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High-throughput technologies, including gene-expression microar-
rays, hold great promise for the systems-level study of biological
processes. Yet, challenges remain in comparing microarray data
from different sources and extracting information about low-abun-
dance transcripts. We demonstrate that these difficulties arise from
limitations in the modeling of the data. We propose a physically
motivated approach for estimating gene-expression levels from
microarray data, an approach neglected in the microarray litera-
ture. We separately model the noises specific to sample amplifica-
tion, hybridization, and fluorescence detection, combining these
into a parsimonious description of the variability sources in a
microarray experiment.We find that our model produces estimates
of gene expression that are reproducible and unbiased. While the
details of our model are specific to gene-expression microarrays,
we argue that the physically grounded modeling approach we pur-
sue is broadly applicable to other molecular biology technologies.

process modeling ∣ statistical power

One thousand manuscripts are published each year involving
microarray technology.† In spite of the 15-year history of the

field, those manuscripts still describe a wide variety of data ana-
lysis methods, many of them poorly specified. Indeed, criticisms
of the validity and reproducibility of microarray experiments have
dogged the technology since its inception. There are two possible
explanations for these shortcomings: (i) inherent limitations of
the microarray technology that constrain its utility or (ii) model-
ing strategies that are not appropriate. The former is potentially a
fundamental problem that can be overcome only with technolo-
gical advances. This hypothesis has led to candid speculation that
emerging sequencing technologies will quickly replace microar-
rays as the de facto genome-wide expression analysis technique
(1, 2).

An alternative view is that current shortcomings result from
gaps in our understanding of how to model the data generated
in microarray experiments. In order to pursue this point, let us
consider the motivation for the “standard” model (3). The
fluorescence intensity Fi (Fig. 1A) detected at a spot i is surmised
to be the sum of a background term and a term related to the
expression level Ei we want to estimate,

Fi¼Biþf ðEiÞ: [1]

Oddly, the standard model assumes that Bi can be directly
determined from the fluorescence intensity measured in the
nonfeature region surrounding the spot.‡ The dependence on
Ei is assumed to be distorted by multiplicative noise (3). These
assumptions yield

Fi¼Bnf
i þEiAie

νspi ; [2]

where νsp is normally distributed with zero mean, and Ai is a
parameter capturing the effects of hybridization efficiency and
dye-specific and experiment-specific factors.

Because of the difficulty in estimating systematic effects affect-
ing the value of A, microarray experiments are frequently per-
formed with an internal control, the goal being to determine

change of expression Ri between two conditions, 1 and 2, instead
of the expression level for each condition:
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where A0
i ¼ logðA2

i ∕A1
i Þ, R̂i and Êi are the best estimates of Ri and

Ei. Because, according to Eq. 2, Fi and Bi can be directly
measured, the crux of the traditional approach is to estimate A0

i.
In dye-swap experiments, for which the two conditions are

identical, one can develop a number of reasonable expectations
for pðRiÞ and pðRijEiÞ. Assuming no correlations in the values of
A0
i, one expects the average value of Ri to be zero. Moreover,

assuming that Ai is nonnegligible, one expects the standard de-
viation of Ri to decrease with increasing Ei. Unfortunately,
neither of these expectations is typically obeyed by the data
(Fig. 1 B, C, D).

As a result, the field has failed to converge on a single, robust
model. Instead, publications reporting microarray data include a
bevy of variations of this standard model. In many cases, these
models were “rescued” to achieve the aforementioned expected prop-
erties by the use of idiosyncratic nonlinear corrections. Exemplifying
this are the data reanalyzed in this manuscript—the authors of
the studies considered have used different normalization techni-
ques (4, 5).

Here, we argue that background fluorescence intensity cannot
be correctly estimated by Bnf

i . Nonspecific hybridization is the
dominant factor determining Bi. In order to correctly estimate
Bi, we propose a dramatically distinct approach to determining
gene-expression levels from microarray data. Instead of attempt-
ing to surmise a functional expression for Fi, we model each of
the processes that constitute a microarray experiment. Remark-
ably, by propagating the fluctuations one expects in each stage of
the protocol, we arrive at a concise expression relating Ei to mea-
sured quantities in the experiment.

We find that our model is able to capture the properties of
microarray data for thousands of experiments. Moreover, our
model yields reproducible estimates of changes in expression level.

The Physically Grounded Approach
The protocol for two-color cDNA microarray experiments is now
essentially standard (6). The measurement component has three
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main stages, each with its own characteristics. Sample prepara-
tion consists of mRNA extraction, purification, amplification,
and labeling. Hybridization is the process by which differently
labeled targets bind surface-associated probes. Detection is the
excitation and scanning of surface-associated fluorophores. In
the following, we describe and model each of these stages.

Consider a biological sample consisting of Ei copies of
transcript i, with i ¼ 1;…;Ntr. The quantity of RNA derived from
a biological sample is typically insufficient for efficient quantifi-
cation by current experimental methods. Thus, sample amplifica-
tion is necessary. One of two methods is typically employed to
amplify the original messenger RNA: (i) expression in a T7 viral
vector or (ii) polymerase chain reaction. Amplification by T7
vector expression is currently the preferred method because it
results in smaller variability for high expression levels (7); thus,
we consider it here (SI Text).

cDNA vectors are prepared from sample mRNAs by incorpor-
ating the T7 polymerase promoter into reverse transcriptase
primers. Approximately one vector arises from each mRNA.
We assume that transcription of these vectors to RNA is kineti-
cally limited by the rate Rb of binding of T7 polymerase to tran-
scription start sites (8). In our model, we disregard sequence or
length dependent effects on transcription rate (7, 9).

In a well-mixed solution, transcripts of gene i are produced at a
characteristic rate, EiRb. Under experimental conditions, the
number of transcripts present after running the process for a time
t is described by a Poisson process with parameter EiRbt. We
expect the amplification gain to be very high, that is, Rbt ≫ 1.
In this limit, the Poisson distribution of number of transcripts
arising from this process converges to a Gaussian distribution.
This implies that the number ni of copies of cDNA for gene i
available for hybridization is a Gaussian variate with mean and
variance equal to EiRbt.

Consider now competitive hybridization in a solution that is
well-mixed and let pii be the probability of specific hybridization
of target i to feature i. pii may depend on the sequence of gene i
and on experimental conditions such as temperature and buffer
concentration, but typically probe sequences are selected so that
pii is approximately constant. Thus, we assume that pii ¼ psp for
all i and let its fluctuations be incorporated into the noise. We
suggest that the number Sspi of specifically hybridized probes in
the feature follows a binomial distribution with parameter psp.
If nipsp ≫ 1, then the central limit theorem holds, and Sspi is a
Gaussian variate with mean nipsp,

Sspi ¼EiRbtpspð1þεtiÞð1þεhi Þ; [4]

where εti and εhi are Gaussian variates with zero mean.
Similarly, let pji be the nonspecific hybridization efficiency for

gene j to probe i. The number of hybridized probes j in feature i
will then be

Sji¼njpjið1þϵhjiÞ; [5]

where ϵhji is again a Gaussian variate with mean zero. Note that
pji ≪ pii for all j ≠ i. The total contribution of nonspecific hybri-
dization from all targets to the observed signal will then be

Snspi ¼∑
j≠i

Sji¼∑
j≠i

½njpjið1þϵhjiÞ�: [6]

Estimating pji directly for all pairs of transcripts is not feasible in
practice. In order to proceed, we thus use a mean-field approx-
imation. Specifically, we assume that no single gene is responsible
for a significant fraction of all mRNA targets. We further assume
that pji is not dependent strongly on j or i; that is pji ≈ pnsp. Under
these assumptions, Lyapunov’s central limit theorem applies,
yielding

Snspi ¼U 0ð1þεnspi Þ; [7]

where U 0 is the characteristic contribution of nonspecific hybri-
dization and εnspi is a Gaussian variate with zero mean.

The fluorescence generated by the excitation of the spots on
the chip will be amplified in the scanning process. Amplification
using a photomultiplier is characterized by a dye-specific gain G
that is a function, in principle, of dye incorporation rate, dye
properties, laser power, and detector characteristics, yielding a
detected fluorescence

Fi¼ðSnspi þSspi ÞGi

Ym
k¼1

ð1þεdki Þ; [8]

where εdki , the noise associated with stage k of amplification, is
normally distributed with mean zero. We assume that the gain
is constant and does not depend on the intensity of the signal,
or on any other spot property; that is, Gi ¼ G. We also assume
that there is no specific interaction between a dye molecule and
either target or probe sequence, an assumption that we find fails
for some probes (SI Text).

Because the variability for each term in Eq. 8 is the product of
several independent Gaussian variables, the terms will converge
to a log-normal distribution. We can therefore write Eq. 8 as

A

B

C

D

Fig. 1. (A) Schematic of a microarray chip. Two quantities are typically re-
ported for each spot in a two-color microarray experiment: the median fea-
ture fluorescence Fi and the median nonfeature fluorescence Bi . The total
feature intensity is constituted by the sum of intended specific associations
between probe and target (dark gray), as well as any number of nonspecific
interactions (light gray). Because the nonfeature region has no probes at-
tached, it is unreasonable to assume that Bi can provide reliable information
on the nonspecific hybridization occurring in the feature region. (B–D) Single
chip-wide joint probability distributions of R̂0 and log Ê1Ê2 for an A. thaliana
chip (19) (GEO accession no. GSM133484). (B) A plot of R̂ against log Ê1Ê2 is
equivalent to the “MA” plots commonly used to diagnose bias in microarray
data. R̂0 estimates from the statistical model (Eq. 2) depend strongly on Ê,
particularly for small Ê (blue arrow). This bias is absent from data adjusted
using (C) the scatterplot smoothing routine lowess and (D) from estimates
derived from our physically grounded model.
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Fi¼Ueν
nsp
i þEiAe

νspi ; [9]

where A≡ RbtpspG, U ≡U 0G, and the noise terms νspi and νnspi
are normally distributed with mean zero and standard deviations
σsp and σnsp.§ Our physically grounded model thus has four para-
meters that relate Ei to Fi: A, U, σsp, and σnsp.

Although formally similar, Eq. 9 differs significantly from
the standard statistical model typically assumed for observed fea-
ture intensity, Eq. 2. Here, Bi, the nonfeature intensity local to
spot i, is measured from the data. This is in contrast to our inter-
pretation of additive noise in a microarray experiment, which is
dominated by nonspecific hybridization. Because background
fluorescence and nonspecific hybridization cannot be decoupled,
we explicitly model the latter.

Model Validation
We next compare the predictions of Eqs. 2 and 9 for the distribu-
tion of observed feature intensities pðFÞ. To this end, we must
surmise a functional form for the distribution of expression levels
pEðEÞ. We expect pEðEÞ to be strictly decreasing; most genes have
very low expression levels, whereas a few genes have high expres-
sion levels. Following recent reports (10–12), we assume that pðEÞ
exhibits a power law decay, such that

pEðEÞ¼ðα−1ÞðEþ1Þ−α: [10]

We derive pðFÞ for both models and obtain maximum likeli-
hood estimates of the model parameters—including α—by the
method of steepest descent (SI Text). We find that our model pre-
dicts the empirical distributions extraordinarily well, whereas the
statistical model does not (Figs. 2 A and B). Note that because
Eq. 2 includes two observed quantities (Fi and Bi), the distribu-
tion in Fig. 2B is expressed as a function of ðFi − BiÞ. For the
Arabidopsis thaliana chips we considered, our results suggest
that pEðEÞ follows a power law decay with α ≈ 1.7, consistent with
previous reports (12).

To summarize the abilities of the standard statistical model and
the physically grounded model to reproduce the distributions of
observed fluorescences, we fit parameters for both models to 894
Agilent gene-expression chips from the compendium of arrays in
the National Center for Biotechnology Information Gene Ex-
pression Omnibus (GEO) for which raw data has been deposited.
For each of these chips, we computed the error, em of the fit to the
model,

em¼
Z

∞

0

dxjpeðxÞ−pmðxÞj; [11]

where pe and pm are the empirical and model-derived probability
density functions, respectively. For 91% of the chips, our model
results in a better description of the distribution of fluorescence
intensities (Fig. 3A).

Intensity-Dependent Dye Bias.Next, we consider a metric of relative
expression change; see Eq. 3. In the special case that E1

i ¼ E2
i for

all i—as would occur in a dye-swap experiment—one expects the
distribution of Ri to be symmetric about its mean, zero. In this
special case, because there is no expression change, we denote
the observed Ri ¼ R0 to indicate the absence of an underlying
signal. We utilize data from experiments employing a dye-swap
design to investigate the presence of bias in the estimation of
Ei. These experiments employ a technical replicate of each sam-
ple, alternating the labeling scheme on the second replicate. This
procedure yields a pair of realizations fF1

i g and fF2
i g that arise

from a single set of expression levels.

A common assumption in the literature is that the gain of a
dye-detector system can depend on the signal intensity in a pro-
found way, giving rise to intensity-dependent dye bias (Fig. 1B).
Because no theoretical expression exists to describe the depen-
dence of this bias on Fi, investigators use nonlinear regression
techniques such as the scatterplot smoothing algorithm lowess
to correct affected data (Fig. 1C and SI Text) (13, 14).

We propose that the prevalence of this bias is due in large
part to an incorrect adjustment for the additive noise in the
experiment, which, after data are logarithmically transformed,
manifests itself nonlinearly. We investigated the existence of
intensity-dependent dye bias in estimates from our model and
found that R0 estimates using our model show only a very weak
dependence on E (Fig. 1D).

To more completely address the extent of dye bias in estimates
generated from these models, we quantified its presence in the
894 microarrays described above. While these chips are not typi-
cally performed in dye-swap arrangement, the extreme heteroge-
neity of the sample origins motivates the assumption that R0 is
typically zero centered and does not depend on E.

We define the extent of bias of a model, bm,

bm¼
Z

∞

−∞
dxjhR̂mi100j; [12]

where hR̂mi100 is the 100-point moving average of R̂ for model m.
We found that this bias is greater for the estimates using the standard
statistical model in 78.5% of the chips we considered (Fig. 3B).

Not surprisingly, the lowess-corrected statistical model de-
creases the dependence of R̂0 on E, compared to the standard
statistical model. However, our model yields estimates of R̂0 that
are no more biased than those observed with the lowess-corrected
model (Fig. 3C).

Reproducibility. We next assess intra- and interlab experimental
reproducibility. We consider microarray experiments performed
at three labs with identical reference samples from two different
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Fig. 2. Model validation. (A) Standard statistical model, Eq. 2. The maximum
likelihood parameter estimate (red) fails to reproduce the distribution of ob-
served feature intensities (black). (B) Physically grounded model, Eq. 9. The
best fit (red) agrees extraordinarily well with the empirical data (A and B In-
sets). The physically grounded model strongly suggests that gene-expression
levels decay according to a power law with an exponent of α ≈ 1.7.

§For now, we assume that there are no features with quality problems (see SI Text).
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sources (Universal Human Reference; Human Brain Reference)
(4). Each lab performed five replicates of four protocols, includ-
ing either competitive hybridization of the same sample or of
different samples. We measured the correlation between the es-
timated expression level changes across protocols, replicates, and
labs for our model, the standard statistical model, and the statis-
tical model used in ref. 4. For identical samples, we expect cor-
relations across microarray experiments to be close to zero. We
find an average correlation of 0.10 using our model’s estimates.

For distinct samples we expect a correlation close to 1 and find a
mean correlation of 0.79 for our model’s estimates (Fig. 4).

Model Implications
Eq. 2 and similar models supply no direct means of determining
the significance of gene-expression changes and therefore often
rely on arbitrary thresholds. The intrinsic difficulty of quantita-
tively establishing significance of microarray results is highlighted
in Fig. 1D—the scale of fluctuations varies nonlinearly with ex-
pression level. Our model enables us to quantify in a natural way
the probability of rejecting the null hypothesis that a gene’s ex-
pression level is unchanged between samples. To identify genes
that are expressed differentially between two samples, we consid-
er a null model for Ri, which assumes that the expression in the
two samples is identical. Specifically, given two fluorescence le-
vels F1

i and F2
i , the probability density that the corresponding ex-

pression levels E1
i and E2

i are identical is

pðR0jF1
i ;F

2
i Þ¼

Z
∞

0

pðEjF1
i ÞpðEjF2

i ÞdE: [13]

We denote the expression ratios estimated from the physically
grounded and statistical models as R0

ph and R0
st, respectively.

One can determine the expected distribution of R0 values for
any expression level if a gene’s expression level has not changed
(SI Text). This distribution will depend on the parameter esti-
mates for the model, but Fig. 5 shows that the confidence inter-
vals for lower expression levels are larger than the corresponding
intervals for more highly expressed genes. This is expected, be-
cause nonspecific hybridization constitutes a larger fraction of
Si (and consequently of Fi) for low Ei, resulting in Ri estimates
with larger uncertainty.

Enrichment of Experimental Power
To further illustrate the limitations of the current approaches and
the significance of our approach, we next applied our methods to
a dataset reported in ref. 5. In this study, three cohorts of animals
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Fig. 3. (A) Evaluation of the quality of fit between the two models and
hundreds of archival microarrays reveals that the physically grounded model
better represents the distribution of Fi than does the standard statistical
model in 91% of the chips. The mean ratio of statistical model error to phy-
sically grounded model error is 2.73. (B) We quantified the extent of inten-
sity-dependent dye bias in a set of 894 archived experiments. In the vast
majority of these cases (78%), our physically grounded model decreased
the extent of the bias, compared to the standard statistical model. Note that
we are not correcting for bias due to detector saturation at high values of E.
The mean ratio of bias between the statistical model and our model is 2.42.
(C) Higher moments of pðR̂0Þ—including skewness—are near zero and
equivalent between the lowess-corrected statistical model and our physically
grounded model, demonstrating that physically grounded modeling elimi-
nates the need for nonlinear intensity-dependent bias corrections.

A B

Fig. 4. Inter- and intralab experimental reproducibility. (A) Expression
change estimates derived from our physically grounded model are consistent
across intralab, interlab, and dye-swap replicates. To test this, we used pub-
lished quality-control data following the design scheme described in ref. 4.
Each of these four experiments was replicated five times, in three different
labs (see SI Text). The experimental design included a number of technical
replicates in which the same sample is labeled with different agents, such
that Ri ¼ R0. Because they are measurements of the absence of expression
change, these dye-swap experiments are useful for assessing the specificity
of the data and the model used to extract them. We estimated expression
changes for four models and computed the correlation over all pairs of
dye-swap chips (light gray, Fig. S3). (B) The mean correlation between Ri pre-
dicted from our physically grounded model is 0.10, lower than those derived
from the statistical (Eq. 2) model, the lowess-corrected statistical model, and
the MicroArray Quality Control (MAQC)-reported expression changes. The
mean correlation of Ri estimates derived from chips comparing distinct com-
mercially derived samples (Ri ≠ R0) was comparable for all models, but the
signal-to-noise ratio (S/N) for the physically grounded model is substantially
higher than for the othermodels. The combination of these two observations
leads us to conclude that the statistical power of our model substantially sur-
passes existing methodologies.
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were fed different diets: standard lab diet (SD), high-calorie,
high-fat diet (HC), and the high-fat diet supplemented with
the small molecule resveratrol (HCR).

Resveratrol has been shown to extend life span in several
model organisms (15, 16). Baur et al. (5) suggested the existence

of a molecular basis for the phenotypic similarity they observe
between SD and HCR mice. As such, they performed microarray
experiments to test the hypothesis that HCR animals are tran-
scriptionally similar to SD animals.

RNA from the livers of animals from each feeding protocol
were hybridized against a pool of RNA from the SD mice. From
these chips we estimated R̂i (again, filtering for poor-quality spots
and prevalent sequence-dependent dye bias, SI Text) using the
statistical model, our physically grounded model, a lowess-
corrected statistical model, and the z-score normalization used
by Baur et al. (5, 17) (see SI Text). We computed the correlation
between R̂i for each pair of chips for each model to understand
the degree of specificity and sensitivity that each imparts and to
test the hypothesis that HCR animals are transcriptionally similar
to SD animals, whereas HC animals are distinct from both.

If there is a robust difference between expression changes
between two samples, one expects the expression change to be
consistent—a high correlation—across replicates. If there is no
difference, one expects weak correlation (Fig. 6A). The similarity
between the estimates derived from the statistical model for the
HCR animals are statistically indistinguishable from the similar-
ity between the control animals (Fig. 6B). The authors of ref. 5
had to use a higher-level pathway analysis (18) to distinguish
between the HCR and HC mice. In contrast, estimates derived
from our model strongly support the hypothesis that HCR
animals are transcriptionally similar to SD animals (Fig. 6B).
Our analysis indicates that the difference is clear at the level
of correlation of individual gene-expression changes, an effect

Fig. 5. Null model for expression change. By deriving the distribution
pðR0jEÞ, we can establish a confidence interval such that pðRc ∈ R0jE1 ¼ E2 ¼
EÞ ¼ 1 − c (Fig. S5). The likelihood of a particular R falling outside this con-
fidence interval is small if the expression is not changed. This allows us to
quantitatively identify genes with statistically significant expression changes.
Genes with low expression have larger confidence intervals because nonspe-
cific binding noise is more important to the estimates for these genes than
for highly expressed genes. The dashed line denotes the “twofold change”
traditionally used to determine significance in microarray experiments. The
appropriate value of c should be dictated by an appropriate false discovery
rate controlling procedure (20–22).

A

C

B

Fig. 6. Enrichment of gene lists. (A) To understand the practical implications of our model, we computed correlation between pairs of estimates of different
feeding protocols. These pairs of chips can be divided into four qualitatively different sets. (B) Correlations between expression change estimates calculated
using the standard model (white) are high between replicates, even in SD experiments (5), resulting in weak statistical power (Fig. S7). This makes it difficult to
establish that the difference between HCR and SD feeding regimens is small relative to the difference between the HC and SD regimens. In contrast, correla-
tions between expression changes calculated using our physically grounded model (gray) have weak correlations between SD replicates, strong correlations
between HC replicates, and weak correlations between HCR replicates. This conclusively indicates that the differences between HCR and SD transcriptomes are
on the same order of technical noise, while there is a robust difference between HC and SD transcriptomes. (C) Consistent sets of genes up- and down-regulated
genes (which we have combined for simplicity) for HC (red) and HCR (blue) chips. As expected, HCR sets derived from our physically grounded model have very
little overlap because few genes have changed expression. Likewise, very few genes are common to both the HC and HCR sets, indicating that they are distinct
expression patterns. S/Ns are calculated as the ratio of the mean correlation of the HC chips to the SD chips.
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that is unobservable using other models. This leads us to conclude
that our model imparts greater statistical power.

Having established the statistical legitimacy of our model, we
investigated what practical implications it has for identifying con-
sistent sets of up- and down-regulated transcripts. For our model
and the three others, we determined the 100 genes most likely to
be up- and down-regulated for each chip. For the HC and HCR
chips, we aggregated genes that were represented in at least three
of four sets (Fig. 6C). Given the hypothesis that HCR animals
are similar to control animals, we expect that there is much less
consistency between the HCR sets (i.e., small circles). Also, if the
HCR and HC animals are distinct, they should have very few
genes common across conditions (i.e., small overlap of the cir-
cles). This is the behavior we observe in the sets derived from
our model—there is very little consistency between the HCR sets,
but the HC sets are robust—but not for the other models.

Discussion
We demonstrate here that a physically grounded approach suc-
cessfully models the outcome of gene-expression microarray ex-
periments. Whereas linear models assuming normally distributed
error terms may be appropriate models for many experiments in
biology, they fail in many high-throughput applications due to the
multiplicative nature of propagating fluctuations. For these ex-
periments, consideration of the physical processes responsible
for the outcome is essential. Our model, although constructed
with two-color expression microarrays in mind, is generalizable
to other systems. As chip-based assays and other high-throughput
technologies continue to evolve, it will become increasingly im-
portant to establish physically grounded models for the resulting
data. Although the specifics of a particular protocol may vary, a
physically grounded model can be derived to understand any pro-
cedure that is composed of serial, fundamentally understood

stages. For these experiments, statistical models are often the first
approach because physically grounded models may be perceived
as difficult to develop. In many cases, the benefits of the physi-
cally grounded modeling approach are appreciable and may
outweigh increased developmental difficulty.

We have found that this approach produces a model for micro-
array data that reproduces macroscopic properties of the chip
and results in estimates of expression changes that are nearly
free of intensity-dependent dye bias, an artifact that has been
traditionally rectified using ad hoc approaches. As a result, the
estimates we obtain of the expression levels are systematically re-
producible within and across laboratories. In addition, our model
allows us to assign confidence to expression changes, even in ex-
periments devoid of technical and biological replicates.

Our study provides yet another cautionary tale of the ad hoc
adjustment of models of complex data. The standard statistical
model of microarray data has many laudable features: It is simple,
it has easily understood parameters, and it is readily testable.
Indeed, the model’s inability to capture even basic properties
of the data (Figs. 1, 2, and 3) would strongly suggest the need
to reject it. Surprisingly, instead of rejecting the model, the course
followed by the field has been its “rescuing” with uncontrolled
and unjustified corrections. Our study shows that these correc-
tions are unnecessary.
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