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We describe a systems biology approach for the genetic dissection
of complex traits based on applying gene network theory to the re-
sults from genome-wide associations. The associations of single-
nucleotide polymorphisms (SNP) that were individually associated
with a primary phenotype of interest, age at puberty in our study,
were explored across 22 related traits. Genomic regions were sur-
veyed for genes harboring the selected SNP. As a result, an asso-
ciation weight matrix (AWM) was constructed with as many rows
as genes and as many columns as traits. Each {i, j} cell value in the
AWMcorresponds to the z-scorenormalizedadditiveeffectof the ith
gene (via its neighboringSNP)on the jth trait. Columnwise, theAWM
recovered the genetic correlations estimated via pedigree-based
restricted maximum-likelihood methods. Rowwise, a combination
ofhierarchical clustering,genenetwork, andpathwayanalyses iden-
tified genetic drivers that would have been missed by standard
genome-wide association studies. Finally, the promoter regions of
the AWM-predicted targets of three key transcription factors (TFs),
estrogen-related receptor γ (ESRRG), Pal3 motif, bound by a PPAR-γ
homodimer, IR3 sites (PPARG), and Prophet of Pit 1, PROP paired-like
homeobox 1 (PROP1), were surveyed to identify binding sites cor-
responding to those TFs. Applied to our case, the AWM results re-
capitulate the known biology of puberty, captured experimentally
validated binding sites, and identified candidate genes and gene–
gene interactions for further investigation.
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The analysis of genome-wide association studies (GWASs) ap-
plied to complex traits remains a challenge (1). Addressing

a complex trait by a single, often binary, phenotypic measure is
common practice but is limiting. It is not easy to find the right
balance between applying a conservative significance threshold
that gives rise to a small numberof strongandhopefully biologically
meaningful associations and applying a relaxed threshold yielding
numerous associations,manyofwhicharenewbut potentially false.
In addition, an increase in sample size coupled with a denser chip
results in a larger number of associations that, on average, have
amuch smaller effect (2). Accepting a large number of associations
while simultaneously reducing the number of false positives would
be ideal. It is reasonable to propose that a holistic approach applied
to a relaxed significance threshold could be the solution. Such
a strategy would be particularly useful when investigating the ge-
netic basis of complex traits that, by definition, are influenced by
numerous genes and pathways.
In our study, age at puberty was the complex phenotype con-

sidered. Puberty, or the progression to sexual maturity, is a de-
velopmental process with genetic drivers conserved among species
(3). It is an important phenotype for the beef industry because late
puberty has negative effects on reproduction rates and profitability
(4). Age at puberty is moderately heritable, with estimates of
heritability in cattle ranging from 0.16 to 0.57 (5, 6). In humans,
∼50% of the variation in age of puberty is genetic (7, 8). An ad-
vantage to working with cattle as a model species is that observa-

tional data on traits related to puberty are available. For example,
weight and condition score are often measured on occasions
throughout an animal’s development. Hence, understanding ge-
netics of cattle puberty and its biology serves two purposes: as
a strategy to develop efficient livestock resources and as a model
for human biology.
The focus of this work is to demonstrate a unique systems ap-

proach, which we call an association weight matrix (AWM), ap-
propriated for GWASs of complex traits. We examined cattle
puberty from a GWAS based on ∼50,000 single-nucleotide poly-
morphisms (SNPs) and 22 traits as an example of a typical complex
phenotype. We designed the AWM with elements corresponding
to the standardized additive effect of the ith SNP (in rows) on the
jth trait (in columns). Rowwise, the AWM explored gene-to-gene
interactions for cattle puberty across the genome; columnwise, it
estimated correlations between traits influencing puberty.

Results
Commonly, GWASs are single-trait–single-SNP analyses. This
analysis for our main pubertal trait, the age of occurrence of the
first corpus luteum (AGECL), resulted in more associated SNPs
than the number expected by chance alone: 2,799 SNPs atP< 0.05,
588 SNPs at P < 0.01, and 69 SNPs at P < 0.001. We report the
results of the single-trait–single-SNP association analyses for later
comparison against those from the AWM approach.
Each SNP effect, from the total set of 50,070 SNPs, was used as

a data point in the calculation of all pairwise correlations between
the 22 traits. As a result, AGECL correlated with weight at first
corpus luteum (WTCL) (R= 0.64) and with postpartum anoestrus
interval (PPAI) (R = 0.31) among other traits (Table S1). When
selectingSNPs tobuild theAWM,weconsideredall 22 traits and the
SNP-to-genedistance (as per Fig. S1).With increasing SNP-to-gene
distance, weobserved decay in theSNP significance, asmeasured by
P value (Fig. S2).We selected 3,159 SNPs to build theAWM,where
SNPs were rows and 22 related traits were columns (Fig. S3A).
Columnwise, the AWM was used to calculate correlations be-

tween traits. This result is visualized as a hierarchical tree where
AGECL clusters with WTCL and both are close to PPAI (Fig.
S3B). On the hierarchical tree cluster, a strong positive correlation
is displayed as proximity, whereas a strong negative correlation is
displayed as a large distance. To observe negative and positive
correlations equally, we developed the quantitative trait network
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(QTN) fromAWMSNPs,which shows a highdegree of interaction
among all 22 traits (Fig. S3C). For visual comparison, we also
present aQTN (Fig. S3D) based on published genetic correlations
(5, 9). A formal comparison between these genetic correlations
and SNP-based correlations showed a moderate agreement (R2 =
0.6439) between the two approaches (Fig. 1). When all SNPs were
considered, the trait correlations were closer to the genetic esti-
mates (R2 = 0.7034; Fig. 1). The same comparison using the 3,159
SNPs included in theAWM(or 6.2%of the total) captures 64%of
the variation estimated by genetic correlations (Fig. 1). SoAWMis
equivalent to 91% (or 64/70) of the variation that was captured
using the entire SNP chip. Fig. 1 also reveals a pattern of increasing
regression coefficients with decreasing number of SNPs: 0.5697
(whole chip) to 0.7415 (AWM) to 1.0389 (top 71 SNPs). Hence,
themore stringent we are at selecting SNPs, themore unbiased the
recovery becomes (regression coefficient closer to unity). There-
fore, the criteria to include SNPs in the AWM resulted in en-
richment with nonredundant genetic information, implying that
the AWM could be used for estimating genetic correlations, al-
though it was not developed with this aim. Nonetheless, the higher
the number of SNPs analyzed, the higher is the similarity between
SNP-based and genetic correlations. This linear relationship
estimates that ∼200,000 SNPs would fully recover genetic corre-
lations between traits (Fig. S4).
Pairwise correlations across AWM rows were used to predict

gene–gene (or gene–SNP) interactions and hence build a gene
network for puberty. In the network, every gene (or SNP) was
a node and every significant interaction was an edge connecting
two nodes. The PCIT algorithm identified 287,465 significant
edges between 3,159 nodes (Fig. 2A). From this point onward,
issues such as gene connectivity, annotation, and the emergence of
highly connected clusters were the relevant metrics in our analysis.
Gene Ontology (GO) analyses showed overrepresentation for

“GABA receptor activity” (P = 0.025; Fig. S5A) in our puberty
network. Importantly, there were 539 genes in the AWM associ-
ated with theGO term “developmental process,”which was highly
enriched (P < 1.00E-09). These genes along with those associated
with “regulation of transcription” (P< 1.00E-09) would have been
missed if single-trait analysis was performed (Fig. S5B). In addi-
tion, pathway analyses of the network revealed an enrichment (P<
0.001) for “calcium signaling,” “axon guidance,” and “neuroactive
ligand–receptor interaction.” This last pathway includes ligands
and receptors considered to be involved with pubertal signaling
such as GABA receptor activity, “glutamate receptor activity,”
“follicular stimulant hormone (FSH) receptor activity,” and “lep-
tin receptor activity.” The pathway analyses also revealed enrich-
ment for “cell growth,” “cell survival,” and “factors controlling
cell cycle progression.” This last result supports a theory that
implicates a role in puberty for tumor related genes (Discussion).

GO term and pathway analyses applied to the AWM network
identified biological processes and pathways that are relevant for
cattle puberty.
To test the likelihood of AWM predictions being random we

built a control genenetwork.Asexpected, thecontrol genenetwork
had the topology of a random network with the majority of the
genes having an average number of connections (10). The distri-
bution of number of connections per gene in the control network
was different from that in the AWM network (P < 0.0001), so
AWM was not random.
To test the likelihood of AWM predictions being simply a re-

flection of LD between SNPs from the initial GWAS, we calculated
all pairwise D′ and R2. Whereas some AWM predictions were un-
derlined by strong LD, most were not. This result was expected
considering the average distance between AWM-selected SNPs
(825 kb ± 1 Mb).
We selected 3 key transcription factors (TFs) from 34 available

(seeMethods for details and SI Text for TF list). Key TFs, Prophet of
Pit 1, PROPpaired-like homeobox 1 (PROP1), Pal3motif, bound by
a PPAR-γ homodimer, IR3 sites (PPARG), and estrogen-related
receptor γ (ESRRG), and their AWM-predicted targets were sub-
jected to regulatory sequence analyses. Approximately 36% of the
predicted partners had at least one TF binding site (TFBS) for
PROP1 and ESRRG and 18% of predicted partners had at least
one TF binding site for PPARG (Table S2). We considered this
high rate of identification of correspondingTFBSs to be an in silico
validation of TF–target gene interactions predicted by the AWM.
TFs and their in silico validated target genes are shown in Fig. 2B
(for gene lists see SI Text).
A prediction of targets for PROP1, PPARG, and ESRRG was

also carried out on the basis of the control network. In the con-
trol network each TF had fewer targets and a smaller (P <
0.0001) proportion of targets had corresponding TFBSs, when
compared with the AWM network (Table S2). The AWM net-
work presented more validated TF–target interactions and these
interactions were not random because they contrast with the
control network.
Further evidence supporting the interactions predicted by the

AWM could be found for ESRRG and 19 of its targets. These
targets presented a promoter model derived from published
experimental data (Table S3). Thus, the AWM captured exper-
imentally validated TFBSs.

Discussion
Our results revealed a number of appealing features of the AWM
of which four are worth highlighting: (i) It identified as relevant
genes that would have been missed by traditional single-trait
GWASs; (ii) it predicted TF-target associations that have been
experimentally validated by other authors; (iii) it captured more

Fig. 1. Genetic correlations between traits compared with SNP-based correlations. Genetic pairwise correlations estimated for 19 traits were compared with
SNP-based correlations for all 50,070 SNPs in green (R2 = 0.7034), AWM3,159 SNPs in yellow (R2 = 0.6439), and the top 71 SNPs from theAWM in red (R2 = 0.4582).
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information than analyses exploiting LD structure; and (iv) it was
more efficient than similar approaches. The following discussion is
focused on demonstrating these features in the context of our
GWAS for cattle puberty.
Currently, most GWASs are single-trait–single-SNP approaches

that focus only on the most significant results, in terms of P values.
This approach is limited for a complex phenotype because it im-
plicates only very few genes. Previous studies used this approach
to report associations of the genes CCR3, SPOCK1, LIN28B,
ZNF462, TMEM38B, FKTN, FSD1L, and TAL2 with age of pu-
berty in women (11–15). If we applied only this approach to our
data, further research would consider one candidate gene,
NMDAR2B, which was strongly associated (P < 0.000015) with
AGECL. Despite the significance of this result and of the above-
mentioned genes, it is unlikely that puberty variance could be
explained by one or a handful of genes associated with a single
measured trait.After all, puberty is a complexphenotype influenced
by many processes, such as energy balance and brain development.
The AWM included the genes underpinning the strong associ-

ations of the single-trait–single-SNP approach but was not re-
stricted by them. Hence, there is the potential to explain a larger
proportion of the genetic variation. For example, our single-trait–
single-SNP approach yielded one candidate gene, NMDAR2B,
but the AWM also supported recently identified candidate genes
for age of puberty fromhumanGWASs, such as SPOCK1 (14) and
ZNF462 (11). These and other results would have been missed
without a systemic approach to our data. It is expected that sys-
temic approaches that integrate the analyses of related traits (16)
will identify numerous genes (manyQTL), each with a small effect
impacting on any complex trait (2). Indeed, puberty is likely to be
affected by many interacting genes that function in a network with
a high degree of redundancy to preserve the essential process of
reproduction. Our approach has predicted a large and redundant

gene network for puberty, in agreement with previous results (17)
and consistent with the endogenous topology of a network for an
essential process (18).
The exact selection criteria and thresholds proposed to include

or exclude genes and SNPs from the AWM will vary according to
each GWAS under investigation. Importantly, the relaxed thre-
shold ofP< 0.05was a useful source of information for this systems
approach rather than a problem.Once a SNP has been included in
theAWM, its association significance no longer has a role. Instead,
network theory takes command and gene connectivity, annotation,
and the emergence of clusters of highly connected genes become
the relevant metrics for AWM analysis.
AWM recovered the relatedness between traits using SNP

effect correlations, which in our study were quite similar (R2 =
0.64) to the published genetic correlations calculated for the
same population (5, 9). Ideally, one would like to have SNP ef-
fect correlations very similar to genetic correlations, but we es-
timated that for 100% similarity >200,000 SNPs might be re-
quired, in agreement with previous estimates of desirable SNP
numbers for cattle GWASs (19). Nonetheless, the similarity we
observed between genetic correlations and our SNP-based cor-
relations show that it is possible to estimate trait correlations
from GWASs.
The AWM generated a gene network, which provided a pre-

diction of gene interactions based on SNP effect correlations. The
structure of the AWMgene network was not random as it differed
from the control network. Also, the number of in silico validated
TF–target interactions in the AWM was superior to the number
found in the control network. Hence, the AWM predicted TF–
target associations that have been experimentally validated by
other authors and in a frequency significantly higher than could be
achieved by chance alone.

Fig. 2. Puberty network extracted from GWASs using the AWM approach. (A) Entire network. Nodes represent 3,159 genes and SNPs whereas edges
represent significant correlations between nodes. The color scale corresponds to MCODE score where red nodes represent higher network density. (B) Subset
of the network showing PROP1 (red node), ESRRG (yellow node), and PPARG (green node) in silico validated targets (gray nodes). Node shapes (from top) are
as follows: Squares in green are genes related to lipids and fatty acid metabolism, triangles in blue are genes related to cell proliferation and apoptosis,
rectangles in purple are genes related to the GABA and glutamate pathways, and hexagons in red are genes related to nervous system development.
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AWM gene interactions were predicted with the PCIT algo-
rithm (10). PCIT is independent of previous knowledge and cap-
tured more information than analyses exploiting LD structure.
Many predicted TF–target interactions were not underlined by
linkage disequilibrium (LD). This independence from previous
knowledge leads to the most important contribution of the AWM,
which is to predict gene–gene interactions fromGWASdata alone.
These predictions either reflect known biology or are hypotheses to
be tested. For example, the AWM predicted a triplet of closely
associated genes: RUNDC1, BRCA1, and NBR1. BRCA1 and
NBR1are 55 kb apart andRUNDC1 is 92 kb fromBRCA1and147
kb from NBR1 (positions of AWM SNPs). In the bovine genome,
the extent of LD declines rapidly from 0 to 200 kb (20). Thus, LD
between theSNPs that representRUNDC1,BRCA1, andNBR1 in
the AWM was expected: R2 = 0.97 (RUNDC1 and BRCA1;
RUNDC1 and NBR1) and R2 = 0.99 (BRCA1 and NBR1). Even
so, we are not alone when arguing that genomes are not random
and gene proximitymight also reflect gene function (21), especially
when the effect of SNP over 22 traits was considered. There is
previous evidence for BRCA1 and NBR1 interaction as they share
the same bidirectional promoter region (22). However, the pre-
dicted interactions between RUNDC1 and BRCA1, as well as
betweenRUNDC1andNBR1, are yet to be tested.RUNDC1 is an
inhibitor of the tumor suppressor p53 (23), a gene that embodies
the link between oncogenes and reproduction (17, 24). Evidence
for coexpression of p53 and BRCA1 has been only very recently
published (25). Using the AWM prediction, we can hypothesize
thatRUNDC1 is a regulator ofBRCA1, underscoring the power of
the AWM for generating hypotheses.
BRCA1 has been long implicated in breast and ovarian cancer

(26, 27). A risk factor for breast cancer in women is the age of pu-
berty (28). The presence of this and other tumor-related genes in
the AWM network for puberty is a confirmation and expansion of
previous results (17) rather thana surprise. Previously, seven tumor-
related genes were proposed as network hubs influencing puberty:
OCT2, p53, MAF, CUTL1, USF2, YY1, and TTF1. The AWM
network corroborates the relevance of tumor-related genes such as
CUTL1, FLJ22457, SASH1, and SynCAM1 for puberty. Also,
TP53BP1 that encodes a key p53 binding protein is in the AWM
network, which predicts its interaction with TRIM3, a brain tumor
suppressor (29). The role that each tumor-related genemay play in
puberty remains unclear. As a group, they are associated with cell
proliferation (oncogenes) or cell apoptosis (tumor suppres-
sors). Genes associated with cell growth, cell survival, and factors
controlling cell cycle progression were overrepresented in the
AWMnetwork.Thebalancebetweenpro- andantiapoptosis signals
is important for the dynamic biology of germ cells in males and
females (3) and for pubertal brain development (30).
Brain remodeling, which is likely influenced by a variety of

steroid hormones (31), has been shown to precede the changes in
the pattern ofGnRH release that trigger the onset of puberty (32).
Important drivers of GnRH remodeling are the GABAergic and
glutamatergic synaptic inputs (33, 34) and so genes involved in
these signaling pathways might influence puberty. The strongest
candidate gene from our GWAS, NMDAR2B is a glutamate re-
ceptor from the NMDA class of receptors. This class is involved in
pubertal brain development (33). We expanded the list of candi-
dates from the GABA and glutamate pathways to 19 genes using
the AWM approach, which recovered this part of the known bi-
ology of puberty more effectively than the single-trait–single-SNP
approach. The AWM network was enriched for the term GABA
receptor activity.
We explored the promoter regions of the genes predicted to be

targeted by key TFs, PROP1, ESRRG, and PPARG, to identify
corresponding TFBSs. Most of the targets were not on the same
chromosome as their TF. For example, the LD between SNPs for
the target GABRA1 and the TF ESRRG is R2 = 0.0013. There-
fore, the predicted TF–target interactions are not simply a re-

flection of LD. Lack of LD and simultaneous presence of TFBSs
highlighted the functional potential of the interactions predicted
with the AWM.
PROP1 is important for the differentiation of gonadotropes

(35) and it has been associated with infertility in mice and humans
(3, 35). Also, PROP1 stimulates the expression of PIT-1, which
regulates growth hormone and prolactin. The PIT-1 pathway has
been associated with embryonic survival rates in cattle (36). Our
network predicted 320 targets for PROP1, of which 114 presented
TFBSs. These included TRIM3, BRCA1, NBR1, and RUNDC1,
indicating a variety of possible pathways for a known tumor-re-
lated role of PROP1 (35).
We predicted 211 targets for ESRRG, of which 76 had corre-

sponding TFBSs, including follicle stimulating hormone receptor
(FSHR), GABA receptor (GABRA1), and NMDAR2B. ESRRG
targeting FSHR may reflect feedback of hormone signaling (es-
trogens influencing FSH release). ESRRG targeting GABRA1
and NMDAR2B indicates a link between estrogen pathways and
GABAand glutamate signaling, whichmight influence puberty, by
modifying the input on GnRH neurons.
PPARG is an important regulator of energy balance. Among

the 124 AWM-predicted targets, 22 presented TFBSs for PPARG.
The presence of PPARGand its 23 targets in commonwith ESRRG
in our network was evidence for theAWMcapturing known biology.
There are demonstrated associations between energy balance and
reproduction (37, 38). If fat deposition traits were excluded from
our analysis, this PPARG and ESRRG link could have beenmissed.
Thus, integrating traits in a systemic approach was advantageous.
Three genes, ARHGAP21, PPP2R2C, and TYRP1, are targets of
ESRRGandPPARGthat present binding sites for both. These three
targets might be components of the known metabolic link between
estrogen-related receptors and PPARG (39).
Finally, the AWM was more efficient for integrating related

traits and analyzing thousands of SNPs than a previous method
described by Kim and Xing in 2009 (16). In that study, the authors
deemed their method unfeasible to apply with >100 SNPs in
a single model. In contrast, the AWM when applied to age of
puberty in cattle analyzed>3,000 SNPs and thousandsmore could
have been included.
In conclusion, the AWM approach was an appropriate method

of analysis for this complex phenotype. When applied to our
dataset, it predicted gene interactions that are consistent with the
known biology of puberty (e.g., ESRRG and FSHR), captured
known regulation binding sites, and provided candidate genes for
cattle puberty (e.g., PROP1). The AWM predicted several inter-
actions for important tumor-related genes and key TFs, indicating
their potential roles in puberty and providing some promising
hypotheses, which can be further investigated. Future research
addressing these hypotheses and its candidate genes might con-
tribute to better understanding of cattle puberty.

Methods
Animals, Traits, and Genotypes. We used data from 866 cows representing 51
sire families from a tropical composite population bred in the tropical
northern regions of Australia that was described elsewhere (5, 9, 40–42). In
these cows, 22 traits were annotated: AGECL (days), presence or absence of
corpus luteum close to the day when bulls were placed in the same paddock
as the heifers (CLJOIN, score 1–0), WTCL (kg), scanned P8 site fat depth at
AGECL (FATCL, mm), PPAI (days), PPAI with respect to weaning time (PW,
score 1–0), live weight (WT, kg), hip height (HH, cm), serum concentration
of insulin-like growth factor I (IGF-I, ng/mL), average daily weight gain
(ADG, kg/d), body condition score (CS, score 1–10), scanned longissimus dorsi
area (SEMA, cm2), scanned P8 site fat depth (SP8, mm) and scanned fat depth
measured between the last 2 ribs (SRIB, mm). The last 8 traits were measured
at two time points, T1 and T2, on average before and after AGECL. A de-
scription of the 22 traits along with summary of descriptive statistics for this
herd is provided in SI Text (Table S4).

The BovineSNP50 Bead Chip (Illumina 2008) (43, 44) was used to genotype
all cows. Family trios and repeat samples were included for quality assur-
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ance. SNPs with auto-calling rates <85% and SNPs with minor allele fre-
quency <0.01 were excluded from later analyses.

LD between all possible SNP pairs was calculated using two metrics: D′ and
R2 (45). SNP effects were calculated via single-trait–single-SNP association
analysis. The additive effect of a SNP on each trait was calculated by re-
gression analysis, using a mixed model (details in SI Text). Solutions to the
model were estimated using ASREML (46).

The AWM. Constructing the AWM starts with the selection of relevant SNPs
from a GWAS to represent genes. The plan of the selection criteria is shown in
Fig. S1. The criteria to select SNPs for the AWM include (i) significance of the
allele substitution effect measured for each SNP across the 22 traits, (ii)
correlations between traits, and (iii) SNP genomic position. Our selection
criteria were developed to favor genes harboring SNPs with significant as-
sociation across related traits. Briefly, a group of SNPs, the top 0.2%, were
selected first because they were associated with ≥10 traits (P < 0.05) re-
gardless of their distance to the nearest gene. Second, we selected SNPs that
were either “close” (<2,500 bp) to or “very far” (≥1.5 Mb) from the nearest
annotated gene (BTAU4.0 assembly) and were either associated (P < 0.05)
with AGECL or any ≥3 traits. Definitions for close or very far SNPs are based
on expectancy of LD, size of promoter region, and likelihood of cis-acting
windows. Cis-acting windows could include SNPs within 100 kb, but are
enriched within 250 bp of transcription end sites (47). Finally, selected SNPs
were used to build the AWM with as many rows as SNPs and as many col-
umns as traits. The rows are indexed as genes for close SNPs or as SNPs
(Illumina code) otherwise. Finally, each {i, j} cell value in the AWM corre-
sponds to the z-score normalized additive effect of the ith SNP on the jth
trait. The AWM approach explores traits correlations columnwise and gene
interactions rowwise.

Columnwise Pearson correlations between AGECL and the other 21 traits
were calculated using the SNP effect values. First, all SNPs available from
genotyping were used for the calculation, and second, the subset of SNPs
selected for the AWM was used. The results of these SNP-based correlations
were compared with the genetic correlations, estimated via pedigree-based
restricted maximum likelihood (REML), established for the same population
(5, 9). These previous genetic correlations (5, 9) and the SNP-based correla-
tions were used to form QTNs for puberty. Rowwise AWM explores the
correlations between SNP effects to predict gene interactions. We studied
the predicted gene interactions using a combination of hierarchical clus-
tering, weighted gene network, and pathway analyses to identify genetic
drivers of puberty.

Visualization of the AWM and hierarchical clustering analyses were per-
formed using PermutMatrix (48). Significant correlations between rows were
identified with the PCIT algorithm (10) and reported as gene–gene or gene–
SNP interactions in a network, visualized in Cytoscape (49). Overrepresented

GO terms were identified using BiNGO (50) and GOrilla (51). Also, pathway
mapping of genes in the network was performed using DAVID (52, 53).

Control Network. A random matrix was built to serve as a control for our
method. To build this control, we randomly shuffled each {i, j} cell value in the
AWM rows, so that the values no longer corresponded with the appro-
priated normalized additive effect of the ith SNP on the jth trait. This ran-
dom matrix was used to predict a control gene network, using the same
methodology as described above. Then, we compared the connectivity dis-
tribution of the control gene network with the AWM-derived network by
analyzing their structure using the Kolmogorov–Smirnov test (SAS 9.1.3).

Regulatory Sequence Analysis. Three TFs were chosen on the basis of the fol-
lowing criteria: available binding site information onGenomatix (http://www.
genomatix.de/), reported functional role in the context of reproduction, and
position in the gene network (i.e., sufficiently separated to ensure maximum
coverage of the entire network). These threewere ESRRG, PPARG, and PROP1.
Three lists of genes were created corresponding to AWM-predicted targets of
the TFs. The promoter regions corresponding to listed genes were retrieved
using the Gene2Promoter module in Genomatix (http://www.genomatix.de/).
Promoter regions were systematically mined for specific TFBSs derived from
the positionweightmatrix correspondingwith the TFs using theMatInspector
module (54). In addition, the target geneswere explored for knownpromoter
models (ModelInspector Module) across mammals including humans. Litera-
ture mining was also carried out using BiblioSphere (55) to obtain previous
evidence for associations between TFs and TFBSs. Providing evidence for the
interaction between the TF and its predicted targets via regulatory sequence
analysis serves as an in silico validation for the TF–target interactions in the
AWM network.

We performed regulatory sequence analysis for the control network,
selecting the same TFs (ESRRG, PPARG, and PROP1) and their partners. The
results of this analysis were compared with AWM results using the two-
proportion z-test, under the null hypothesis of the AWM predicting fewer
validated interactions than the control network.
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