causes double-stranded DNA breaks (17–19).
In these oscillations, p53 levels periodically rise and fall, with
a period of 6–7 h, and Mdm2 oscillates out of phase with p53.
The oscillations last for days (19), as discovered at the individual
cell level using fluorescently tagged p53 and Mdm2 (18, 19).
Oscillations with the same period were also seen in whole mice
using luciferase reporters of p53 activity (20).
Several theoretical models were suggested for these oscillations

(9, 17, 21–28). Many of these models rely on a time delay between
p53 activation and appearance of Mdm2 proteins, without which
the equations show damped (nonsustained) oscillations.
To better understand the in vivo design of this circuit, we use

here an engineering approach known as systems identification. In
engineering, one applies a periodically varying input to a circuit,
measures its output at different frequencies, and describes this by
linear models of the dynamics (29–31). Such periodic inputs were
previously used to analyze biological systems including bacterial
chemotaxis (32), yeast osmo-response (2), and yeast pheromone
response (33).
Here, instead of applying periodic inputs, we use the naturally

occurring noise in protein expression as a diagnostic that can excite
the system at many frequencies at once (34). To do this, we analyze
the frequency behavior of p53–Mdm2 dynamics in individual cells

following gamma irradiation. We find Fourier spectra with a clear
oscillation peak andmild high harmonics, andwith a distinct rise at
low frequencies. We found that a linear dynamical model with
white noise can reasonably capture the observed response. The
experimental spectra, with their rise at low frequencies, are well
described by a third-order linear model but not by a simpler sec-
ond-order model. The third-order model identifies the feedback
loops in the system without a priori knowledge of the interaction
signs. It also identifies the noise sources in the system, and allows
estimation of in vivo interaction strengths. Furthermore, the mod-
el suggests a way in which the inherent noise can drive sustained
oscillations, even without an explicit delay mechanism. The model
also captures the power spectra of the p53 system without DNA
damage. The present approach thus seems to help to identify the
in vivo design and interaction strengths of the p53 circuits.

Results
Prolonged p53–Mdm2 Oscillation Dynamics Measured in Individual
Cells. To quantitatively measure p53 and mdm2 dynamics in in-
dividual cells, we used human breast cancer cells, MCF7, stably
transfected with p53–CFP and Mdm2–YFP as described (18, 19).
We irradiated the cells with 10 Gy of gamma radiation to cause
double-stranded DNA breaks (DSBs), and obtained time-lapse
movies in an automated fluorescent microscope with incubated
conditions (temperature, humidity, and CO2 control). The levels
of p53–CFP and Mdm2–YFP were quantified by image analysis
software (Fig. 1).
We followed p53–CFP and Mdm2–YFP oscillations after

gamma irradiation for over 2 d in 87 cells. Fig. 2 shows dynamics
of four representative cells. Mdm2 oscillates in opposite phase to
p53. The amplitudes of the oscillation peaks are variable, whereas
their frequency is less variable (19).

Fourier Transform of the Oscillations Shows a Central Peak, Harmonics,
and a Rise at Low Frequencies.The large variability in the amplitude
between individual cells makes analysis in the time domain
challenging. We thus turned to Fourier analysis to transform the
oscillations from the time to the frequency domain. The Fourier
power spectra were averaged over all cells, resulting in the root
mean square (RMS) Fourier power spectra of p53 and Mdm2
shown in Fig. 3.
The Fourier spectrum of p53 dynamics (Fig. 3A) displays

a main oscillation peak centered at a frequency of 0.14 ± 0.02 h−1

(oscillation period of 7 ± 1 h). Secondary peaks occur at fre-
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quencies of 0.28 ± 0.02 h−1 and 0.42 ± 0.02 h−1. These secondary
peaks occur at twice and three times the main peak frequency
and represent the second and third harmonics of the main os-
cillation frequency. The Fourier transform of Mdm2 also shows
a main peak, at the same frequency as p53. The Mdm2 spectrum
also shows several small peaks at higher frequencies.
The Fourier spectra of both p53 and Mdm2 show an increase

at low frequencies. This feature of the p53–Mdm2 system, which
is hidden in the time domain, is important for understanding the
circuit, as described below.

Third-Order Linear Equations Capture the Frequency Behavior of the
System. The p53 system is likely to be nonlinear. The mild higher
harmonics found in the spectra are likely a result of this non-
linearity. However, we test here the hypothesis that the p53 system
operates close enough to the linear regime to be well described
by linear differential equations with noise. Our purpose is to use
these linear system-identification models to identify the inter-

actions, the relative strength of noise sources, and to estimate in
vivo parameters, which are otherwise hard to measure (Fig. 4).
To test the linearity of the present system, we applied a test

commonly used in systems identification, based on the observa-
tion that linear differential equations with additive noise produce
distributions that are Gaussian (35). We tested whether the ex-
perimental data for p53 and Mdm2 levels are distributed in
a Gaussian manner, by measuring the ratio between the fourth
and second central moments of the distribution across cells at
each time point (kurtosis κ = < X4>/<X2>2). Gaussian distri-
bution shows κ = 3 (compare with exponential distribution and
gamma distributions with the same mean and STD as the present
data showing κ ∼ 9). We find that the experimental protein level
distributions have κ= 3.3 ± 0.7. The systems-identification linear
model described below shows κ = 2.9 ± 0.2 when simulated on
the same number of cells (Fig. S1). This supports the use of
linear models for systems identification in the present case.
We began with a second-order model with two variables x =

p53 and y = mdm2 (Fig. 4A), whose equations are

dx
dt ¼ axyy− axxxþ N1
dy
dt ¼ ayxx− ayyyþ N2

[1]

Here,N1 andN2 are noise terms that represent stochasticity in the
reactions. In thismodel, we assume that the noise is white,meaning
that it has no temporal correlations, and thus equally contains all
frequencies. Below we consider also correlated noise.
We find that the best-fit model with two variables (x= p53 and

y = Mdm2) captures the negative p53–mdm2 feedback loop
interaction signs: Mdm2 (y) down-regulates p53 (x), axy = −0.8 ±
0.2 h−1, and p53 (x) up-regulates mdm2 (y), ayx = 0.8 ± 0.1 h−1.
However, this model does not capture the observed frequency
behavior well. In particular, such a second-order model cannot
show the increase in the experimental spectra observed at low
frequencies (Fig. 3 A and B dashed line). In fact, one can connect
the number of slope changes of the power spectrum with the
minimal order of the underlying linear model: the observed
power spectrum has at least three major slope changes (going
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Fig. 1. Sustained p53–mdm2 oscillations. Time-lapse microscopy pictures of
an individual cell showing the p53–CFP (shown in red) and Mdm2–YFP
(shown in green) fluorescence overlaid on the phase image of the cell. Time
between sequential frames is 20 min. Yellow color indicates both p53–CFP
and Mdm2–YFP fluorescence in the same pixel.
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Fig. 2. Time courses show noisy P53–CFP and
Mdm2–YFP oscillations. Shown are p53–CFP and
Mdm2–YFP fluorescence levels in four represen-
tative cells, during a period of 48 h after 10 Gy of
gamma irradiation. The p53–CFP andMdm2–YFP
levels show sustained oscillations throughout
with a phase shift of 180° between p53–CFP and
Mdm2–YFP.
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down from zero frequency, then up to the main oscillation peak,
then down again), and requires at least a third-order model.
We thus turned to a third-order model, in which we added

a third variable z to represent ATM, the kinase that activates
p53. In this model, ATM (z) has an interaction term with p53,
with strength azx. We also allowed a term for the interaction back
from p53 to ATM. The model equations are:

dz
dt ¼ azxx− azzzþ N1
dx
dt ¼ axzzþ axyy− axxxþ N2
dy
dt ¼ ayxx− ayyyþ N3

[2]

where aij are constants that represent interactions between the
variables, and N1, N2, and N3 are the noise of production of z,
p53, and Mdm2, respectively.
Fourier analysis transforms Eq. 2 into a set of coupled linear

equations:

iωZ ¼ azxX − azzZþ λ1
iωX ¼ axzZþ axyY − axxX þ λ2
iωY ¼ ayxX − ayyY þ λ3

[3]

where ω is the frequency, Z(ω), X(ω), Y(ω) are the Fourier trans-
forms of z, x, and y, respectively. λ1, λ2, and λ3 are the Fourier

transforms of the white noise N1, N2, and N3, respectively (the
Fourier transform of white noise is a constant).
Working with the Fourier transforms (Eq. 3) rather than the

original differential equations (Eq. 2) has several well-known
advantages: it allows handling noise in terms of constant terms,
and it turns differential equations into algebraic ones, which are
readily solvable.
We next fit the exact solution of Eq. 3 to the observed spectra.

We find a single, well-defined best-fit solution, which is in agree-
ment with the measured data (solid lines in Fig. 3). Note that
there are no overfitting concerns in this case: the model has 10
free parameters, whereas the p53 and Mdm2 spectra have more
than 10 relevant features. For example, the above-mentioned
three slopes, together with the two corresponding turning point
frequencies (the frequencies of the minimum and the resonance
peak) make a total of 10 distinct features in the two power
spectra that are captured by the model.
The best-fit parameters for the p53–Mdm2 interactions show

the correct signs, and similar magnitudes, with activation of
mdm2 by p53, ayx = 0.29 ± 0.03 h−1, and inhibition of p53 by
Mdm2, axy = −0.55 ± 0.05 h−1. The best-fit ATM–p53 inter-
actions are two way, with ATM activating p53 and p53 inhibiting
ATM. Such a feedback loop, with these signs, occurs in this
system, where ATM is inhibited by a gene product of p53, WIP1
(12–14, 16). This feedback loop was experimentally and theo-
retically found to be important for oscillations (12). The
strengths of these two interactions can be predicted in the best-fit
model only up to their product axz × azx = −0.65 ± 0.05 h−2.
Thus, this third-order model seems to capture current knowl-

edge on the core of the p53 system that is needed for oscillations.
Removing any of these interactions by setting their parameter to
zero in the model significantly increases the fit error.
Analytical solution of the equations provides understanding of

the way the power spectra increase at low frequencies. The an-
alytical solution as ω → 0 scales as 1/ω2 for p53 and as 1/ω for
Mdm2, in agreement with the experimental spectra.
The best-fit noise amplitudes can also be estimated from the

model, showing similar amplitudes for p53 and Mdm2: |λ1/azx| =
(1.4 ± 0.3) × 103, λ2 = (5 ± 1) × 103, λ3 = (10 ± 1) × 103. The
effective degradation rates of the proteins can also be estimated by
the best-fit model: the p53 lifetime in the presence of Mdm2 in
MCF7 cells as estimated by this approach is 75 ± 5 min, which is
within a factor of two of the effective degradation rate found ex-
perimentally in WS1 cells (primary normal human skin fibro-
blasts) using immunoblots (36). The estimated lifetime ofMdm2
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Fig. 3. Fourier transforms of dynamics show a main peak, high harmonics,
and a rise at low frequencies. Fourier transforms of (A) p53 and (B) Mdm2.
The measured Fourier transform (circles) is the RMS average over Fourier
transforms of p53–CFP and Mdm2–YFP levels that were measured in about
100 individual MCF7 cells. The measurement error was calculated as the SE
of the individual Fourier transforms and is indicated by error bars. The
calculated Fourier transform (solid line) is the solution of Eq. 3 with
parameters indicated in the text. Dashed line is the best fit of a second-
order model.
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Fig. 4. Schematic drawing of the p53 network. (A) Second-order equations:
p53 (x) up-regulates mdm2 (y), which in turn inhibits p53. (B) The network
based on the third-ordermodel and its biological interpretation: The upstream
factorATM (z) is activatedupon stress andactivates p53 (x), which up-regulates
mdm2 (y) and deactivates the signal (z). Mdm2 promotes the degradation of
p53 and reduces its level. P53 inhibits ATM through the action of its down-
stream target wip1 (12, 14, 16).
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is 144 ± 10 min, four times longer than the experimentally mea-
sured lifetime in WS1 cells (36).
Stochastic simulation of the model equations (Eq. 2) in the

time domain gives rise to sustained noisy oscillations reminis-
cent of the experimental data (Fig. 5 A and B). Without the
white noise terms, this linear model would give only damped
oscillations (Fig 5B, Inset). The oscillations are maintained by
the noise, which continuously drives an otherwise stable third-
order system.
The general features of oscillations driven by noise in a linear

system were recently analyzed by Lang et al. (37). This analysis
suggests that the distribution of peak amplitudes P(A) follows
a distribution given by P(A) ∼ A × exp(−A2/A0

2). Here A is the
peak amplitude and A0 is given by the ratio of the noise strength
and the protein degradation rate. We find that the measured
peak distributions in our data are well described by this theo-
retical prediction (Fig. 5 C and D).

System Identification of p53–Mdm2 Oscillations Without DNA Damage
Is Captured by a Second-Order Model.We next applied the present
approach to the dynamics of the p53 system without DNA
damage. We reasoned that without damage, the ATM feedback
loop should be inactive, and thus the system may be described by
a second-order model (Fig. 3A) instead of a third-order model.
Our previous study (19) demonstrated that without DNA

damage, p53 and Mdm2 oscillates at a frequency of ∼0.08 Hz
(cycle time of ∼12 h). We performed Fourier analysis on the
dynamics measured in that study and found a single peak at 0.08
Hz (Fig. 6). The power spectrum did not show the increase at low
frequencies found in the spectrum with DNA damage (Fig. 3).
As noted above, the single-peak shape of the spectrum suggests

that a second-order linear set of equations may be sufficient to
describe the dynamics. We indeed find that a second-order linear
model (Eq. 1) describes the measured data very well (Fig. 6).
The second-order model provides well-defined best-fit esti-

mates for all parameters, including interaction strengths, pro-
tein lifetimes, and noise amplitudes. The interaction strengths
are axy = −0.73 ± 0.03 h−1, ayx = 0.34 ± 0.02 h−1. The pa-
rameter describing the activation of mdm2 by p53 (ayx) is equal
(within the error range) to the one found with DNA damage. In
contrast, the parameter that describes the degradation of p53
by mdm2 (axy) is lower than the one found with DNA damage.
This implies that DNA damage in the present system enhances
primarily the negative effect of mdm2 on p53 and does not
measurably affect the activation of mdm2 by p53. The esti-
mated lifetimes of p53 and mdm2 are 13 h and 180 min, re-
spectively, which implies that the lifetime of p53 is considerably
reduced following DNA breaks, whereas the lifetime of Mdm2
is almost uneffected. The noise parameters are λ1 = (4 ± 1) ×
103, λ2 = (6 ± 1) × 103 and are on the same order as was found
for the experiment with DNA damage.

Analysis of Exponentially Correlated Noise Suggests That the Best-Fit
Noise Is Nearly Uncorrelated. To further investigate the limits of the
present model, we replaced the white noise in Eq. 2 with expo-
nentially correlated noise. The correlation of this noise declines
exponentially with time: <N(t)N(t + τ)> = λ2/β × e−|τ|/β, whereN is
the noise, and β is the correlation decay time constant. White
noise, which is uncorrelated, is a special limit of exponentially
correlated noise with β → 0.
Applying exponential noise to the set of Eq. 2 gives the set of

Fourier transforms:
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Fig. 5. Stochastic simulation shows sustained oscillations. (A and B) Shown are two runs of a stochastic simulation based on the set of differential equations
(Eq. 2) using the best-fit parameters. The calculated p53 and Mdm2 profiles resemble the experimentally measured profiles. A deterministic simulation with the
same parameters (but without noise) results in damped oscillations (Inset). (C andD) The experimental amplitude distribution of p53 (C) andMdm2 (D), and a fit
to a theoretical model of noise-driven damped harmonic oscillator (37) (solid lines).
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iωZ ¼ azxX − azzZþ λ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðβ1ωÞ2
p

iωX ¼ axzZþ axyY − axxX þ λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðβ2ωÞ2
p

iωY ¼ ayxX − ayyY þ λ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðβ3ωÞ2
p

[4]

where βi are the decay time constants of the exponential noise
terms. Note that as βi approach zero one recovers the set of
Eq. 3, in which the noise is white.
The set of Eq. 4 was solved analytically and fit to the experi-

mental results. Again, one can estimate the system interaction
parameters. The best-fit correlation decay coefficients β were all
estimated as 2 ± 1 min, which means that the best-fit correlation
time of the noise is very short and is practically zero. Thus, the
nature of noise in the p53–Mdm2 model seems to be well ap-
proximated by uncorrelated white noise.

Discussion
We used a frequency-domain systems identification approach to
analyze the p53–Mdm2 circuit in individual human cells. We find
power spectra with a well-defined primary peak and a rise at low
frequencies. This spectrum is well described by a third-order
linear model with white noise (but not by a second-order model),
with a factor upstream of p53 interpreted as ATM. The model
identifies the negative feedback loop between ATM and p53, as
well as the correct signs for the interactions in the p53–mdm2
negative feedback loop. It provides estimates for in vivo in-
teraction strengths and noise amplitudes that are hard to oth-
erwise measure and provides estimated in vivo life times for p53
and Mdm2 that are similar to previously measured values.
The model also captured the 12-h oscillations of the p53 sys-

tem observed in the absence of DNA damage (19). In this case,
a second-order model captures the spectra, which lack the low-
frequency increase. This corresponds to the expectation that the
upstream feedback loop with ATM should not be active in the
absence of DNA damage.
The linear model constructed for this system can be considered

as a linearization of a more general nonlinear dynamical system.
Fourier analysis of the experimental oscillation traces shows sev-
eral higher harmonics, suggesting the existence of nonlinear ef-
fects. However, a test of linearity suggests that the present system
might be working reasonably close to its linear regime. Because
of this near linearity, the present model supports a mechanism for
sustained oscillations, in which noise drives an otherwise stable
system by exciting frequencies close to its resonance frequency

(37). It is of interest that this mechanism does not specifically re-
quire a delay between p53 and Mdm2. In contrast, delay is a re-
quired component in previously proposed nonlinear models that
produce limit-cycle oscillations (19, 22, 28). It is useful to have two
such qualitatively different classes of proposed mechanisms for
p53 oscillations, because the two can potentially be differentially
tested by experiments (e.g., by modulating the delay between p53
and Mdm2, for instance by placing Mdm2 under an early p53
responsive promoter).
This study used naturally occurring biological noise to effec-

tively stimulate a wide range of frequencies in the system com-
ponents. The noise is thus used as a natural diagnostic tool in the
present approach (34). This complements the explicit introduc-
tion of oscillating or noisy inputs by experimentalists, as done in
engineering and in biological applications (32, 38).
Fourier analysis of the p53–mdm2 allows identification of the

circuit interactions by means of linear models. This approach is
relatively noninvasive, because it relies on natural noise to stimu-
late the circuit at many frequencies at once. The suggested model
estimates circuit characteristics that are otherwise hard to mea-
sure (noise amplitudes, in vivo interaction strengths, and protein
lifetimes). This approach may be used to understand the behavior
and the design of other cellular systems.

Materials and Methods
Cell Line and Constructs. We used MCF7, human breast cancer epithelial cells,
U280, stably transfected with pU265 and pU293 as described (18). In pU265,
ECFP from pECFP-C1 (Clontech) was subcloned after the last codon of p53
cDNA, under the mouse metallothionein-1 promoter (MTΔ156) (39). This
promoter provides a basal and constant level of transcription of p53–CFP. A
basal promoter for p53–CFP was chosen because p53 is primarily regulated
at the protein level and not at the transcriptional level (9). Control experi-
ments with CFP expressed from this promoter showed constant expression
with no oscillations. In pU293, the hMDM2 promoter was cloned by PCR
using genomic DNA as a template, creating a 3.5-kb fragment upstream of
the ATG site in exon 3, including P1 and P2 (40). This promoter was subcl-
oned into pEYFP-1 (Clontech) (18).

Cells were maintained at 37 °C in RPMI medium 1640 containing 10% FCS
(Sigma). To reduce background fluorescence, at 1–2 h before observation in
the microscope, cells were grown in RPMI 1640 lacking riboflavin and phenol
red (Biological Industries cat. no. 06–1100-26–1A), supplemented with L-
glutamine, 10% FCS (certified FBS, membrane filtered; Biological Industries,
04–001-1A), and 0.05% penicillin-streptomycin antibiotics (Biological In-
dustries, 03–031-1B). Cells were then exposed to the appropriate dose (10 Gy)
of gamma irradiation (cesium source, 467 Gy h−1). The number of DSBs has
been found to be linear in gamma dose, with an average of about 30 DSB per
Gy per cell (41).

Time-Lapse Microscopy. Time-lapse movies were obtained at ×20 magnifi-
cation in an automated inverted fluorescence microscope (DMIRE2 and
DMI6000B; Leica). The microscope included live cell environmental incuba-
tors maintaining 37 °C (37-2 digital and heating unit, PeCon, Leica no.
15531719) humidity and 8% CO2 (no. 0506.000–230; PeCon GmbH, Leica no.
11521733) and automated stage movement control (Corvus, ITK, GmbH);
stage was surrounded by an enclosure to maintain constant temperature,
CO2 concentration, and humidity. Transmitted and fluorescence light paths
were controlled by electronic shutters (Uniblitz, model VMM-D1); fluores-
cent light sources were mercury short arc lamp HXP and mercury HBO100
(OSRAM). Cooled CCD cameras were used: CoolSNAP, (Roper Scientific,
photometrics), and ORCA-ER (C4742-95–12ERG, Hamamatsu photonics KK).
Single-channel filters were from Chroma Technology, YFP: (500/20 nm exci-
tation, 515 nm dichroic splitter, and 535/30 nm emission, Chroma no. 41028)
and CFP: (436/20 nm, dichroic beam splitter 455 nm, emission 480/40 nm. The
Leica system hardware was controlled by ImagePro5 Plus software (Media
Cybernetics), which integrated time-lapse acquisition, stage movement, and
software-based autofocus (adjusted in our lab).

Cells were grown and visualized in 12-well optical glass-bottom plates
(MatTek cultureware, Microwell plates uncoated, part no. P12G-0–14-F, lot
no. TK0289) coated with 10 μM fibronectin 0.1% (solution from bovine
plasma, Sigma, cat. no. F1141) diluted 1:100 in Dulbecco’s PBS, PBS (Sigma,
cat. no. D8537). For each well, time-lapse movies were obtained at four fields
of view. Each movie was taken at a time resolution of 20 min and was filmed
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Fig. 6. Fourier transforms of dynamics without DNA damage show a main
peak, but not a rise at low frequencies. Shown is the RMS average over
Fourier transforms of Mdm2–YFP levels. The measurement error was calcu-
lated as the SE of the individual Fourier transforms and is indicated by error
bars. In this experiment, p53 dynamics were not measured. The calculated
Fourier transform (solid line) is the solution of a second order Eq. 1 with
parameters indicated in the text.
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for at least 2 d (over 140 time points). Each time point included transmitted
light image (phase contrast) and two fluorescent channels (blue and yellow).

Themeancell generation timewasabout20h in theCO2 incubatedmicroscope
without gamma irradiation. We find that movies using CFP and YFP illumination
over 3 d did not visibly affect cell morphology or generation time.

Cell Tracking and Fluorescence Quantification. Custom written image analysis
software was developed usingMatlab (Mathworks), which semiautomatically
segmented and tracked individual cells. In each frame it automatically cal-
culated the mean fluorescence intensity of pixels in the nucleus (after back-

ground subtraction) of CFP and YFP in individual cells. Themain steps taken in
each frame include: nuclei identification, tracking, and fluorescent intensity
quantification.

Image background correction (flat field correction and background sub-
traction) was carried out as previously described (42). No significant bleaching
was observed: on average bleaching was less than 3% over the duration of
the experiment. Cellular autofluorescence of wild-type MCF7 cells without
the CFP or YFP genes was negligible and gave consistent and low values with
a mean of 25 CFP fluorescence units per pixel and 1 YFP fluorescence unit per
pixel, with a coefficient of variation of ∼30%.
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