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Abstract
Background—Acute renal failure secondary to ischemia and reperfusion (I/R) injury poses a
significant burden on both surgeons and patients. It carries a high morbidity and mortality rate and
no specific treatment currently exists. Major causes of renal I/R injury include trauma, sepsis,
hypoperfusion, and various surgical procedures. We have demonstrated that adrenomedullin
(AM), a novel vasoactive peptide, combined with AM binding protein-1 (AMBP-1), which
augments the activity of AM, is beneficial in various disease conditions. However, it remains
unknown whether human AM/AMBP-1 provides any beneficial effects in renal I/R injury. The
objective of our study therefore was to determine whether administration of human AM/AMBP-1
can prevent and/or minimize damage in a rat model of renal I/R injury.

Methods—Male adult rats were subjected to renal I/R injury by bilateral renal pedicle clamping
with microvascular clips for 60 min followed by reperfusion. Human AM (12 µg/kg BW) and
human AMBP-1 (40 µg/kg BW) or vehicle (52 µg/kg BW human albumin) were given
intravenously over 30 min immediately following the clip removal (i.e., reperfusion). Rats were
allowed to recover for 24 h post treatment, and blood and renal tissue samples were collected.
Plasma levels of AM were measured using a radioimmunoassay specific for rat AM. Plasma
AMBP-1 was measured by Western analysis. Renal water content and serum levels of systemic
markers of tissue injury were measured. Serum and renal TNF-α levels were also assessed.

Results—At 24 h after renal I/R injury, plasma levels of AM were significantly increased while
plasma AMBP-1 was markedly decreased. Renal water content and systemic markers of tissue
injury (e.g., creatinine, BUN, AST and ALT) were significantly increased following renal I/R
injury. Serum and renal TNF-α levels were also increased post injury. Administration of human
AM/AMBP-1 decreased renal water content, and plasma levels of creatinine, BUN, AST and
ALT. Serum and renal TNF-α levels were also significantly decreased after AM/AMBP-1
treatment.

Conclusion—Treatment with human AM/AMBP-1 in renal I/R injury significantly attenuated
organ injury and the inflammatory response. Thus, human AM combined with human AMBP-1
may be developed as a novel treatment for patients with acute renal I/R injury.
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INTRODUCTION
Acute renal injury induced by ischemia and reperfusion (I/R) is a major cause of morbidity
and mortality in hospitalized patients. Acute renal injury is classified according to the
RIFLE (acronym indicating Risk of renal dysfunction; Injury to the kidney; Failure of
kidney function; Loss of kidney function and End-stage kidney disease) criteria, which
subdivides the severity into 5 stages (1,2). As the severity of injury increases, the window of
opportunity for intervention becomes smaller. Causes for acute renal failure (ARF)
secondary to I/R injury include trauma, sepsis, global hypoperfusion, and various surgical
procedures notably open aortic bypass surgery. Acute renal failure can be sub-divided into
two distinct categories: community acquired and hospital acquired. Even though the annual
incidence of community-acquired ARF is approximately 100 cases per 1 million people, it is
diagnosed in at least 1% of hospital admissions at presentation (3).

Hospital-acquired ARF, using the RIFLE classification, is more prevalent and has been
found in 4–9% of hospital admissions (3–7). The incidence of hospital-acquired ARF has
risen dramatically in the intensive care patients, where a rate of 7–17% has been observed
(8,9) and close to 50% of these cases are caused by renal I/R injury. Single center
institutions report a rising trend in all-cause renal injury and case fatality rate has
approached 50% among patients requiring dialysis (10–14). There are only a few strategies
implemented to prevent or limit renal injury, which include fluid resuscitation,
pharmacological interventions, or simply avoidance of the insulting factor. Diuretics and
vasodilators are commonly used to treat ARF. However, in large randomized studies, these
agents have failed to prove effective in various disease conditions. As such, there is an
urgent need for developing effective strategies to combat renal I/R injury.

The pathophysiology of renal I/R injury is complex (15–19). Renal ischemia occurs when
the blood flow into the renal tissue is interrupted. With an absence of blood into the tissue, a
hypoxic state ensues and causes the local accumulation of anaerobic metabolites and free
radicals. When blood flow is restored into the tissue, the majority of the damage occurs,
which are mediated by oxygen free radicals, inflammatory mediators, and local cytokine
activation. Histopathologically, there is extensive tubular damage, tubular cell necrosis,
glomerular injury and tubular obstruction (16,17). The eventual production of pro-
inflammatory cytokine TNF-α has a direct cytotoxic effect on renal tissue, leading to cell
necrosis and a continuation of the inflammatory cycle (17).

Adrenomedullin (AM), a 52-amino acid peptide with potent vasoactive properties, was
originally isolated from a human pheochromocytoma in 1993 (20). It is widely distributed in
the endocrine and neuroendocrine system (21), suggesting that AM plays an important role
in the control of systemic and local circulation, as well as cardiovascular and fluid
regulation, regulation of growth and differentiation, and secretions of other hormones (22).
A specific binding protein to AM, adrenomedullin binding protein-1 (AMBP-1) was
identified in human plasma and the purified protein was reported to be identical to human
complement factor H (23).

Our recent studies show that AMBP-1 augments the biological activity of AM and produces
significant beneficial effects under various pathophysiological conditions (24–27). We have
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shown that plasma AM levels are significantly increased in experimental models of organ
injuries (24,28) and that the vascular responsiveness to AM is decreased in these conditions
(25,29). Furthermore, the decrease in AMBP-1 levels are responsible for the decreased
vascular responsiveness to AM and that the combined treatment of AM and AMBP-1
produces significant beneficial effects under these conditions (25). These initial studies were
conducted with rat AM and human AMBP-1. Recently, we have also reported that combined
treatment of human AM and human AMBP-1 reduced organ injury and inflammatory
responses, and improved survival in rat models of hemorrhagic shock and gut ischemia/
reperfusion injury (30,31). In the current study, we examined whether administration of
human AM combined with human AMBP-1 can minimize or prevent the damage induced by
acute renal I/R injury in rats.

MATERIALS AND METHODS
Experimental animals

Male Sprague-Dawley rats (250–300g), purchased from Charles River Laboratories
(Wilmington, MA), were used for this study. The rats were housed in a temperature
controlled room and on a 12-h light/dark cycle. The rats were fed a standard Purina rat chow
diet and allowed water ad libitum. Animal experimentation was carried out in accordance
with the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal
Resources). This project was approved by the Institutional Animal Care and Use Committee
(IACUC) of the Feinstein Institute for Medical Research.

Animal model of renal I/R injury
Prior to surgery, rats were fasted overnight but water was given ad libitum. Rats were
anesthetized with isoflurane inhalation maintained under anesthesia. Renal ischemia/
reperfusion was performed as previously described (32,33). Briefly, a midline laparotomy
incision was made to expose the abdomen. The intestines were covered in warm, moist
gauze and first retracted to the right to expose the left renal pedicle. A microvascular clamp
was placed around the left renal pedicle, and visual inspection of the kidney was done to
confirm blanching and cessation of blood flow. The intestines were mobilized to the left to
expose the right renal pedicle, and a microvascular clamp was placed in the same manner.
The small intestines were then returned into the abdominal cavity. The total clamp time was
60 min, after which the clamps were removed. The occlusion time of 60 min was chosen to
closely parallel scenarios one encounters in the clinical setting, i.e. aortic cross-clamping
during emergency surgery, where the clamping time will not be longer than 60 min.
Restoration of blood flow into the kidneys was confirmed visually. The incision was closed
in layers, and the animals were returned to their cages with food and water, and allowed to
recover. At 24 h, the animals were euthanized and blood and tissue samples were harvested
for analyses. Prior studies have shown that serum creatinine and BUN levels peaked at 24 h
following renal I/R injury (18,34). Due to the fact that these parameters indicate renal
dysfunction, we chose to use 24 h time period in our studies.

Experimental groups
The following experimental groups were studied. Group 1, renal I/R rats treated with human
AM and human AMBP-1 (n=8), underwent renal pedicle clamping for 60 min and
immediately following removal of the microvascular clamps, received human AM (12 µg/kg
BW, Phoenix Pharmaceuticals, Belmont, CA) plus human AMBP-1 (40 µg/kg BW) in 1 ml
normal saline. Human AMBP-1 (purity >99%) was purified from normal human serum by
us (35) according to a published method (36) with some modifications. Since AM is a potent
vasodilator, infusion of AM/AMBP-1 was done over 30 min to prevent any increase in
vasodilation which can lead to hypotension. The dosage of AM/AMBP-1 used was similar
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to that was utilized previously in a rat model of sepsis (26). Group 2, renal I/R rats treated
with vehicle (n=8), underwent renal pedicle clamping for 60 min followed by removal, and
received intravenous injection of human albumin (52 µg/kg BW) for a period of 30 min in 1
ml normal saline. Group 3, sham operated animals (n=8), underwent a midline laparatomy
incision and kidneys were isolated, but neither clamping nor infusion was performed.

Determination of plasma levels of AM
Plasma AM levels were assayed using a radioimmunoassay (RIA) kit specific for AM
according to the protocols provided by the manufacturer (Peninsula Labs, Belmont, CA).
Briefly, 1.5 ml blood was collected into a polypropylene tube containing 1mg/ml EDTA and
500 KIU/ml aprotinin at 24 h after reperfusion, and plasma was separated immediately. The
plasma was then used for AM extraction by C18 Sep-Column. RIA was performed as
described previously (37) and AM levels were calculated.

Determination of plasma levels of AMBP-1
Two microliters of plasma was fractionated on a 4–12% Bis-Tris gel and then transferred to
a 0.2-µm nitrocellulose membrane. Nitrocellulose blots were blocked by incubation in
TBST (10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Tween-20) containing 5% milk for 1
h. Blots were then incubated with rabbit anti-human complement factor H polyclonal
antibodies (1:5000, Quidel Corp, San Diego, CA) overnight at 4°C. The blots were then
washed 3 times with TBST for 15 min, incubated with horseradish peroxidase-linked anti-
rabbit immunoglobulin G for 1 hour at room temperature, and then washed 4 times in TBST
for 10 min each. A chemiluminescent peroxidase substrate (ECL, Amersham Biosciences,
Piscataway, NJ) was applied according to the manufacturer’s instructions, and the
membranes were exposed briefly to radiography film. The levels of AMBP-1 in band
densities were determined using a Bio-Rad Laboratories Imaging System (Hercules, CA).

Determination of renal water content
The difference in water content in the kidneys was determined by the difference in the
weight of the kidneys after 72 h of desiccation in 70°C from the initial weight, divided by
the initial weight and the results are expressed as percentage.

Determination of serum levels of organ injury markers
Blood samples were centrifuged for 15 min at 2000 g to collect serum, and stored at −8°C
for determination of serum levels of creatinine, and blood urea nitrogen (BUN) (15),
aspartate aminotransferase (AST), alanine aminotransferase (ALT). The levels were
measured using commercially available assay kits according to manufacturer’s
specifications (Pointe Scientific, Canton, MI).

Determination of serum and renal tissue levels of TNF-α
The concentration of TNF-α in the serum and renal tissue samples was measured using a
commercially obtained enzyme-linked immunosorbent assay (ELISA) kit specifically for rat
TNF-α (BD Biosciences, San Jose, CA). Renal tissue samples were thoroughly
homogenized in lysis buffer (10 mM Tris-HCl, pH 7.5, 100 mM NaCl, 50 mM EDTA, 50
mM EGTA,1% Triton-X-100 with protease inhibitors), and the supernatant was used for
tissue analysis.

Statistical analysis
All data are expressed as means ± SEM and compared by one-way analysis of variance
(ANOVA) and Student-Newman-Keuls (SNK) method for multiple group analyses or
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Student’s t-test for two-group analyses. Differences in value were considered significant
when P<0.05.

RESULTS
Alterations in serum AM and AMBP-1 levels after renal I/R injury

To determine if AM and AMBP-1 levels were altered in renal I/R injury, serum samples
from sham and renal I/R rats were examined for AM and AMBP-1 levels. At 24 h after renal
I/R injury, AM levels were significantly increased as compared to sham operated rats (Fig.
1A) whereas, as shown in Fig. 1B, rats subjected to renal I/R injury had a decrease in serum
AMBP-1 by 54% as compared to sham operated animals (P <0.05).

Human AM/AMBP-1 reduces renal water content after renal I/R injury
Tissue water content is a well recognized parameter to assess organ injury. As indicated in
Fig. 2, rats subjected to renal I/R injury had a significant increase in renal water content
from 75.0 ± 0.3% in sham-operated animals to 78.4 ± 0.4% in vehicle treated animals.
Human AM/AMBP-1 treatment decreased the renal water content to 76.9 ± 0.6% in renal I/
R injured rats (P <0.05). Although the difference in renal water content in the treatment
group is statistically significant from that of the vehicle group, such a difference is probably
nonsignificant in a clinical standpoint.

Human AM/AMBP-1 improves renal function after renal I/R injury
Serum levels of creatinine and BUN are considered as kidney specific markers of injury.
Serum creatinine and BUN were significantly increased at 24 h after renal I/R injury in
vehicle treated animals by 420% and 308%, respectively. Administration of human AM/
AMBP-1 after renal I/R injury markedly improved renal function by decreasing serum
creatinine and BUN levels by 64% and 47%, respectively (Figs. 3A and 3B, P < 0.05).

Human AM/AMBP-1 attenuates organ injury after renal I/R injury
In addition to the kidney specific injury indicators, the effect of AM/AMBP-1 on systemic
injury markers such as liver enzymes, serum AST and ALT, on renal I/R injury were also
assessed. Serum AST and ALT levels increased by 143% and 89% after renal I/R injury,
respectively (Figs. 4A–B). Administration of human AM/AMBP-1 in the injured rats
significantly reduced AST and ALT levels in the serum by 26% and 32%, respectively (P <
0.05).

Human AM/AMBP-1 inhibits TNF-α after renal I/R injury
To further determine if treatment with AM/AMBP-1 is effective in downregulating pro-
inflammatory cytokines generally increased in renal I/R injury, serum and renal content of
TNF-α were measured. As indicated in Fig. 5A, serum TNF- α levels were increased by
99% in vehicle treated animals at 24 h post renal I/R injury and reduced by 20% following
AM/AMBP-1 treatment (P < 0.05). Similarly, the TNF-α protein in the kidney increased by
297% and treatment with human AM/AMBP-1 reduced these levels by 23% (P < 0.05).

DISCUSSION
Recent advances in medical, surgical, and pharmacological interventions have improved the
outcome in patients suffering from renal injury. Despite these improvements, however, ARF
continues to pose a major physical and financial burden on the U.S. healthcare industry.
Treatment for ARF is dependent on the cause whether it is due to pre-renal, renal, or post-
renal failure. Pre-renal failure is generally caused by a low flow or hypotensive state, when
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fluid resuscitation and possible inotropic intervention is needed to restore flow. Another
cause of pre-renal failure is from shock and/or sepsis, causing damage to the kidneys
secondary to a low-flow state and damage secondary to free radical production,
inflammation, and local macrophage/neutrophil migration. Currently, only supportive
measures are the treatment options exist for patients with ARF. Therefore, it is obvious that
a specific and effective treatment is urgently needed to prevent or at least minimize the
mortality in patients with ARF.

Adrenomedullin has been shown to increase in ischemia/reperfusion injury, hemorrhagic
shock, sepsis and following major surgeries and hypoxia (38–42). In vivo, the primary
function of AM is to produce long-lasting effects in lowering of blood pressure, along with
reduced peripheral vascular resistance in a relatively short time (20,43). Previously we have
demonstrated that AMBP-1, a specific binding protein for AM that potentiates its effects, is
able to enhance AM-induced relaxation of aortic rings taken from normal animals (29).
Additionally, a decreased level of AMBP-1 in humans is associated with higher
susceptibility to recurrent infections (21,44). We have also shown that the decreased level of
AMBP-1 in animal studies leads to reduced vascular responsiveness in AM, thus
contributing to the vascular collapse after hemorrhagic shock and severe sepsis (25,26). In
the present study, we have measured the level of AM and AMBP-1 in the serum of rats 24 h
following renal I/R injury. Our results showed a significant increase in serum AM levels and
a marked decrease in the amount of circulating AMBP-1 in these animals as compared to
sham. This indicated the deficiency of AMBP-1 in renal I/R injury which compromises the
bioactivity of AM and provided the basis for a combined intervention with human AM and
human AMBP-1.

Based on this observation, we treated renal I/R injured rats with human AM and human
AMBP-1. Our results indicated that AM/AMBP-1 treatment significantly reduced renal
edema, organ injury and inflammatory responses indicating that AM/AMBP-1 can be
beneficial in renal I/R injury. Previously we have shown that rat AM in combination with
human AMBP-1 attenuates organ injury and inflammatory responses produced by various
conditions such as severe sepsis and hemorrhagic shock (25,26). However, the current study
is the first to demonstrate beneficial effect of human AM in combination with human
AMBP-1 in renal I/R injured rats. Furthermore, our study show that a low dose of human
AM, which do not produce significant cardiovascular side effects such as hypotension and
do not have any beneficial effect (24,45–47), produced significant decrease in organ injury
and inflammatory responses when used in combination with human AMBP-1. In agreement
with these findings, low-dose rat AM combined with human AMBP-1 produces beneficial
effects in various disease conditions (24–27,46). In contrast, treatment with rat AM or
human AMBP-1 alone in these models of organ injury failed to produce a significant
protection (26,46). In our future studies, we will determine the optimal dosage of human
AM/AMBP-1 in producing beneficial effect in the renal I/R injury model.

Besides its vasodilative properties, we (28,47) and others (48–52) have shown that AM
possesses anti-inflammatory properties. Studies indicate that AM suppresses secretion of
TNF-α from murine RAW264.7 cells stimulated with endotoxin (53). Our recent studies
indicate that while AM alone suppressed TNF-α release from Kupffer cells by 52%,
combined treatment of AM/AMBP-1 decreased these levels by 90% (47). Others have
shown that AM regulates chemokines such as MCP-1 expression (54) and that it is able to
inhibit neutrophil activation by suppressing formyl-Met-Leu-Phe (fMLP) induced up-
regulation of the adhesion molecule CD11b in human neutrophils (55).

How AM/AMBP-1 exerts its beneficial effect in renal I/R injury remains to be determined.
The binding between AM and AMBP-1 has important physiological consequences. The
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presence of a binding protein can alter the biological function of a potent factor and
determines its inhibitory or stimulatory capabilities. In the case of AM, AMBP-1 may not
change the affinity of AM to its receptors rather it may bind to cell surface adhesion
molecules and bring AM near to its receptors and raise the efficacy of AM (23,56). As a
result, AMBP-1 may effectively increase AM’s potency without modifying its receptor or its
binding capacities. Another possibility is that since AMBP-1 is known to prevent
degradation of AM (57), AM/AMBP-1 binding can make AM more functionally effective.

Although the primary function of AM is to lower blood pressure and reduce vascular
resistance, these effects may not translate to renoprotective effects seen in our combined
human AM and human AMBP-1 treated animals. In addition to its vasoactive properties, a
number of studies including ours indicated that AM has anti-inflammatory properties
(28,47–52). The current study also showed that human AM/AMBP-1 treatment in renal I/R
injury reduced inflammatory responses and organ injury generally observed in renal I/R
injury. Therefore, the observed protection of the renal parenchyma post I/R injury following
human AM/AMBP-1 treatment could be due to AM’s role as an anti-inflammatory agent. In
this regard, we have recently shown that the protective role of AM/AMBP-1 in sepsis could
be mediated by cAMP-dependent pathway and by the induction of peroxisome proliferator-
activated receptor-γ (PPAR-γ) through Pyk-2-tyrosine kinase-ERK pathway (59). It is
plausible that such pathways are involved in AM/AMBP-1’s anti-inflammatory properties in
renal I/R injury. Future studies are warranted for such conclusions.

Due to the complexity and severity of renal I/R injury, there is an obvious need for the
development of novel treatments to prevent and/or minimize the injury. Since the
pathophysiology of renal I/R injury constitutes oxidative stress, inflammation and apoptosis,
therapy should be directed against all aspects of the pathology. In this regard, generation of
oxygen radicals play an essential role in the pathogenesis of renal I/R injury. Studies
indicate that leflunomide, a novel immunomodulatory drug for the treatment of rheumatoid
arthritis, provides renoprotective effects by its radical scavenging and antioxidant activities
(58). Future studies will determine whether AM/AMBP-1 is able to protect against oxygen
radical production and apoptosis in renal I/R injury.

To date, AM/AMBP-1 has not been used in human trials. All our prior studies on the
beneficial effects of AM/AMBP-1 have been done solely in animal models of injury (i.e.,
preclinical trials). Nevertheless, our previous studies in other models of organ injuries
clearly showed that AM/AMBP-1 produce beneficial effect in various pathophysiological
conditions (25,26). In the present study, we show that the administration of human AM
combined with human AMBP-1 attenuated renal edema, organ injury, and inflammatory
responses associated with renal I/R injury and suggest AM/AMBP-1 as a novel treatment
that holds promise for the treatment of renal I/R injury.
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Figure 1. Alterations in serum levels of AM and AMBP-1 after renal I/R injury
A. Plasma samples from sham and renal I/R rats at 24 h post injury were assessed for AM
using specific RIA kit. Results are shown as pg/ml estimated from known standards (n=6).
B. Plasma samples were subjected to Western blotting using human anti-AMBP-1 antibody.
Results are shown as arbitrary densitometric units (n=4). Data are presented as means ± SE
and compared by Student’s t- test: *P < 0.05 versus Sham group.
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Figure 2. Alterations in renal water content after renal I/R injury
Kidneys from sham and renal I/R rats (vehicle or human AM/AMBP-1 treatment) were
collected at 24 h post I/R injury. Data are presented as means ± SE (n=7–8) and compared
by one-way analysis of variance (ANOVA) and Student–Newman–Keuls method: *P < 0.05
versus Sham group, #P < 0.05 versus Vehicle group.

Shah et al. Page 12

J Surg Res. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Alterations in serum levels of renal injury markers after renal I/R injury
Serum samples from sham and renal I/R rats (vehicle or human AM/AMBP-1 treatment) at
24 h post I/R injury were assessed for creatinine (A) and BUN (B). Data are presented as
means ± SE (n=5–7) and compared by one-way analysis of variance (ANOVA) and
Student–Newman–Keuls method: *P < 0.05 versus Sham group, #P < 0.05 versus Vehicle
group.
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Figure 4. Alterations in serum levels of systemic injury indicators after renal I/R injury
Serum samples from sham and renal I/R rats (vehicle or human AM/AMBP-1 treatment) at
24 h post I/R injury were measured for AST (A) and ALT (B). Data are presented as means
± SE (n=5–6) and compared by one-way analysis of variance (ANOVA) and Student–
Newman–Keuls method: *P < 0.05 versus Sham group, #P < 0.05 versus Vehicle group.
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Figure 5. Alterations in TNF-α levels after renal I/R injury
TNF-α from serum (A) and renal tissue (B) samples of sham and renal I/R rats (vehicle or
human AM/AMBP-1 treatment) at 24 h post I/R injury were measured. Data are presented
as means ± SE (n=6–8) and compared by one-way analysis of variance (ANOVA) and
Student–Newman–Keuls method: *P < 0.05 versus Sham group, #P < 0.05 versus Vehicle
group.
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