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Long-term experience through development and evolution and
shorter-term training in adulthood have both been suggested to
contribute to the optimization of visual functions that mediate our
ability to interpret complex scenes. However, the brain plasticity
mechanisms that mediate the detection of objects in cluttered scenes
remain largely unknown. Here, we combine behavioral and func-
tional MRI (fMRI) measurements to investigate the human-brain
mechanisms that mediate our ability to learn statistical regularities
and detect targets in clutter. We show two different routes to visual
learning in clutter with discrete brain plasticity signatures. Specifi-
cally, opportunistic learning of regularities typical in natural contours
(i.e., collinearity) can occur simply through frequent exposure, gen-
eralize across untrained stimulus features, and shape processing in
occipitotemporal regions implicated in the representation of global
forms. In contrast, learning to integrate discontinuities (i.e., elements
orthogonal to contour paths) requires task-specific training (boot-
strap-based learning), is stimulus-dependent, and enhances process-
inginintraparietal regionsimplicated in attention-gated learning. We
propose that long-term experience with statistical regularities may
facilitate opportunistic learning of collinear contours, whereas learn-
ing to integrate discontinuities entails bootstrap-based training for
the detection of contours in clutter. These findings provide insights in
understanding how long-term experience and short-term training in-
teract to shape the optimization of visual recognition processes.

contour integration

shape perception | brain imaging | visual cortex

he ability to detect and identify meaningful targets in cluttered

scenes is a fundamental skill for survival and social interactions.
In fact, it is thought that the visual system is optimized through
evolution and development for the detection of frequently occur-
ring regularities that typically define shape contours in natural
scenes (e.g., elements collinear to the contour path) (1-3). Previous
studies have shown that human observers are indeed better at
detecting collinear contours than contours defined by regularities
(e.g., elements orthogonal to the contour path) that typically define
discontinuities (e.g., texture boundaries) rather than coherent
shape contours (4-6). However, recent computational approaches
propose that experience with the statistics of natural environments
in adulthood plays a critical role in enhancing our ability to in-
terpret complex scenes (7, 8). Our previous work showed that
observers learn to integrate image discontinuities (i.e., orthogonal
elements) for contour detection, suggesting that short-term train-
ing may alter the utility of image regularities (9, 10). Despite ac-
cumulating computational and behavioral evidence for the role
of experience in the interpretation of complex scenes, the brain
plasticity mechanisms that mediate learning of statistical regulari-
ties in natural images remain largely unknown.

Here, we combine behavioral and functional MRI (fMRI) mea-
surements to investigate the human-brain plasticity mechanisms
that facilitate the detection of shape contours in cluttered scenes.
Previous work (11) has suggested two different mechanisms for
learning to segment objects from background clutter: an opportu-
nistic mechanism that relates to the observers’ ability to exploit
image cues (e.g., frequently occurring regularities) that enhance seg-
mentation and a bootstrap-based mechanism that relates to learning
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new features for detecting targets in cluttered scenes. We ask whether
discrete brain circuits are implicated in these different learning pro-
cesses. We reasoned that learning of atypical contours (i.e., orthog-
onal contours) relates to bootstrap-based training mechanisms and
may require supervised training with feedback, whereas learning of
collinear contours relates to opportunistic learning mechanisms and
may occur simply by frequent exposure that enhances the observers’
ability to exploit typical image regularities. We measured behavioral
and fMRI responses to stimuli comprising of collinear and orthog-
onal contours embedded in background clutter (Fig. 14 and Fig. S1).
Both contour types were comprised of widely separated Gabor ele-
ments, ensuring that the detection of collinear and orthogonal con-
tours was equally difficult before training. We tested for the link
between behavioral improvement and changes in brain-activation
patterns after supervised training (i.e., contour-detection task with
error feedback) or exposure (i.e., observers engaged in a contrast
discrimination task irrelevant to contour detection) to the different
contour types (i.e., collinear or orthogonal).

Our findings provide evidence for discrete brain learning mech-
anisms that mediate our ability to detect shape contours in clut-
tered scenes. Specifically, learning to integrate discontinuities
(i.e., elements orthogonal to contour paths) requires task-specific
training, is stimulus-dependent, and enhances contour processing
in intraparietal regions. In contrast, learning regularities typical in
natural contours (i.e., collinearity) can occur simply through fre-
quent exposure, generalizes across untrained stimulus features,
and shapes contour processing in occipitotemporal regions. These
findings provide insights into the interplay between short-term
training and longer-term brain plasticity mechanisms that mediate
our ability to interpret complex scenes.

Results

Behavioral Results. We tested contour detection before and after
training in a two-interval forced-choice task (i.e., observers judged
which stimulus interval contained a contour). Analysis of the
observers’ behavioral performance showed that training with feed-
back (i.e., supervised training) is necessary for improvement in
the detection of orthogonal contours, whereas detection of col-
linear contours can be improved simply by exposure to the stimuli
(Fig. 1B and Figs. S2 and S3). In particular, to quantify the
observers’ performance in the contour-detection task, we mea-
sured accuracy (percent correct) when observers were presented
with fully aligned contours (i.e., zero contour-element jitter). Be-
fore training, detection was difficult for both collinear (54.09 +
2.07%) and orthogonal (49.77 + 2.16%) contours. No significant
differences were observed for contour types [collinear vs. ortho-
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Fig. 1. Stimuli and behavioral results. (A) Examples of collinear and or-
thogonal contours used for behavioral testing presented at two different
contour orientations (45° and 135°). For demonstration purposes only, two
rectangles illustrate the position of the two contour paths in each stimulus.
(B) Average behavioral performance across subjects (percent correct) before
and after supervised training or exposure. Error bars denote SEM.

gonal: F(1,21) = 2.79, P < 0.17], training procedures [supervised
vs. exposure: F(1,21) = 1.08, P = 0.31], or global contour ori-
entations [F(1,21) = 1.76, P = 0.20]. After training, the observers’
performance in the detection of orthogonal contours improved
significantly after supervised training but not after mere exposure.
A repeated measures ANOVA showed significantly higher accu-
racy in the detection of orthogonal contours after supervised
training [F(1,4) = 18.75, P < 0.05] but not exposure [F(1,5) = 0.05,
P = 0.84]. Specifically, after supervised training, observers’ de-
tection performance was similar [i.e., no significant difference:
F(1,10) = 0.66, P = 0.44] for orthogonal and collinear contours.
This learning effect after supervised training was specific to the
trained contour orientation, as indicated by an interaction be-
tween session (pretest vs. posttest) and global contour orientation
[F(1,4) = 8.95, P < 0.05].

In contrast, for collinear contours, observers showed similar
improvement in detection performance [i.e., no significant differ-
ences: F(1,10) = 1.08, P = 0.33] after supervised training or ex-
posure. A repeated-measures ANOVA showed significantly higher
accuracy in the detection of collinear contours after supervised
training [F(1,5) = 26.63, P < 0.01] or exposure [F(1,4) = 35.35,P <
0.01]. Interestingly, these learning effects were evident for both
trained [supervised training: F(1,5) = 22.81, P < 0.01; exposure:
F(1,4) = 16.16, P < 0.05] and untrained [supervised training:
F(1,5) = 12.97, P < 0.05; exposure: F(1,4) = 49.66, P < 0.01] orien-
tations. However, detection performance was significantly higher
for trained compared with untrained global orientations after su-
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pervised training [F(1,5) = 6.74, P < 0.05] but marginally different
after exposure [F(1,6) =6.54, P = (0.06]. These results suggest at
least partial transfer of learning for collinear contours to untrained
global contour orientations.

Could the lack of a significant learning effect after exposure to
orthogonal contours relate to the performance of individual par-
ticipants before training (e.g., observers with higher performance
before training may show stronger improvement after training)?
Correlation analysis on the behavioral performance of participants
trained or exposed to collinear or orthogonal contours did not show
any significant relationship before and after training (R = 0.24, P =
0.12). Furthermore, no significant differences were observed in
performance for collinear vs. orthogonal contours before exposure
[F(1,21) = 2.29, P = 0.15]. These analyses suggest that behavioral
improvement in the detection of collinear, but not orthogonal,
contours after exposure-based learning could not be caused by any
individual differences in task difficulty before training.

fMRI Results: Contour-Responsive Regions. To identify brain regions
involved in processing the contour stimuli, we compared activa-
tions with contour vs. random stimuli after training (postscan
session). Consistent with previous findings (10), we observed sig-
nificantly higher activations (random effect analysis, P < 0.001,
cluster-size threshold corrected, 80 mm?) for contours than ran-
dom patterns in higher occipitotemporal [V3A, V3B/ kinetic oc-
cipital (KO), and lateral occipital (LO)], intraparietal [ventral
intraparietal sulcus (VIPS), parieto-occipital intraparietal sulcus
(POIPS), and dorsal intraparietal sulcus (DIPS)], and premotor
[premotor dorsal (PMd) and premotor ventral (PMv)] areas (Fig.
S4). We used these contour-responsive regions as regions of in-
terest (ROI) for further analysis. We also included V1 as an ad-
ditional control ROI, although no significant differences for
contours vs. random stimuli were observed in this region.

Learning-Dependent Changes in fMRI Signals. To investigate learning-
dependent changes in fMRI activations related to behavioral im-
provement in contour detection, we compared fMRI signals in
contour-responsive regions before vs. after supervised training or
exposure to orthogonal and collinear contours. Note that comparing
detection performance between the beginning and end of the pre-
training test session did not show any significant differences [col-
linear: #(13) = 1.52, P = 0.15; orthogonal: #(13) = 0.77, P = 0.45],
ensuring that the pretraining scanning session can serve as baseline
for evaluating training-dependent fMRI changes. Our analysis
showed that fMRI responses were significantly higher for collinear
than orthogonal contours [F(1,21) = 12.81, P < 0.01], indicating
overall higher responsiveness to collinear contours consistent with
optimization for collinearity processing (1-3). Comparison of
learning-dependent changes for collinear and orthogonal contours
showed consistent results with the behavioral findings. In particular,
for orthogonal contours, we observed enhanced fMRI responses
after supervised training but not mere exposure. In contrast, for
collinear contours, enhanced fMRI responses were evident after
either supervised training or exposure. Importantly, the learning of
different contour types implicated different cortical regions. Spe-
cifically, enhanced fMRI responses were observed after training in
intraparietal regions for orthogonal contours, whereas in occipito-
temporal regions for collinear contours.

‘We compared the percent signal change for trained orientations
before and after training or exposure using the response to random
stimuli as a baseline. For orthogonal contours (Fig. 2), a repeated
measures ANOVA on fMRI responses for trained orientations
showed a significant interaction between learning procedure (su-
pervised training vs. exposure) and session (pretest vs. posttest) in
intraparietal regions [e.g., VIPS: F(1,9) = 5.31, P < 0.05] but not in
other contour-responsive areas [occipitotemporal areas: F(1,9) =
0.79, P = 0.40; premotor areas: F(1,9) = 0.92, P = 0.36] or early
visual areas [e.g., V1: F(1,9) = 0.92, P = 0.36]. In contrast, no
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Fig. 2. fMRI responses for observers trained with orthogonal contours,
Signal-change index (percent signal change for collinear minus random
contours) for each ROI. Data are shown for trained contour orientations
before and after (A) supervised training and (B) exposure. Error bars de-
note SEM.

significant differences were observed for untrained orientations
(Fig. S5) before vs. after supervised training [F(1,4) = 2.31, P =
0.20] or exposure [F(1,5) = 0.55, P = 0.49], consistent with the lack
of behavioral improvement for untrained contours. These results
suggest a link between behavioral improvement in the detection of
orthogonal contours and fMRI changes in intraparietal regions
after supervised training rather than exposure. This finding was
further supported by a strong correlation between behavior (dif-
ference in detection accuracy for trained vs. untrained orientations
before and after training) and the corresponding fMRI signals in
intraparietal regions for supervised training (R = 0.97, P < 0.05)
rather than exposure (R = —0.39, P = 0.44).

In contrast, for collinear contours, we observed enhanced fMRI
responses in higher occipitotemporal (rather than intraparietal)
regions for both supervised training and exposure (Fig. 3). In
particular, for trained collinear contours, repeated measure
ANOV As showed significant interactions between session (pretest
vs. posttest) and ROI for supervised training [F(12,60) = 2.12; P <
0.05] and exposure [F(8,32) = 2.86, P < 0.05]. Further analysis
showed significantly higher fMRI responses after rather than be-
fore supervised training or exposure in occipitotemporal areas
[e.g., V3B/KO: F(1,9) = 6.27, P < 0.05] but not intraparietal areas
[F(1,9) =0.13,P = 0.17], premotor areas [F(1,9) = 1.10, P = 0.32],
or early visual areas [e.g., V1: F(1,9) = 0.12, P = 0.74]. In-
terestingly, for untrained orientations (Fig. S6), we observed sig-
nificantly higher fMRI responses in intraparietal regions after vs.
before supervised training [F(1,5) = 11.25, P < 0.05] or exposure
[F(1,4) = 19.01, P < 0.05], consistent with the transfer of behav-
ioral learning under both training protocols.

Learning-Dependent Changes in fMRI Selectivity for Global Contour
Orientation. We tested whether learning changes fMRI-selective
responses for trained compared with untrained contour orien-
tations using multivoxel-pattern analysis methods (MVPA) (12—
14). These methods take advantage of information across multi-
voxel patterns and have been shown to be more sensitive than
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Fig. 3. fMRI responses for observers trained with collinear contours. Signal
change index (percent signal change for collinear minus random contours)
for each ROI. Data are shown for trained contour orientations before and
after (A) supervised training and (B) exposure. Error bars denote SEM.

conventional brain-imaging approaches that average across neural
populations with differential selectivity within a given voxel. We
exploit the sensitivity of these methods to discern differences in
the processing of contour orientations before and after training.
Training-dependent changes in the neural representations of con-
tours may relate to changes in neural selectivity of single neurons
or local population correlations enhanced through feedback. Al-
though these hypotheses cannot be dissociated based on fMRI
signals that represent the congregate activity of large neural pop-
ulations, multivariate analyses allow us to understand these
learning-dependent changes at the level of multivoxel patterns
within ROIs. In particular, for each session (pre- or posttraining),
we tested the accuracy of a linear-support vector machine in dis-
criminating between fMRI activation patterns associated with the
different contour orientations using a leave-one-run-out cross-
validation procedure. We compared the average (across cross-
validations and observers) classification accuracy before and after
training for each ROI.

Similar to the behavioral learning effects, before training, there
were no significant differences in classification accuracy for col-
linear vs. orthogonal contours [F(8,160) = 1.46, P = 0.18]. How-
ever, supervised training enhanced fMRI orientation selectivity
for orthogonal contours in intraparietal regions (Fig. 4). In par-
ticular, a repeated measures ANOVA showed a significant in-
teraction between session (pretest vs. posttest) and ROI [regions
included early visual, occipitotemporal, intraparietal, and pre-
motor areas; F(12,48) = 2.12, P < 0.05], with significantly higher
classification accuracies after training in intraparietal regions [e.g.,
DIPS: F(1,4) = 8.27, P < 0.05], but not occipitotemporal areas
[V3A, V3B/KO, and LO: F(1,4) = 1.82, P = 0.26; LO: F(1,4) =
1.29, P = 0.32], premotor areas [F(1,4) < 1, P = 0.71], or early
visual areas [e.g., V1: F(1,4) < 1, P = 0.43]. In contrast, no sig-
nificant differences were observed in classification accuracy be-
tween orientations [F(8,40) = 1.06, P = 0.41] after exposure to
orthogonal stimuli, consistent with the lack of significant behav-
ioral improvement after exposure to orthogonal contours.
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Fig. 4. MVPA for observers trained with orthogonal contours. MVPA ac-
curacy (percent correct) per ROI for the classification of trained vs. untrained
orientations of orthogonal contours. Data are shown for before and after
(A) supervised training and (B) exposure. Error bars denote SEM.

The same analysis for collinear contours showed classification
accuracies that matched the behavioral transfer of learning for
untrained orientations (Fig. 5). In particular, classification ac-
curacy of fMRI signals related to trained and untrained ori-
entations was similar before and after supervised training
[F(8,40) = 1.27, P = 0.28] or exposure [F(8,32) = 1.07, P = 0.41].
This could be because of the fact that collinear contour learning
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Fig. 5. MVPA for observers trained with collinear contours. MVPA accuracy
(percent correct) per ROI for the classification of trained vs. untrained ori-
entations of collinear contours. Data are shown for before and after (A)
supervised training and (B) exposure. Error bars denote SEM.
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transferred across orientations, resulting in similar fMRI re-
sponses to trained and untrained orientations after training.

Is it possible that the differences in the classification accuracy
before vs. after learning could be caused by differences in the signal-
to-noise ratio across sessions and regions? Analysis of the functional
signal-to-noise ratio across cortical regions showed no significant
differences before and after training (Fig. S7), suggesting that dif-
ferences in the classification accuracies could not be caused by
differences in the overall fMRI signal across sessions. Furthermore,
our choice of task during scanning (target detection) aimed to avoid
possible confounds related to differences in task difficulty (i.e.,
higher fMRI responses for difficult conditions). This demanding
task (70.90% accuracy for 414 ms mean response time) makes
it unlikely that the observers continued performing the contour-
detection task during scanning and ensured that observers’ atten-
tion was similar across training procedures, contour types, and
sessions (SI Materials and Methods), suggesting that the learning-
dependent fMRI changes could not be simply caused by differential
allocation of attention. Moreover, we controlled for possible dif-
ferences in general alertness across sessions (pretest vs. posttest) by
comparing (i) normalized fMRI responses to contours using the
signal to random stimuli per session as baseline and (ii ) responses to
trained and untrained orientations within the same scanning ses-
sion. Furthermore, the differences in activation patterns for col-
linear compared with orthogonal contours could not be caused by
differences in salience between contour types, because behavioral
performance was similar for collinear and orthogonal contours after
training. Finally, analysis of eye-movement data collected during
scanning did not show any significant differences between scanning
sessions in the eye position or number of saccades (Figs. S8 and S9),
suggesting that differences in the fMRI activation patterns before
and after training could not be significantly attributed to eye-
movement differences.

Discussion

Our findings provide evidence for discrete brain plasticity mech-
anisms that mediate the flexible learning of statistical regularities
for the detection of targets in cluttered scenes. We show that mere
frequent exposure is adequate for the brain to extract regularities
that typically signify shape contours (e.g., collinearity). However,
when such regularities are lacking, the brain requires extensive
training to reassign new functional roles to existing image statistics
and group discontinuities for contour integration and detection.
We propose that learning to detect collinear elements relies
on opportunistic mechanisms that may facilitate the selection of
behaviorally relevant features (i.e., collinear elements) for target
detection. In contrast, learning to integrate discontinuities into
coherent contours (i.e., orthogonal contours) requires bootstrap-
based training on new features for target detection. This is further
supported by the observation that learning for collinear contours
occurred faster (i.e., fewer training trials) than learning for ortho-
gonal contours (Figs. S2 and S3). Interestingly, bootstrap-based
learning of atypical regularities is feature-dependent, whereas
opportunistic learning of typical regularities generalizes across
untrained features (i.e., collinear contours presented at untrained
orientations).

Our study advances our understanding of the brain plasticity
mechanisms that mediate our ability to detect targets in cluttered
scenes in three main respects. First, it delineates discrete human-
brain regions involved in opportunistic compared with bootstrap-
based learning. We show that opportunistic learning may occur by
frequent exposure and is mediated by occipitotemporal areas,
whereas bootstrap-based learning requires extensive training and
is mediated by intraparietal regions. This is consistent with the role
of occipitotemporal areas in representing task-relevant shape
features and global forms (15, 16), whereas the role of intraparietal
regions is perceptual integration saliency (17) and attention-gated
learning (18). Goal-directed attentional mechanisms facilitate the
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localization of salient image regions with local elements of similar
alignment and may then optimize visual processing through feed-
back mechanisms (19, 20). Interestingly, our findings relate to
work investigating the role of learning in language that—in a
similar manner to visual recognition—entails integrating elements
into coherent and meaningful structures. In particular, previous
studies have shown that both infants and adults learn to exploit
statistical regularities for parsing speech into meaningful language
streams (21, 22). Furthermore, recent neuroimaging studies sug-
gest that a ventral cortex region becomes specialized through ex-
perience and development for word recognition (23, 24), whereas
dorsal parietal regions are recruited for recognizing words pre-
sented in unfamiliar formats (25). Taken together, these findings
support the proposal that learning of statistical regularities shapes
occipitotemporal processing, whereas learning new features for
perceptual integration recruits parietal regions involved in the
attentional gating of recognition processes.

It is interesting to note that we did not observe any significant
learning-dependent changes in activations in primary visual areas.
Furthermore, no significant differences were observed in V1 for
collinear vs. orthogonal contours before [F(1,21) = 1.10, P = 0.31]
or after training [F(1,21) = 1.92, P = 0.18]. This may seem sur-
prising, because recurrent processing involving intrinsic con-
nections between neurons with similar orientation preference and
feedback from higher visual areas (26-29) has been suggested to
facilitate perceptual integration and figure-ground segmentation
as early as in V1 (30, 31). However, the evidence on experience-
dependent plasticity in V1 is not yet conclusive. Some previous
imaging studies show enhanced responses in V1 for oblique ori-
entations after training (32), and some physiology studies show
changes in orientation tuning (33). In contrast, it has been shown
that learning does not alter the topography or basic receptive field
properties (e.g., size, location, or orientation selectivity) in V1 (34,
35). Furthermore, training-dependent changes on orientation
tuning are shown to be more pronounced in V4 (36, 37), whereas
effects in V1 are shown to be task-dependent and may engage top-
down facilitation mechanisms (35, 38—40). It is possible that the
lack of significant learning effects in V1 in our study is caused by
the large spacing between contour elements that may prevent in-
tegration within the small receptive fields of V1 neurons. Further-
more, during scanning, observers engaged in a target-detection
rather than contour-detection task that may have gated feedback-
based learning effects in V1. Further work manipulating stimulus
scale and task requirements is needed for understanding the mech-
anisms that mediate learning-dependent changes in V1.

Second, our findings characterize the conditions under which
task-irrelevant learning may occur in natural scenes. Most per-
ceptual learning studies focus on extensive and feature-specific
training (reviewed in refs. 41 and 42). However, recent work pro-
vides evidence that perceptual learning may also occur when at-
tention is diverted away from the stimulus (43, 44) [e.g., when
observers perform a task that is irrelevant to the stimulus of interest
(reviewed in refs. 45 and 46)]. Our findings suggest that task-
irrelevant learning may occur when statistical regularities that sig-
nify shape contours are present in natural scenes. In particular,
detection performance improved significantly after sequential ex-
posure to collinear contours while observers performed a contrast
discrimination task. In contrast, in the absence of regularities typ-
ical of shape contours (i.e., orthogonal contours), significant im-
provement was observed only when observers received task-specific
training (i.e., training on contour detection) rather than when they
performed the contrast-discrimination task. However, it is possible
that increasing the demands of the contrast-discrimination task
would disrupt the learning of collinear contours. This manipulation
would allow us to further explore the role of attention and task
demands on learning of image regularities (e.g., ref. 47). Further-
more, although exposure-based learning lasted longer (observers
used the maximum number of sessions: 16,000 trials) than super-
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vised training, it is possible that exposure-based learning for or-
thogonal contours may entail longer time scales. The critical finding
is that exposure-based learning occurred for collinear rather than
orthogonal contours within the same time scale, suggesting dif-
ferent learning mechanisms for collinear rather than orthogonal
contours in cluttered scenes.

Third, our findings provide insights in understanding how long-
term plasticity honed through development and evolution and
shorter-term training may interact in shaping the functional opti-
mization of visual-recognition processes. In particular, previous
work has shown an advantage in the detection of collinear con-
tours compared with other local element arrangements, consistent
with the long-term optimization of the visual system for regulari-
ties typical of shape contours in natural scenes (4-6). To in-
vestigate how this long-term plasticity contributes to the interpre-
tation of scenes, we manipulated the local spacing among the
contour elements so that the detection of collinear elements was as
difficult as the detection of orthogonal contours. This manipula-
tion revealed that sensitivity to collinearity—possibly acquired
through long-term experience—affords the visual system the ca-
pability to improve in contour detection without the need to re-
ceive extensive training. However, long-term experience is not the
only means to the optimization of visual processes. Although
bootstrap-based learning is slower and necessitates task-specific
training, it shapes the behavioral relevance of image statistics and
affords integration and detection of contours defined by discon-
tinuities. Interestingly, bootstrap-based training results in stimu-
lus-specific learning, whereas long-term experience affords gen-
eralization across image changes (e.g., orientation) that preserve
the stimulus identity.

In sum, our findings suggest that long-term experience with
statistical regularities through development and evolution may
facilitate opportunistic learning, whereas bootstrap-based training
is necessary for the detection of atypical regularities in cluttered
scenes. These different routes to visual learning have discrete
brain plasticity signatures. In particular, opportunistic learning en-
hances processing and neural sensitivity in occipitotemporal re-
gions involved in global-form processing, whereas bootstrap-based
learning recruits intraparietal regions known to be involved in
attention-gated learning. These findings provide insights in un-
derstanding how long-term plasticity and short-term training in-
teract to shape the optimization of visual-recognition processes.
Whether and when bootstrap-based learning results to features
rendered as cues for opportunistic learning remains an open chal-
lenge for future research.

Materials and Methods

Stimuli. Stimuli were Gabor fields consisting of 80 elements presented within
a circular aperture that were generated using previously described methods
(9). Contour stimuli contained parallel contours that were defined by Gabor
elements placed along (collinear) or perpendicular (orthogonal) to straight
paths and were embedded in a background of randomly positioned
and oriented Gabor elements. All parameters (e.g., number and spacing of
Gabor elements) were the same for collinear and orthogonal contours. More
details on stimulus generation and presentation are described in S/ Materials
and Methods.

Psychophysical Design and Procedures. Each observer was assigned to one of
two experimental procedures. One group of participants (n = 14) was trained
on contour detection with auditory feedback (tone of 600 Hz, duration =
0.15 s) on incorrect responses (supervised training). Another group (n = 14)
was exposed to contour stimuli while performing a contrast-discrimination
task unrelated to contour detection (exposure group). For each procedure,
one-half of the observers trained on (or were exposed to) collinear contours,
whereas the other one-half trained on (or were exposed to) orthogonal
contours. One-half of the observers were trained with contours whose
global orientation was near the left (135 + 15°) diagonal, whereas the rest
were trained with contour orientation near the right (45 + 15°) diagonal.
That is, different groups (supervised training and exposure) of observers
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were trained with (or exposed to) either collinear or orthogonal contours
presented in one of the two sets of global contour orientations.

Observers participated in multiple psychophysical sessions and two fMRI
sessions that were conducted on different days. The first and the last session
were pretest and posttest sessions to evaluate the observers’ performance in
detecting contours. The posttest session was always conducted the day after
the final supervised training or exposure session. The intermediate sessions
were either supervised training or exposure sessions (S/ Materials and Methods
has more details). Observers participated in minimum 5 and maximum 32 in-
termediate sessions on consecutive days. Interspersed within the intermediate
sessions after every fourth session were short quick-test sessions (100 trials) to
assess the improvement of the observers’ performance. When accuracy (per-
cent correct) at zero jitter on these quick-test sessions reached above 80%, the
posttest session was conducted, provided that at least 5 intermediate super-
vised training or 10 exposure sessions had been completed.

fMRI Scan Sessions. Observers were scanned before training (after the pretest
psychophysical session) and after training (after the posttest psychophysical
session). Each scanning session comprised eight experimental runs, each of
which lasted 5 min and 20 s. A run comprised 14 16-s long stimulus blocks,
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including the initial and final blocks, during which only the fixation cross was
presented. The experimental blocks contained stimuli from six conditions:
collinear contours near the left (135 + 15°) diagonal, collinear contours near
the right (45 + 15°) diagonal, orthogonal contours near the left (135 + 15°)
diagonal, orthogonal contours near the right (45 + 15°) diagonal, random-1,
and random-2. For each observer, the contour type presented in the scanner
was the same as in the psychophysical sessions. Random-1, and random-2
were two conditions of random stimuli (random fields without any em-
bedded contours). For each stimulus in condition random-1, the 10 elements
corresponding to the contour elements were presented at random positions
and orientations. The set of stimuli presented in condition random-2
was generated by rotating these elements by 90°. Thus, stimuli in the two
random conditions differed by 90° rotation of the local elements that
matched the orientation difference between contours near the left and
right diagonal.
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