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Abstract

Organophosphorus pesticides (OPs) were originally designed to affect the nervous system by inhibiting the enzyme
acetylcholinesterase, an important regulator of the neurotransmitter acetylcholine. Over the past years evidence is
mounting that these compounds affect many other processes. Little is known, however, about gene expression responses
against OPs in the nematode Caenorhabditis elegans. This is surprising because C. elegans is extensively used as a model
species in toxicity studies. To address this question we performed a microarray study in C. elegans which was exposed for
72 hrs to two widely used Ops, chlorpyrifos and diazinon, and a low dose mixture of these two compounds. Our analysis
revealed transcriptional responses related to detoxification, stress, innate immunity, and transport and metabolism of lipids
in all treatments. We found that for both compounds as well as in the mixture, these processes were regulated by different
gene transcripts. Our results illustrate intense, and unexpected crosstalk between gene pathways in response to chlorpyrifos
and diazinon in C. elegans.
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Introduction

Organophosphorus pesticides (OPs) are widely used to control

agricultural and household pests, and consequently these com-

pounds have been well studied for their impact on gene function

and physiology. Initially, OPs were designed to affect the nervous

system of pest organisms by inhibiting acetylcholinesterase

(AChE). This leads to a cholinergic hyper stimulation as a

common mode of action [1]. However, mounting evidence

suggests that this is not the only process that is being affected.

For instance, mice lacking AChE are hypersensitive to OPs toxic

effects, indicating that OPs inhibit targets other than AChE [2]. In

addition, neurotransmitter receptors, proteases and several other

enzymes interact with OPs to modify the consequences of AChE

inhibition [3]. Moreover, many OPs alter immune functions in

mammals by oxidative damage, metabolism modifications and

stress-related immunesupression [4].

Of the hundreds of OPs, chlorpyrifos (CPF) and diazinon (DZN)

are intensively used as insecticides and acaricides. CPF is the most

thoroughly studied OP and, like DZN and most OPs, is

desulfurated by cytochrome P450 enzymes (CYPs). CPF and

DZN share detoxification pathways and molecular targets as they

are structurally similar [5]. DZN, however, induces a different

inhibition ratio of AChE [6]. Some studies also investigated the

response of AChE to a combination of CPF and DZN [7,8]. Their

results suggest a greater inhibition of cholinesterase by CPF than

by DZN and a greater influence of CPF in the combination.

Likewise, kinetic models of humans and rats exposed to CPF and

DZN indicate an interaction between both compounds at the

enzymatic level. In particular, CPF and DZN seem to compete for

common CYPs [9].

Despite our knowledge about OPs responses in different

organisms, little is known about genome-wide gene expression

responses of OPs in the nematode Caenorhabditis elegans. This is

surprising because C. elegans has been well established as a model

for understanding human toxicology, especially for studying

neurotoxic compounds like OPs [10]. The effects of CPF on C.

elegans have also been investigated in contrast to other chemical

effects [11]. These studies showed that neurotoxic compounds

affect behaviour and movement in C. elegans. Additionally, gene

transcription changes by CPF were investigated by Roh & Choi

(2008) [12] who found that CPF regulates stress related genes. Still,

a comparative analysis of the genome-wide transcriptional

responses of C. elegans to DZN and CPF has not been conducted.

Here we measured genome wide gene transcription profiles of

C. elegans exposed to CPF and DZN and to a low dose mixture

(LDM) of both compounds. Gene Ontology (GO) and domain

enrichment analysis illustrates the complexity with novel and

known pathways associated to OPs response.

Materials and Methods

C. elegans culturing
The Bristol N2 strain was cultured on standard nematode

growth medium (NGM) with E. coli OP50 as food source.

Nematodes were bleached (0.5 M NaOH, 1% hypochlorite) to
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collect eggs which were inoculated in 9 cm dishes for toxicity

experiments. After 72 hours, nematodes were collected in the L3-

L4 stage, frozen in liquid nitrogen and kept at 280C until the

RNA extraction procedure.

Toxicant exposures
We analyzed gene expression in response to the toxicants at

concentrations below the EC50 values for different fitness traits as

reproduction (CPF: EC50 = 3.5 mg/L [13] DZN: EC50 = 30 mg/

L [14]) or growth (CPF: EC50 = 14 mg/L [15]), Nematodes were

exposed to 0.5 mg/L of CPF (CyrenH/NufosH, Cheminova A/S

[Lemvig, Denmark]) and 1 mg/l of DZN (Supelco [Bellefonte,

Pennsylvania 16823, USA]). The low dose mixture (LDM) of the

two OPs contained the sum of both single concentrations (DZN

[1 mg/l] and CPF [0.5 mg/l]).

The experiment started with eggs placed on NGM dishes with

the OP-treatments and E. coli OP50 as food source. After

72 hours, worms from 4 petri dishes were collected as one sample.

A total of 6 replicates per treatment were collected (24 petri

dishes), and immediately frozen in liquid nitrogen until RNA

extraction. All the OPs were dissolved in acetone and added to

10 ml of NGM poured in each 9 cm petri dish used for the

culture. Nematodes without treatments were grown simultaneous-

ly with the same concentrations of acetone in a control culture.

Microarray experiments
RNA from nematodes was extracted following the Trizol

method, and the RNeasy Micro kit (Qiagen, Valencia, CA, USA)

was used to clean up the samples. Labeled cDNA was produced

with the kit Array 900 HS from Genisphere and Superscript II

from Invitrogen. The 60-mers arrays were purchased from

Washington University (http://genomeold.wustl.edu) and they

were hybridized following the Genisphere Array 900 HS protocol

with modifications. Extracts from CPF, DZN and the CPF/DZN

combination exposures were hybridized with the control samples

in each array. Six independent biological replicates were used per

treatment to produce six replicate microarrays per experiment in a

dye-swap design.

Microarray Analysis
A Perking & Elmer scanner was used to extract the raw

intensities from the microarrays. Normalization within arrays and

normalization between arrays of raw intensities was done using

loess method [16] and aquantile method [17], respectively. Both

methods are included in the Limma package [18] from R software

(www.r-project.org/). The Rank Product package [19] was used to

identify the differentially expressed genes between controls and

treatment in each experiment. Briefly, genes were ranked based on

up- or downregulation by the treatment in each experiment.

Then, for each gene a combined probability was calculated as a

rank product (RP). The RP values were used to rank the genes

based on how likely it was to observe them by chance at that

particular position on the list of differentially expressed genes. The

RP can be interpreted as a p-value. To determine significance

levels, the RP method uses a permutation-based estimation

procedure to transform the p-value into an e-value that addresses

the multiple testing problem derived from testing many genes

simultaneously. Genes with a percentage of false-positives (PFP)

,0.05 were considered differentially expressed between treat-

ments and control in each experiment.This method has the

advantage to identify genes with a response to the toxicants even

when the absolute effect of the response was low. Because we used

sub-lethal concentrations of the toxicants, methods that use

thresholds based on absolute fold change would not identify small

changes in gene expression. Moreover, RP has proved to be a

robust method for comparing microarray data from different

sources and experiments [20].

Gene Ontology (GO) data and functional domain data were

extracted from Wormbase release WB195 using the R package

BioMart [21]. GO terms and domains with less than 4 genes were

discarded. Over-represented groups of GO terms and functional

domains were identified using a hypergeometric test, with a

threshold of p-value,0.01. The hypergeometric test compared a

group of 396 GO terms, with 16,947 annotated genes, with the

GO terms associated with the significantly regulated genes in each

treatment (551,245 and 233 for CPF, DZN and the LDM). For

functional domains analysis, 1003 InterPro and Pfam domain

terms were used, with 8682 annotated genes.

The same hypergeometric test was used to determine significant

regulation of the different pathways analyzed. The lists of

regulated genes, in this case, were extracted from the original

publications. Groups sizes were 541 genes for the daf-16 pathway,

255 for the etl-2 pathway, 305 for the mdt-5 pathway, 320 for the

dbl-1 pathway, 143 for the pmk-1 pathway, and 290 genes for Cd

responsive genes. Annotated genes were all the unique genes on

the microarray, 18893.

Microarray data have been deposited in Gene Expression

Omnibus (www.ncbi.nlm.nih.gov/geo/), accession number

GSE16719.

Results and Discussion

Effects of CPF and DZN on transcript levels in C. elegans
We analyzed global gene transcription profiles of C. elegans

treated with CPF or DZN. These profiles were used to reveal

transcriptional responses of each OP. Compared to control worms,

551 and 245 genes were significantly regulated in CPF and DZN

treated worms, respectively. Of these genes, 126 were regulated by

either compound (Figure 1 and Table S1).

To gain insight into the biological processes associated with the

regulated genes, we determined which GO annotation terms were

over-represented. In both treatments, significantly enriched GO

terms (p,0.01, hypergeometric test) were related with detoxifica-

tion (monooxygenase activity), metabolic process, and transport of

lipids (Figure 2, Table 1 and Table S2). To add meaningful

information to the results from the GO term enrichment we

Figure 1. Transcriptional response to CPF, DZN and combina-
tion. Venn diagram showing significantly regulated genes by CPF (cyan
circle), DZN (orange circle), a combination of both (CPF + DZN, blue
circle) and their overlap.
doi:10.1371/journal.pone.0012145.g001

OPs Profiling in C. elegans
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extended our investigation by using a similar analysis with protein

domains associated to the regulated genes as categories (Figure 3

and Table S2). The significantly overrepresented groups (p,0.01,

hypergeometric test) also included domains related to detoxifica-

tion, stress-response, and transport of fatty acids. In addition, we

also found significantly enriched domains associated with other

metabolic pathways and immune response.

Detoxification of CPF and DZN
Enzymes and functional domains associated with detoxification

in C. elegans are mainly cytochrome P450 (CYP) and short-chain

dehydrogenase (SDR) in phase I of the xenobiotic metabolism,

and UDP-glucuronosil/transferase (UGT) and glutathione S

transferase (GST) in phase II [22]. Their implication in the

detoxification of CPF and DZN has been well characterized in

Figure 2. Differentially expressed genes within enriched GO terms in CPF, DZN and combination. Percentage of genes within each GO
terms significantly regulated in each treatment: CPF (cyan circle), DZN (orange circle) and a combination of both (blue circle). Only significantly
enriched GO terms for all the treatments are shown (p-value,0.01 using hypergeometric test). Full list of GO terms can be found in Table S2.
doi:10.1371/journal.pone.0012145.g002

Table 1. Major Gene Ontology (GO) terms represented in the different treatments.

Definition GO terms Genes in CPF
Genes in
DZN

Genes in
mixture

Common genes in
all three treatments

catalytic activity GO:0003824 22 13 12 2

monooxygenase activity GO:0004497 13 13 12 6

lipid transporter activity GO:0005319 5 6 6 5

binding GO:0005488 32 15 19 4

iron ion binding GO:0005506 18 13 12 6

lipid transport GO:0006869 6 6 7 5

metabolic process GO:0008152 36 23 26 8

Determination of adult life span GO:0008340 17 10 5 3

electron carrier activity GO:0009055 19 16 14 6

oxidoreductase activity GO:0016491 17 7 8 1

transferase activity, transferring hexosyl groups GO:0016758 13 9 10 6

Heme binding GO:0020037 17 13 12 6

A summary of common significant (p-value,0.01, hypergeometric test) GO terms in each treatments is shown. The final column show the number of common genes
within a GO term in all the three treatments. Only GO terms significant in all the three treatments are shown. A complete list with all the GO terms and its correspondent
p-values can be found in Table S1.
doi:10.1371/journal.pone.0012145.t001

OPs Profiling in C. elegans
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different organisms [7,23]. In our experiment, 19 genes that code

for domains related to phase I responded to the CPF treatment,

whereas 14 genes with these domains responded to the DZN

treatment. Of those genes, 10 were shared between CPF and DZN

treatment, of which nine were CYPs. Five of those shared CYPs

belong to the cyp-35 subfamily, which has previously been

identified as strongly inducible by a range of xenobiotics in C.

elegans [24]. In addition, only one gene (F25D1.5) coding for an

SDR domain was regulated in both treatments.

Also genes coding for proteins with domains involved in phase

II of detoxification were affected by CPF (21) and DZN (14). From

those genes, 8 were affected by both treatments. One of these

common genes was cdr-1 (F35E8.1), a member of the cadmium

responsive genes family. Two other genes from this family were

affected only by CPF, cdr-4 (K01D12.11) and cdr-6 (K01D12.12),

and cdr-5 (K01D12.14) only by DZN. Whereas cadmium modifies

the expression levels of cdr-4 and cdr-1, the level of expression of

cdr-5 and cdr-6 are impervious to this metal’s presence [25].

Moreover, other stressors are capable of modulating cdr-4

expression, but until now, cdr-1 transcription has only been

induced by cadmium.

Role of the daf-16 pathway in response to OPs
Another gene involved in phase II of detoxification and shared

between treatments was gst-10 (Y45G12C.2). This gene acts

downstream of daf-16 (R13H8.1), a FOXO class transcription

factor involved in the insulin-like growth factor signalling in C.

elegans [26]. Detoxification genes are known to constitute a big

group among the identified up-regulated genes by daf-16 [26,27].

Other genes acting downstream daf-16 have also been associated

with toxic stress response. We found from those groups

metallothioneins (mtl) and vitellogenins (vit) to be affected by

CPF or DZN. DZN decreased the transcript levels of mtl-2

(T08G5.10), while CPF did not regulate any of the two mtl genes

present in C. elegans. Furthermore, vitellogenin genes, lipid-

binding proteins involved in lipid mobilization, were down-

regulated in both treatments. CPF modified the expression of 5

out of 6 members of the vit gene family (vit-1 to vit-3, vit-5, and

vit-6) while DZN regulated all 6 vit genes. Furthermore, both OPs

regulated collagen genes (34 by CPF, 16 by DZN) and major

sperm proteins type genes (33 by CPF, 3 by DZN) acting

downstream of daf-16. Many of these, have been associated with

stress responses, although their specific connection to these

responses remains unresolved [28,29]. The overlap in genes

affected by CPF and/or DZN and the daf-16 pathway suggest that

this pathway is a primary response pathway following exposure to

OPs.

OPs affect innate immunity genes
The insulin-like signalling pathway regulated by daf-16 is known

to induce the immune response as part of a general stress response

[30]. On the other hand, Lewis et al. (2009) [31] showed that OPs

regulate daf-16 in C. elegans as a key modulator of physiological

responses other than stress, including innate immune response.

Therefore, it is not surprising to find that lys-7 (C02A12.4), a gene

coding for a well defined antimicrobial lysozyme, was regulated by

Figure 3. Differentially expressed genes within enriched domains in CPF, DZN and combination. Major functional groups represented in
all the treatments: CPF (cyan circle), DZN (orange circle) and a combination of both (blue circle). The number of genes that show a functional domain
are shown in each case, indicating the common regulated genes. Only functional domains common and significant (p-value,0.01, hypergeometric
test) within the three treatments are shown. Functional domain categories were extracted from defined proteins domains in Wormbase release 190
using BioMart. Domains description: IPR001128 = Cytochrome P450; IPR001747 = Lipid transport protein, N-terminal; IPR001846 = von Willebrand
factor, type D; IPR002213 = UDP-glucuronosyl/UDP-glucosyltransferase; IPR003366 = CUB-like region.
doi:10.1371/journal.pone.0012145.g003
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both toxicants. This gene is presumed to promote resistance to

infection [32]. Interestingly, while lys-7 is up-regulated under both

OP treatments and suggests an immune response, spp-1 (T07C4.4)

was down-regulated by CPF, but not by DZN. This saposin is also

a well known pathogen responsive gene. However, suppression of

spp-1 during Pseudomonas aeruginosa infection seems to be under

regulation of a different pathway than daf-16 [33]. Therefore,

other gene pathways may participate in parallel to daf-16 insulin-

like pathway to promote stress and infection responses in C.

elegans as a result of OPs exposure.

To further investigate an innate immunity response to OPs, we

compared the regulated genes in our experiments with genes

associated with immune response and stress in C. elegans. An

indication that different genes are involved in stress and infection

response was found by Shapira, et al. 2006 [34]. The authors

compared genes regulated in response to P. aeruginosa with those

affected by cadmium. They reported several overlapping genes

among these two responses, but they concluded that a reaction to

infection is largely distinct from stress response. Based on this, we

considered that an innate immune reaction signature may be

distinguishable from OP stress response in C. elegans. Subse-

quently, we also compared our set of genes with the same set of

cadmium responsive genes and pathogens responsive genes

Shapira et al. used (Table 2). We found more genes overlapping

between the OPs affected genes and the cadmium responsive

genes. The similarities between genes modulated by OPs and by

cadmium suggest the implication of a common response

mechanism of gene expression responses to toxic compounds.

Nevertheless, the larger number of genes affected by OPs as well as

P. aeruginosa infection supports the idea of an innate immune

response to OPs. For example, a CUB-like domain (also known as

DUF141) containing gene (F55G11.2) is induced during infection

but repressed under cadmium exposure. This gene was up-

regulated in both OP treatments. Another gene (F08G5.6) up-

regulated in all OP treatments is strongly induced by infection but

not by cadmium.

The same study from Shapira and colleagues identified ELT-2,

a GATA transcription factor, as key regulator for transcriptional

responses to infection. ELT-2 together with SKN-1, also a

transcription factor, have been proposed as complementary

regulators of spp-1 during infection [33]. Since spp-1 is also

regulated by the daf-16 pathway, genes acting downstream of elt-2

and skn-1 may act in parallel to induce a combined stress-immune

response to CPF and DZN (Figure 4). In that sense, SKN-1 is

known to mediate an expression response of genes involved in

phase II of detoxification. To induce these genes, SKN-1 is

phosphorylated through the PMK-1 p38 mitogen-activated

protein kinase pathway (p38 MAPK) [35]. Genes regulated by

pmk-1 are essential for immune and stress responses in C. elegans.

These genes code for antimicrobials proteins with CUB-like

domains, C-type lectins domains, ShK domains, and DUF274

domains [36]. Our domain enrichment analysis showed that OPs

regulated genes involved in phase II of detoxification. It also

showed an overrepresentation of domains associated to innate

immune response through the pmk-1/skn-1 pathway (Table S2).

Therefore, we compared our data sets with the genes downstream

pmk-1 identified by Troemel, et al. (2006) [36] (Table 2). We

found significant overlapping between genes belonging to this

pathway and the genes that were regulated in each treatment (13

genes, p-value,0.01) for CPF response, but not for DZN (5 genes,

p-value = 0.012). This strengthens the implication of this pathway

in response to CPF and indicates differences in immunomodula-

tion between CPF and DZN. Those differences have been already

reported in in vitro studies with human cells, where CPF showed a

stronger effect in cell viability and some immune parameters [37].

Altogether, CPF and DZN modified innate immunity related

genes in C. elegans in a different manner and as a part of complex

stress response.

Transcriptional effects of a the low dose mixture (LDM)
In the LDM, 233 genes were significantly regulated (Table S1),

of which 64 were affected by all, the combination and the both

single compound treatments (Figure 1). More genes (89) were

affected by the LDM only. The GO terms enrichment analysis

(Figure 2, Table 1 and Table S2) showed a significant modulation

of detoxification pathways, stress response, and transport and

metabolism of lipids, which is highly similar to the single

compound treatments. Moreover, the domain enrichment analysis

identified differentially expressed genes that code for CYP, SDR,

GST, UDP, C-type lectin, and CUB-like domains (Figure 3 and

Table S2).

Regulation of CYPs genes is required for detoxification of OPs

in the single and combined treatments. Our findings showed that

the OP combination regulated 12 CYPs (IPR001128), 6 of which

were also affected by CPF and DZN in single treatments. On the

other hand, 2 CYPs were regulated only in the combined

Table 2. Pathways involved in OPs response.

Pathway/
mechanism

num.
genes CPF DZN CPF + DZN Reference

Overlap.
genes p-value

Overlap.
genes p-value

Overlap.
genes p-value

DAF-16 541 47 1.679e-10 36 2.920e-16 29 3.242e-11 [26]

ELT-2 255 30 1.779e-10 18 1.723e-09 21 3.562e-12 [34]

MDT-15 305 57 1.346e-28 29 1.319e-17 29 8.589e-18 [41]

DBL-1/SMA-9 320 31 1.224e-08 15 7.045e-06 22 2.829e-11 [40]

PMK-1 143 13 0.00019 5 0.01267 5 0.01190 [36]

Cd 290 44 9.917e-19 44 8.403e-35 40 2.447e-30 [28]

Pathway/mechanism investigated were: genes downstream daf-16 (DAF-16), genes regulated by the GATA transcription factor ELT-2 (ELT-2), genes regulated by the
Mediator subunit MDT-15 (MDT-15), genes downstream pmk-1 (PMK-1) and cadmium responsive genes (Cd). Number of genes associated with each pathway or
mechanism are shown. Overlapping genes are the number of genes belonging to a pathway that are regulated in each treatment. P-values were calculated using
hypergeometric test.
doi:10.1371/journal.pone.0012145.t002
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treatment. Differences in the regulated CYPs were expected,

because OPs seem to compete for binding sites of CYPs [9].

Moreover, in vitro analysis of CYPs metabolism of CPF and DZN

indicates that CPF inhibits the metabolism of DZN to IMHP (the

inactive pyrimidol derived from DZN), with no effect of DZN over

CPF metabolism. This inhibition seems to promote oxon synthesis

from DZN, and therefore, increases the total levels of oxon in the

organism after a treatment of more than one compound.

Moreover, the toxicity of OPs is determined by a balance between

bioactivation (production of oxon metabolite) and detoxification

(inactivation of OPs and its intermediate oxon) [5]. Therefore,

higher levels of DZN bioactivation, due to modification of this

balance, may be a reason for a greater-than-additive inhibition of

cholinesterase enzymes in mixtures of OPs [14,38]. At the

transcriptional level however, the number of CYPs regulated by

the combined treatment do not suggest a higher bioactivation.

Even though the combined treatment contained a higher

concentration of toxicants, a similar number of genes involved in

detoxification was regulated in the combined and the single

treatments. These results were not contradictory to the previous

studies, since a direct comparison between transcriptional and

physiological studies is difficult. Nevertheless, our results indicated

that dissimilar genes were involved in the regulation of

detoxification of the different OPs treatments and may explain

the differences between the LDM and the single treatments.

Other processes were modulated by all treatments besides

detoxification, these include: stress, fat metabolism and innate

immunity. The overlap between the analyzed pathways for the

single treatments and the regulated genes in the combinations was

significant (Table 2). Interestingly, as it is shown in the last column

of Table 1, the number of common genes associated to some of

these responses was low. For example, the modulation of stress and

innate immune genes was observed for the combined treatment.

Genes involved in response to infections were up-regulated such as

F55G11.2, F08G5.6 and genes with the CUB-like functional

domain (Figure 3 and Table S2). This again suggests an innate

immune response to OPs. Furthermore, the combined treatment

showed up-regulation of sma-9 (T05A10.1), a gene coding for a

transcriptional factor involved in body size regulation. This

transcriptional factor modulates a subset of genes in the TGF-b
signalling pathway which is associated with innate immunity,

aging and germ line regulation [39]. Of the identified genes in the

TGF-b signalling pathway [40], the combined treatment regulated

22 genes (Table 2). A closer look to the regulated genes by CPF

and DZN showed also the implication of this pathway in their

transcriptional responses. Once more, as in response to the pmk-1

pathway, CPF seems to regulate more genes implicated in innate

immunity, but the LDM did not show a stronger influence.

Likewise, genes downstream daf-16 and elt-2 were regulated in the

combined treatment.

Overall, as shown in Figure 4, the ingestion of CPF, DZN or a

low dose mixture of both induced many common responses like

stress and innate immunity pathways. The most regulated

pathways included genes modulated by MDT-15 (MDT-15),

Figure 4. A model for the transcriptional responses to CPF and DZN in C. elegans. Exposure to the toxicants CPF, DZN or a low dose mixture
(LDM) of both organophosphates modulates the expression of genes in common pathways. The most regulated pathways are shown with the thicker
arrows: genes regulated by MDT-15 (MDT-15), genes downstream daf-16 (DAF-16), and genes downstream elt-2 (ELT-2). For details, see Table 2.
Despite this common regulated pathways, the three treatments regulated different genes to induce common responses such a stress response,
response to ingested material or immune response. Here we show some regulated genes by chlorpyrifos (CPF), diazinon (DZN) and a low dose
mixture (LDM). With different colors are shown common regulated genes by chlorpyrifos and diazinon (CPF + DZN), by chlorpyrifos and low dose
mixture (CPF + LDM), and by diazinon and low dose mixture (DZN + LDM). An intense crosstalk between gene pathways in response to the toxicants
may be explain by the genes shared between pathways. For example, cdr-4 was regulated by CPF and LDM but not by DZN. Previous studies showed
that its expression is modulated by ELT-2 and DBL-1, two transcription factors implicated in responses to infection. Exposure to the toxicants
modulated the expression of many genes from those pathways that, acting in parallel, induced the detected responses. We analyzed regulated genes
within the Different genes within those common pathways regulate the common responses to all treatments.
doi:10.1371/journal.pone.0012145.g004

OPs Profiling in C. elegans
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genes downstream daf-16 (DAF-16), and genes downstream elt-2

(ELT-2). The three treatments regulated different genes within the

same pathways to induce the common responses. The analysis of

the regulated genes showed an intense crosstalk between gene

pathways involved in the toxicants response. This suggest that the

structural differences between CPF and DZN induced the

expression of different genes. These differences, however, are

not large enough to induce a specific different response to the

exposure of CPF or DZN.

Conclusion
We present an analysis and comparison of whole genome

transcription analysis of a model organism exposed to two

toxicants and a combination of both. Our results revealed that,

CPF and DZN induced dissimilar genes, even though they have a

similar chemical structure. The toxicants induced genes related to

detoxification, stress, innate immunity and response to ingested

material in single and combined treatment. The differences

between transcript responses in the combined treatment suggest

that the effect of a mix of low doses of CPF and DZN is not a

summed effect of the single components. But at the same time, the

similarities in the induced pathways (e.g.: daf-16, elt-2, snk-1/pmk-1,

sma-9) indicate the regulation of similar responses to them.

Supporting Information

Table S1 Differentially expressed genes in nematodes treated

with CPF (0.5 mg/l), DZN (1 mg/l), CPF (0.5 mg/l)+DZN

(1 mg/l). RankProduct (RP) was used to identify regulated genes

in each of the treatments. Each worksheet contains the output for

RP in one experiment. Sequence names for each regulated gene

are in gene.names column. Gene.index are the microarray index

for the original data. RP/sum are the rank product sum calculated

per each gene. FC:(class1/class2) are the expression fold change of

class 1 (treatment)/class 2 (control). pfp: estimated percentage of

false positive for each gene. P-value: estimated p-value for each

gene.

Found at: doi:10.1371/journal.pone.0012145.s001 (0.15 MB

XLS)

Table S2 Significantly enriched Gene Ontology (GO) terms and

functional domains. GO terms worksheets contain full GO

enriched analysis. Genes in GO database are the number of

genes belonging to each GO term. GO number are the GO term.

Regulated genes refer to number of significantly regulated genes in

each treatment that belong to a GO term. p-values were calculated

using hypergeometric test, values lower that 0.01 and more than

two genes in a category were considered significant. Functional

domains worksheets: Genes with the domain are the number of

genes that code for a specific functional domain. The number of

significantly regulated genes in each treatment that code for a

specific functional domain is listed in the regulated genes column.

The functional domains terms were extracted from Wormbase 195

using BioMart.

Found at: doi:10.1371/journal.pone.0012145.s002 (0.03 MB

XLS)
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