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Induced pluripotent stem cells (iPSCs) are generated frommouse and
human fibroblasts by the introduction of three transcription factors:
Oct3/4, Sox2, and Klf4. The proto-oncogene product c-Myc markedly
promotes iPSC generation, but also increases tumor formation in
iPSC-derived chimeric mice. We report that the promotion of iPSC
generationbyMyc is independentof its transformationproperty.We
found that another Myc family member, L-Myc, as well as c-Myc
mutants (W136E and dN2), all of which have little transformation
activity, promoted human iPSC generation more efficiently and spe-
cifically comparedwithWT c-Myc. In mice, L-Myc promoted germline
transmission, but not tumor formation, in the iPSC-derived chimeric
mice. These data demonstrate that different functional moieties of
theMyc proto-oncogeneproducts are involved in the transformation
and promotion of directed reprogramming.

induced pluripotent stem cell | embryonic stem cell | regenerative
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Induced pluripotent stem cells (iPSCs) were first generated from
mouse fibroblasts by the retroviral introduction of four tran-

scription factors: Oct3/4, Sox2, Klf4, and c-Myc (1). Mouse iPSCs
are indistinguishable from embryonic stem cells (ESCs) in mor-
phology, proliferation and gene expression. Furthermore, mouse
iPSCs give rise to chimeric mice that are competent for germline
transmission (2–4). However, both the chimeras and progenies
derived from mouse iPSC have an increased incidence of tumor
formation, due primarily to reactivation of the c-Myc retrovirus
(3). We and others successfully created mouse iPSCs without the
c-Myc retrovirus by modifying the induction protocol (5, 6).
Chimeric mice derived from these c-Myc–minus iPSCs did not
demonstrate an increased incidence of tumor formation (6). The
efficiency of iPSC generation is significantly lower without the c-
Myc retrovirus, however. Indeed, c-Myc is used in most of the
reported methods to generate iPSCs without viral integration (7–
15). Thus, c-Myc functions as a “double-edged sword,” promoting
both iPSC generation and tumorigenicity.
In addition to the overexpression of c-Myc, we and others have

shown that suppression of the tumor-suppressor gene p53 also
significantly enhances iPSC generation (16–19). The downstream
targets of p53, including p21 and Arf/Ink4, also are involved in the
suppression of iPSC generation. The fact that the two most
common pathways associated with human cancers—activation of
c-Myc and suppression of p53—both substantially enhance iPSC
generation raises the possibility that the molecular mechanisms
underlying iPSC generation and tumorigenicity largely overlap.
The Myc proto-oncogene family consists of three members: c-

Myc, N-Myc, and L-Myc (20–23). All three members dimerize with
Max and binding to DNA (24). N-Myc is similar to c-Myc in terms
of length, domain structures, and frequent association with human
cancers (25). In contrast, the L-Myc protein has shorter amino acid
sequences than the other two members in the N-terminal region,
along with significantly lower transformation activity in cultured
cells (21, 26–29). Consistent with this property, only a small number
of human cancers have been associated with the aberrant expres-
sion of L-Myc. In the present study, we analyzed the effect of

L-Myc in promoting iPSC generation. Despite its weak trans-
formation activity, L-Myc was found to have a stronger and more
specific activity in promoting iPSC generation. In addtion, the
mutations that significantly deteriorate the transformation activity
of c-Myc more effectively and specifically promote human iPSC
generation. These findings demonstrate that the promotion of
nuclear-reprogramming and transformation activity are indepen-
dent properties of the Myc family proteins.

Results
To compare the effects of L-Myc, N-Myc, and c-Myc on human
iPSC generation, we retrovirally transduced human adult dermal
fibroblasts with Oct3/4, Sox2, and Klf4, with or without the Myc
family members. Then, 3 wk later, we counted the numbers of both
iPSC colonies, which had an ESC-like morphology with a flat,
round shape and a distinct edge, and non-iPSC colonies, which
were granulous with an irregular edge. Compared with c-Myc, L-
Myc demonstrated significantly more potency in increasing the
number of iPSC colonies (Fig. 1A). N-Myc also tended to increase
the iPSC colonies more effectively compared with c-Myc, although
the difference was not statistically significant.We also found that c-
Myc and N-Myc markedly increased the formation of non-iPSC
colonies, whereas L-Myc did not. As a result, the proportion of
iPSC colonies out of the total colonies is significantly higher with
L-Myc than with c-Myc or N-Myc (Fig. 1B).
Human iPSCs generated with L-Myc showed a morphology

similar to that of human ESCs (Fig. 1C). They were positive for
various pluripotent markers, including Tra-1–60, Tra-1–81, SSEA-
3, andOct3/4 (Fig. S1A). They differentiated into various tissues of
three germ layers, including neural tissues, gut-like epithelial cells,
cartilage, and adipose tissue, in teratomas (Fig. S1B) and in em-
bryoid bodies (Fig. S1C). They had normal karyotypes (Fig. S1D).
These findings indicate that L-Myc promotes human iPSC gen-
eration more specifically and effectively compared with c-Myc.
We next compared the three Myc members in terms of mouse

iPSC generation. Mouse embryonic fibroblasts (MEFs), which have
aGFP reporter driven by the regulatory regions of themouseNanog
gene, were retrovirally transduced with Oct3/4, Sox2, and Klf4 with
orwithout eachof theMyc familymembers.After 3wk, the numbers
of GFP-positive and GFP-negative colonies were counted. GFP-
positive colonies represent fully reprogrammed iPSCs, whereas
GFP-negative colonies represent partially reprogrammed or trans-
formed cells. As reported previously (6), all three Myc proteins
enhanced the generation of GFP-positive colonies (Fig. 2A). c-Myc
had a stronger effect than the other twoMyc proteins, but its effects
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were more profound on GFP-negative colonies than on GFP-pos-
itive colonies, resulting in a significant decrease in the proportion of
GFP-positive colonies out of the total colonies (Fig. 2B). In contrast,
L-Myc preferentially increased GFP-positive colonies, while the
proportion of GFP-positive colonies out of the total colonies
remained high. These findings demonstrate that L-Myc specifically
enhances the generation of fully reprogrammed mouse iPSCs.
Mouse iPSCs generated with L-Myc showed an ESC-like mor-

phology (Fig. S2A) and expressed pluripotent-associated genes,
including Nanog, Rex1, ECAT1, and ESG1 (Fig. S2B). The ex-
pression of retroviral transgenes was effectively silenced. When
transplanted subcutaneously into nude nice, these cells formed
teratomas containing various tissues, including neural tissues, gut-
like epithelial tissues, and striated muscles (Fig. S2C). Further-
more, when injected into blastocysts, L-Myc iPSCs were capable of
producing high-percentage chimeras that were competent for
germline transmission. Of note, both c-Myc and L-Myc promoted
germline transmission from chimeras compared with iPSCs gen-
erated without the Myc transgenes (Fig. 3A). This suggests that
iPSCs generated with L-Myc are of a comparable quality to ESCs.

We previously reported that iPSCs generated with the c-Myc
retrovirus resulted in a markedly increased tumor formation and
mortality in chimeras and progeny mice (3, 30). In contrast, iPSCs
generated without the c-Myc transgene did not show any such
adverse effects in mice (6). In this study, we observed chimeras
derived from L-Myc iPSC clones for up to 2 y. In stark contrast to
c-Myc, the L-Myc retrovirus did not result in any marked increase
in either tumorigenicity or mortality (Fig. 3B). Compared with
chimeric mice derived from Myc-minus iPSCs, L-Myc iPSCs
exhibited slightly higher mortality, but not tumorigenicity, in mice
at 1 y after birth. The causes of death in these mice remain to be
determined. These findings are consistent with the weak trans-
formation activity of L-Myc.
We also examined whether L-Myc was capable of decreasing the

number of factors required for iPSC generation. We found that
with the addition of L-Myc, iPSCs can be generated without Sox2.
Infecting 1 × 105 Nanog-GFP reporter MEFs with Oct3/4, Klf4,
and L-Myc yielded 16 GFP-positive colonies. In contrast, no GFP-
positive colonies were obtained without the L-Myc transgene. We
picked up all of these colonies and were able to establish iPSC lines
from 15 clones. These Sox2-minus iPSCs showed an ESC-like
morphology (Fig. S3A) and expressed ESC markers, including
Nanog,Rex1, andECAT1 (Fig. S3B).We confirmed the absence of
the Sox2 transgene by genomic PCR (Fig. S3C). These cells can
differentiate into cells of three germ layers in teratomas (Fig. S3D)
and embryoid bodies (Fig. S3E). Sox2-minus L-Myc iPSCs were
capable of producing chimeras that were competent for germline
transmission (Fig. S3F).
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Fig. 1. Promotion of human iPSC generation by L-Myc. (A) The number of
human iPSC colonies fromaHDFs transducedwith orwithout the indicatedMyc
familygenes (n=4;**P<0.01vs.withoutMycor c-Myc). (B) TheeffectofMycon
the percentage of human iPSC colonies out of all colonies (n = 4; **P < 0.01 vs.
c-Myc or N-Myc). (C) Morphology of L-Myc human iPSCs. (Scale bar: 200 μm.)
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Fig. 2. Generation of mouse iPSCs with L-Myc. (A) Generation of mouse
iPSCs with or without the indicated Myc family genes from MEFs containing
the Nanog-GFP reporter. The raw data from five independent experiments
(experiments 1–5) are shown. Each red line shows the average of five
experiments in the indicated condition. (B) Effect of the Myc family genes on
the percentage of GFP-positive colonies out of all colonies (n = 5; *P < 0.05;
**P < 0.01).
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We next examined the correlation between the ability to pro-
mote iPSC generation and the transformation activity of the Myc
proteins. We constructed the W136E c-Myc mutant, which re-
portedly lacks transformation activity but still binds to Max and
DNA (26, 31). We also generated a mutant of c-Myc that does not
bind to Miz-1 (V394D) (32) and other mutants of c-Myc and L-
Myc that do not bind to Max (c-Myc L420P and L-Myc L351P)
(33). TheWTL-Myc, theW136E c-Myc mutant, the L420P c-Myc
mutant, and the L351P L-Myc mutant showed little trans-
formation activity in NIH 3T3 cells (Fig. 4A). In contrast, the WT
c-Myc– and V394D c-Myc mutant–induced transformation was
characterized by high refractivity and a spindle-like shape. We

then introduced either the WT or mutant c-Myc into aHDFs to-
gether with Oct3/4, Sox2, and Klf4 to generate iPSC colonies. We
found that the W136E c-Myc mutant functioned similarly to L-
Myc, increasing the number of iPSC colonies more effectively
than the WT c-Myc (Fig. 4B). In addition, the proportion of iPSC
colonies out of the total colonies was higher with the W136E
mutant c-Myc than with the WT c-Myc (Fig. S4A). The V394D c-
Myc mutant was comparable to theWT c-Myc, indicating that the
binding to Miz-1 plays neither a positive nor a negative role in the
promotion of iPSC generation. The L420P c-Myc or L351P L-Myc
mutant did not promote iPSC generation, demonstrating the es-
sential role of Max binding. Similar results were obtained in mice
(Fig. S4 C and D); the W136E c-Myc mutant, like L-Myc, spe-
cifically promoted mouse iPSC generation, whereas the V394D c-
Myc mutant, like the WT c-Myc, promoted both iPSC and non-
iPSC generation.
We also constructed c-Myc mutants with a shorter N terminus,

designated dN1 and dN2. The c-Myc protein was ∼22 amino acids
longer than L-Myc in the N terminus. These extra amino acids
were deleted in the dN2mutant, whereas only 14 amino acids were
deleted in the dN1 mutant. The dN2 mutant showed little trans-
formation activity in NIH 3T3 cells, whereas the dN1 mutant
showed activity comparable to that of theWT c-Myc (Fig. 4C). The
dN2 mutant had similar properties as the WT L-Myc and the
W136E c-Myc mutant during iPSC generation in both humans
(Fig. 4D and Fig. S4B) and mice (Fig. S4 E and F). In contrast, the
dN1 mutant was comparable to the WT c-Myc. Taken together,
these data indicate that the promotion of iPSC generation by Myc
is not parallel to its transformation activity.
We performed DNA microarray analyses to elucidate the mo-

lecular mechanisms underlying the various effects of c-Myc and L-
Myc during iPSC generation. We expressed either c-Myc (WT,
W136E, V394D, or L420P) or L-Myc (WT or L351P) in aHDFs by
retroviruses. At 2 d after transduction, we isolated total RNA for
microarray analyses. We categorized genes that were either in-
creased or decreased by>2-fold byMyc into four groups: group A,
increased >2-fold by WT c-Myc and the V394D c-Myc mutant
compared with mock-transduced control (Mock) and the L420P c-
Myc mutant; group B, decreased >2-fold by WT c-Myc and the
V394D c-Myc mutant compared with Mock and the L420P c-Myc
mutant; group C, increased >2-fold byWT L-Myc and theW136E
c-Myc mutant compared with Mock and the corresponding Max-
biding deficient mutant; and groupD, decreased>2-fold byWTL-
Myc and the W136E c-Myc mutant compared with Mock and the
Max-biding deficient mutant. Groups A and B represent the genes
regulated byMyc proteins that promote both iPSC generation and
transformation. Groups C andD represent genes regulated byMyc
proteins that specifically promote iPSC generation, but not
transformation.
We found that c-Myc and L-Myc regulate both common

(subgroups AC and BD) and unique (subgroups A, C, B, and D)
target genes (Fig. 5A). The genes in each subgroup are listed in
Dataset S1. Subgroups A and AC are enriched with genes that are
highly expressed in human ESCs as well as cancer cells, such as
bladder tumors and nasopharyngeal carcinomas (Fig. 5 B and C).
The increased expression of these genes might be associated with
the transformation activity of Myc. In contrast, subgroups BD and
D are enriched with genes that are highly expressed in fibroblasts,
but not in ESCs or iPSCs. This result suggests that the promotion
of iPSC generation by Myc might be associated with the sup-
pression of fibroblast-specific genes, and that L-Myc is more
potent than c-Myc in this specific gene regulatory function.

Discussion
In this study, we found that among the three Myc family proteins
c-Myc, N-Myc, and L-Myc, L-Myc showed the strongest and
most specific activity in promoting human iPSC generation. This
finding was surprising, given that L-Myc has been shown to have
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Fig. 3. Chimeric mice derived from L-Myc iPSCs. (A) Frequency of germline
transmission of mouse iPSC clones established without Myc or with either c-
Myc or L-Myc. The white columns indicate how many iPSC clones gave rise to
germline transmission, and the gray columns indicate how many clones were
tested. Also shown are the percentages of germline-competent iPSC clones
out of all clones tested. (B) The cumulative overall mortality (Upper) and
morality with microscopically obvious tumors (Lower) in the chimeric mice
derived from iPSCs with c-Myc or L-Myc. The numbers in parentheses refer to
the total number of animals tested in each group.
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the weakest transformation activity among the three proteins
(21, 25, 26, 28). We also found that the mutations that de-
teriorate the transformation activity of c-Myc specifically pro-
mote iPSC generation. Our findings demonstrate that iPSC
generation and transformation use different functional moieties
of the Myc proto-oncogene products.
Our DNA microarray analyses suggest that L-Myc and the

transformation-deficient W136E c-Myc mutant have different
target genes than those of the WT c-Myc. When overexpressed in
aHDFs, L-Myc and the W136E c-Myc mutant suppressed nu-
merous genes that are highly expressed in fibroblasts compared
with iPSCs or ESCs. In contrast, only a small number of genes
were selectively activated by L-Myc and the W136E c-Myc. Thus,
we postulate that the primary role of these Myc proteins in
promoting iPSC generation might be to suppress differentiation-
associated genes. This finding is consistent with a previous report
on c-Myc (34), and we also found that both L-Myc and the
W136E c-Myc mutant were more potent than the WT c-Myc.
Our DNA microarray analyses also revealed that the WT

c-Myc protein activated many genes that were enriched not only
in ESCs and iPSCs, but also in cancer cells. These gene products
might be associated with cell proliferation, immortality, and cell
metabolism. Approximately half of these were specifically acti-
vated by the WT c-Myc, but not by L-Myc or the W136E c-Myc
mutant. These genes are might be responsible, at least in part,
for the transformation activity of c-Myc.
We found that the effects of L-Myc and the transformation-

deficient mutants of c-Myc in enhancing iPSC generation were
more potent in humans than in mice. The reasons for this dif-
ference remain to be determined. This finding suggests that the
molecular mechanisms underlying iPSC generation might be
similar, but not identical, in humans and mice.

Since its first demonstration in 2006, iPSC generation has been
associated with transformation and tumorigenicity (1). All four of
the factors required for iPSC generation have been associated with
human cancers. Themost obvious example is c-Myc, one of the first
proto-oncogenes identified in human cancers (35). Aberrant ex-
pression of c-Myc is found in >50% of human cancers. Klf4 plays
a unique role in cancer, functioning as both a proto-oncogene and a
tumor-suppressor gene (36). Klf4 promotes cellular transformation
by suppressing p53, but it also enhances the activity of p21 and thus
may function as a tumor suppressor depending on the cellular
context (37). Aberrant expression of Oct3/4 and Sox2 also has been
found in some germ cell tumors and other tumors (38–42).
The association of iPSC generation and transformation is

demonstrated by the increased incidence of tumor formation
observed in chimeric mice derived from iPSCs (3, 30). More than
50% of chimeras derived from MEF-derived four factor–induced
iPSC were found to develop tumors within 1 y after birth.
Reactivation of the c-Myc retrovirus was detected in these
tumors. In contrast, chimeras derived from iPSCs generated
without the c-Myc retrovirus showed no increased incidence of
tumorigenicity (6). Thus, c-Myc seems to play a major role in the
observed tumorigenicity in iPSC-derived mice.
More recently, multiple groups have independently reported

that suppression of the tumor-suppressor gene p53 markedly
enhances iPSC generation (16–19). The loss of p53 functions,
such as the aberrant expression of c-Myc, has been associated with
numerous human tumors (43–47). Taken together, these findings
indicate that iPSC generation and cellular transformation have
many molecular mechanisms and pathways in common, and thus
increasing the efficacy of iPSC generation can be achieved at the
expense of increased tumor formation.
In contrast to these predictions, our data show that iPSC

generation and transformation by Myc are largely independent
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processes. The former is attributable mainly to the suppression
of genes that are highly expressed in fibroblasts, but not in iPSCs
or ESCs. In contrast, transformation is attributable to the acti-
vation of genes that are enriched in highly proliferative cells,
including cancer cells, iPSCs and ESCs. Although methods of
iPSC generation that do not result in permanent integration of
transgenes have been reported (7–15), even transient expression
of the c-Myc transgene might have detrimental effects on the

resulting iPSCs. Thus, the use of L-Myc or transformation-de-
ficient mutants of c-Myc should be beneficial for future clinical
applications of iPSC technologies.

Materials and Methods
Construction of Plasmids. The pMXs-based retroviral vectors for mouse Myc
family genes have been described previously (6). The coding regions of hu-
man L-Myc and N-Myc were amplified by RT-PCR with the primers listed in
Table S1. N-terminus deleted c-Myc mutants (cdN1, 14–439 aa; cdN2, 42–439
aa) were amplified by the PCR primers listed in Table S2. These PCR products
were subcloned into pENTR-D-TOPO (Invitrogen) and then recombined with
pMXs-gw via the LR reaction (Invitrogen). For the construction of Myc point
mutants, site-directed mutagenesis was performed using PrimeSTAR HS DNA
Polymerase (TaKaRa) with the primers listed in Table S3, according to the
manufacturer’s instructions.

Generation of iPSCs. Induction of mouse iPSCs was performed as described
previously (1, 3, 6) with some modifications. In brief, MEFs containing the
Nanog-GFP-IRES-Puror reporter were seeded in six-well plates at 1.0 × 105

cells/well. The next day (day 0), the cells were infected with retorvirsuses
containing three or four factors. On day 3, the cells were replated onto mi-
tomycin C–treated SNL feeder cells (48). The transduced cells were cultivated
with ES medium containing leukemia inhibitory factor (49). Selection with
puromycin (1.5 μg/mL) was started on day 21. Between 25 and 30 d after
transduction, the number of colonies was manually counted under a micro-
scope and recorded. Some colonies were then selected for expansion. The
induction of human iPSCswas performed as described previously (6, 50). Adult
human dermal fibroblasts (aHDFs) from the facial dermis of a 36-y-old Cau-
casian female were purchased from Cell Applications.

RNA Isolation and Reverse-Transcription. The purifications of total RNA and
RT-PCR were performed as described previously (1, 3, 6, 50). The expression of
L-Myc was detected with a primer set, as listed in Table S4.

Transformation Assay in NIH 3T3 Cells. NIH 3T3 cells were plated in 24-well
plates at 2.5 × 104 cells/well. The next day, the cells were infected with WT or
mutant Myc. Two days after infection, the transfomation activity was de-
termined based on the morphological changes detected.

DNA Microarray Analyses. A DNA microarray analysis was performed as de-
scribed previously (50). First, aHDFs were retrovirally infected with WT or
mutant Myc. Then at 48 hours after infection, total RNA was extracted from
the cells and used for microarray experiments (GSE22654). Data were ana-
lyzed using the GeneSpring GX 11 software package (Agilent). The genes
activated or suppressed by Myc proteins were identified and categorized as
described in Results. According to the expression levels of these selected
genes, hierarchical clustering of the log2 expression ratios was performed
for five cancer cells, two normal cells (aHDFs and lung fibroblasts), human
iPSCs (average of three clones: 201B2, 201B7, and 253G1), and human ESCs
(average of four clones: H1, H9, KhES1, and KhES3). The microarray data for
cancer cells and lung fibroblasts were obtained from GEO DataSets (adeno-
carcinomas, GSE13213; bladder cancer, GSE19716; glioblastoma, GSE10878;
nasopharyngeal carcinoma, GSE15191; stromal tumor, GSE17018; lung
fibroblasts, GSE15359).

Statistical Analyses. Data are presented as average ± SD. All statistical
analyses were performed with one-way repeated-measures ANOVA and the
Bonferroni post hoc test, using KaleidaGraph 4 (HULINKS).
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