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In plant innate immunity, the leucine-rich repeat receptor kinase
FLS2 recognizes the bacterial pathogen-associated molecular pat-
tern (PAMP) flagellin. The molecular mechanisms underlying PAMP
perception are not fully understood. Here, we reveal that the
gaseous phytohormone ethylene is an integral part of PAMP-
triggered immunity. Plants mutated in the key ethylene-signaling
protein EIN2 are impaired in all FLS2-mediated responses, correlat-
ing with reduced FLS2 transcription and protein accumulation. The
EIN3 and EIN3-like transcription factors, which depend on EIN2
activity for their accumulation, directly control FLS2 expression.
Our results reveal a direct role for ethylene in regulation of an in-
nate immune receptor.

innate immunity | receptor kinase

The earliest events in plant immunity concern recognition of
conserved elicitors called pathogen-associated molecular pat-

terns (PAMPs) by plasma membrane receptors. The leucine-rich
repeat receptor kinase (LRR-RK) FLS2 is the receptor for the
bacterial PAMP flagellin or its active epitope, represented by the
peptide flg22 (1, 2). Binding of flg22 to FLS2 triggers heterodi-
merization with and phosphorylation of the LRR-RKBAK1 (3, 4).
In addition, both FLS2 and BAK1 are able to interact with and
phosphorylate the cytoplasmic kinase BIK1, which seems to act
as positive regulator of the FLS2 signaling pathway (5, 6). FLS2
activation leads to activation of the MAP kinase pathways MEKK-
MKK4/5-MPK3/6 and MEKK1-MKK1/2-MPK4, leading to tran-
scription of defense-related genes through the WRKY transcrip-
tion factors WRKY22/29 and WRKY25/33 (3). Recently, another
pathway involving the calcium-dependent protein kinases (CDPK)
4/5/6/11 has been proposed to act in parallel to theMAPKpathways
to control flg22-dependent gene expression (7). In addition, flg22
treatment triggers ion fluxes, RbohD-dependent oxidative burst,
and callose deposition as well as ethylene biosynthesis (3). The
development of Arabidopsis seedlings grown in sterile conditions is
also inhibited by flg22 treatment (8). FLS2 is conserved in most
plant species tested, and orthologs have been identified in Arabi-
dopsis, Nicotiana benthamiana, tomato, and rice (1, 2). Flagellin
perception is required for full immunity against bacteria, because
plants deficient in FLS2 are more susceptible to adapted and
nonadapted bacterial pathogens (1). Consistently, successful bac-
terial pathogens need to avoid or suppress PAMP-triggered im-
munity induced by flagellin (1). Interestingly, some virulence
effectors from phytopathogenic bacteria do so by directly targeting
FLS2 and/or BAK1 (9).
Many plant hormones, including auxin, salicylic acid (SA), jas-

monates, and ethylene, impact immunity in complex and some-
times antagonistic relationships (10). Flagellin induces production
of SA (11, 12) but also leads to repression of auxin perception (13).
A classical response associatedwith PAMP treatment is an increase
in the biosynthesis of the gaseous hormone ethylene (ET) (14–16).
Here, we show a simple and direct link between the hormone ET

and the earliest events in PAMP-triggered immunity (PTI) against
pathogenic bacteria.

Results
To gain a better understanding of PTI signaling, we developed
a forward-genetic screen to isolate Arabidopsismutants impaired in
the oxidative burst induced by flg22 from a collection of T-DNA
mutagenized Arabidopsis plants (17) (Fig. S1A). Of ∼35,000 Arabi-
dopsis seedlings screened, 21 flagellin-insensitive (fin) mutants had
reproducibly significant reduction in reactive oxygen species (ROS)
intensity in response toflg22 (<60%comparedwithwild-typeCol-0)
(Fig. S1B). T-DNA–mediated mutagenesis often leads to missense
mutations caused by failed T-DNA insertions (18). Indeed, sequenc-
ing of candidate genes revealed that fin1 carries a 1-bp deletion in
FLS2 (At5g46330) itself (Fig. S1 C and D), whereas fin2 harbors
a 2-bp deletion in BAK1/SERK3 (At4g33430) (Fig. S1 E and F).
The identification of FLS2 and BAK1 mutants validated our ge-
netic screen to identify PTI components.
We focused on fin3, a mutant with a consistent reduction in

the oxidative burst triggered by flg22 (Fig. 1A and Fig. S1B). To
identify the causative mutation in fin3, we used a map-based
cloning strategy based on reduced seedling-growth inhibition
(SGI) in the presence of flg22, a phenotype also associated with
the fin3 mutation (Fig. 1 B and C). The mutation was linked to
a 38.7-kb region on chromosome V that contained 12 predicted
gene loci. Sequencing of candidate genes identified a 33-bp de-
letion in the EIN2 (At5g03280) gene, inducing an 11-amino acid
deletion in its C terminus (Fig. 1D and Fig. S1G). EIN2 encodes
an integral membrane protein essential for signaling in response
to the gaseous plant hormone ethylene (19). Allelism tests be-
tween fin3 and the previously characterized mutants ein2-1 and
ein2-5 (19) confirmed that the three mutations are allelic (Table
S1). Additionally, fin3 etiolated seedlings were as impaired as
ein2-5 in the characteristic morphological triple response in-
duced by the ethylene precursor 1-aminocyclopropane-1-car-
boxylate (ACC) (19) (Fig. S2). Consistently, ein2-1 and ein2-5
were impaired in flg22-triggered SGI (Fig. S3). Hence, the
phenotype of fin3 is caused by a mutation in EIN2.
We tested if ethylene insensitivity caused by ein2 mutations

affects downstream responses triggered by flg22. In addition to
the oxidative burst and SGI (Figs. 1 A–C and 2 A and D and
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Fig. S3), fin3 and ein2-5 were also impaired in callose deposition
(Fig. 2B) and MAP kinase activation induced by flg22 (Fig. 2C).
Notably, the number of callose deposits in ein2-5 after water
treatment was higher than in water-infiltrated wild-type leaves
(Fig. 2B). Because untreated ein2-5 leaves did not exhibit callose
deposition (Fig. S4), this indicates that ein2–5 is more sensitive
to the wounding stress caused by water infiltration. However,
treatment of ein2-5 leaves with flg22 did not further increase
callose deposition to levels observed in treated wild-type leaves
(Fig. 2B). Notably, the resistance to the virulent bacterium Pseu-
domonas syringae pv. tomato DC3000 (Pto DC3000) triggered
by flg22 treatment was also reduced in ein25 leaves compared
with wild-type leaves (Fig. 2E), showing that the reduced flg22
responsiveness in this mutant impacts activation of innate immu-
nity. In most assays, the effect of the ein2-5 mutation was stronger
than fin3 (Fig. 2 A–D), indicating that fin3 is a weaker allele than
the ein2-5 null mutant. The ethylene-insensitive etr1-1 mutant,
which is impaired in ethylene perception (20), also showed re-
duced sensitivity to flg22 in SGI assays (Fig. S3). Thus, both eth-
ylene perception and signaling seem to be important for responses
triggered by flg22.
Our results showed that ethylene perception and signaling

were required for all flg22-induced responses tested (Fig. 2 A–E
and Fig. S3). Because some of these responses occur within a few
minutes of elicitation, we hypothesized that endogenous ethylene
may control FLS2 signaling at a very early step of the pathway,
possibly by controlling FLS2 itself. To test this hypothesis, we
measured the steady-state levels of FLS2 protein by immuno-
blots. Strikingly, FLS2 levels were dramatically reduced in ein2-5
and ein2-1 (Fig. 3A and Fig. S5A). The reduction of FLS2 pro-
tein levels correlated with a similar reduction of steady-state
FLS2 transcript accumulation in ein2-5 and ein2-1 (Fig. 3B and
Fig. S5B). A comparable reduction in FLS2 transcript and pro-
tein accumulation was also observed in etr1-1 (Fig. 3 A and B).
Consistent with our previous results (Fig. 2 A–D) and the re-
duced FLS2 expression (Fig. 3 A and B), the transcript levels of
FLS2 and SIRK/FRK1 after flg22 treatment were also reduced in
ein2-5 (Fig. S6 A and B). Thus, the impaired flg22 sensitivity of
ein2-5 and etr1-1 is likely caused by reduced amount of FLS2

proteins. Our results show that both ethylene perception and
signaling are crucial for FLS2 expression.
We investigated how ethylene could influence FLS2 expres-

sion. EIN2 is the only gene whose recessive loss-of-function
mutation leads to complete ethylene insensitivity in the triple-
response assay (19). EIN2 controls the accumulation and sub-
sequent activity of the functionally redundant EIN3 and EIN3-
like (EIL) transcription factors in response to ethylene (21, 22).
We, therefore, tested if EIN3 could regulate FLS2 transcription
directly. In silico motif analysis of the FLS2 promoter revealed
the presence of nine potential EIN3/EILs binding sites (23, 24)
(Fig. S7), suggesting that EIN3 may bind to the promoter of the
FLS2 gene to influence its transcription. Regions of the Arabi-
dopsis genome associated with EIN3 were identified by ChIP
using a purified EIN3 antibody (21) and followed by Illumina
sequencing (ChIP-Seq). Notably, EIN3 binds to two positions in
the FLS2 promoter in wild-type etiolated seedlings treated with
ethylene (Fig. 4A). EIN3 binding to these regions was absent in
chromatin purified from the loss-of-function allele ein3-1, proving
the specificity of the enrichment (Fig. 4A). Relative enrichments
of EIN3 binding sites in the FLS2 promoter after immuno-
precipitation with the EIN3 antibody were further confirmed by
quantitative PCR using chromatin from light-grown seedlings
(Fig. 4B). Comparison of the EIN3 binding sites experimentally
determined for the ERF1 (23) and EBF2 (25) promoters reveals
a close homology with the two potential sites identified in the
FLS2 promoter (Fig. 4C). Whereas EIN3 is able to bind to the
FLS2 promoter, FLS2 transcript levels were not significantly re-
duced in ein3-1 (Fig. 4D). The effect of single mutations in EIN3
and EIL transcription factors is often hindered by their homol-
ogy and consequent functional redundancy (17, 26, 27). Indeed,
simultaneous mutations in EIN3 and EIL1 accentuated the ef-
fect on FLS2 expression, with the double mutant ein3-1 eil1-1
accumulating as little FLS2 transcript as the ein2-5 mutant (Fig.
4D). Consequently, ein3-1 eil1-1 plants were impaired in flg22-
triggered oxidative bursts to a level comparable with ein2-5
plants (Fig. 4E).
To test if endogenous ethylene could control early responses

independently of FLS2 transcription, we measured the oxidative
burst induced by the general phosphatase inhibitor calyculin A
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that stimulates early PAMP responses downstream and indepen-
dently of pattern-recognition receptors (PRRs) (4, 28). In contrast
to the flg22-induced oxidative burst, the burst induced by calyculin
A was not inhibited in fls2 or ein2-5 seedlings (Fig. S8). The oxi-
dative burst induced by both elicitors was, however, completely

abolished in rbohD seedlings lacking the NADPH oxidase required
for PAMP-induced oxidative burst in Arabidopsis. Thus, these
experiments suggest that the reduced ROS burst triggered by
flg22 in ethylene perception and signaling mutants is caused by
reduced FLS2 expression and is not an indirect effect on down-
stream responses.
Together, these results reveal that endogenous ethylene con-

trols FLS2 expression transcriptionally through direct binding
of the transcription factor EIN3 and potentially, EIL1 to the
FLS2 promoter.

Discussion
An inherent difficulty in interpreting the specific contributions
of ethylene to plant immunity is its role in multiple different
physiological processes, often through cross-talk with other hor-
mones. For example, ethylene controls senescence, symptom de-
velopment, and abiotic resistance together with abscisic acid and
gibberellic acid and resistance to insects and necrotrophic patho-
gens in association with jasmonic acid (29, 30). Previous reports
show the role of ethylene in disease symptom development and
susceptibility to bacteria conflict (29, 30). Recently, EIN3 and
EIL1 were shown to repress biosynthesis of the immune hormone
salicylic acid (SA) (31). Consequently, ein2-1 and ein3-1 eil1-1
plants exhibited enhanced resistance to the pathogenic bacterium
P. syringae pv. tomato (Pto) DC3000, suggesting that they over-
accumulate (SA) (31). However, a previous study showed that
ethylene-insensitive mutant plants were more tolerant to bacteria
(reduced symptoms), but no decrease in bacterial numbers could be
observed (32, 33); we observed that Pto DC3000 infiltrated at low
dose (105 cfu/mL−1) multiplied to lower levels in ein2-5 and ein2-1
leaves than in wild-type leaves (Fig. 2E) (34), suggesting that EIN2
may indeed play an additional role as a negative regulator of SA-
mediated biosynthesis or signaling. In addition, ein3-1 eil1-1 plants
exhibited deregulated callose deposition and defense gene ex-
pression in response to flg22 (31). In our conditions, we could
confirm overaccumulation of SA (Fig. S9A) and increased expres-
sion of the SA-induced PR1 gene in ein3-1 eil1-1 soil-grown plants
(Fig. S9B). However, we did not detect changes in SA levels in the
single mutants ein3-1 or eil1-1 (Fig. S9A). Furthermore, the triple
mutant ein3-1 eil1-1 sid2-2 that exhibits wild-type SA levels (31)
accumulated as littleFLS2mRNAas the doublemutant ein3-1 eil1-
1 (Fig. S9C). Thus, the effect of the ein3-1 eil1-1mutation on FLS2
gene is not related to alterations in SA levels. In agreement with our
findings that ethylene controls FLS2 expression and thus, flg22
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responsiveness, the resistance to Pto DC3000 induced by pre-
treatment with flg22 was reduced in ein2-5 and ein2-1 leaves
(Fig. 2E) (34, 35).
Ethylene perception and signaling were recently proposed to

be required for callose deposition in response to flg22 (36).

However, the callose deposition observed in ein2-5 after water
infiltration (Fig. 2B) excludes a requirement for EIN2 in callose
biosynthesis. Furthermore, the reduced FLS2 levels in ein2-5
(Fig. 3A) explain the decreased callose deposition observed in
this mutant after flg22 treatment (Fig. 2B). Our findings also
explain the requirement for ethylene signaling in disruption of the
association between MPK6 and the transcription factor ERF104
in response to flg22 and definitively place endogenous ethylene
signaling upstream of MAP kinase activation by PAMPs (37, 38).
The data presented here reveal a surprisingly simple and di-

rect mechanism involving ethylene that ensures optimal levels
of an immune receptor. Previous reports have highlighted the
complexity of ethylene signaling and its roles in development of
disease symptoms, induction of antimicrobial genes as a second-
ary response, and cross-talk with other hormones (29). Here, we
showed that mutants impaired in ethylene perception and sig-
naling are all impaired in flg22-induced responses and that this
always correlates with a corresponding reduction in FLS2 tran-
script levels. In addition, we revealed that the key transcription
factor EIN3, which depends on ethylene perception and signal-
ing for its accumulation and activity, binds directly to the FLS2
promoter. These results showed that endogenous ethylene con-
trols the expression of the PRR FLS2 at the transcriptional level.
Our findings that the oxidative brust triggered by the elicitor-

mimic calyculin A is not reduced in ein2-5 mutants indicate that
the reduced flg22 responses in ethylene-insensitivemutants is caused
by reduced FLS2 expression and not an indirect effect on down-
stream responses. However, future experiments, in which FLS2 gene
is expressed constitutively in ethylene-insensitive mutants, are re-
quired to ascertain the causal relationship between decreased FLS2
expression and impaired FLS2-mediated responses.
Flg22 induces the MAP kinases MPK3 and MPK6 (39, 40)

as well as ethylene production (16). These same MAP kinases
phosphorylate the ethylene biosynthetic enzymes ACC synthases
(ACS) 2 and 6 as well as EIN3, leading to its stabilization (41, 42).
We, therefore, hypothesize a simple feedback model in which
ethylene produced in response to flg22 treatment could maintain
FLS2 levels in a positive feedback loop. This mechanism would be
especially effective to maintain the plasma membrane FLS2 pool
after internalization after flagellin binding and receptor activa-
tion (43). In the absence of flagellin, endogenous ethylene ensures
a constitutive level of FLS2 expression. On flg22 binding, FLS2
activates MPK6 that, in turn, phosphorylates ACS2/6 and fur-
ther leads to EIN3 stabilization, resulting in increased ethylene
production and signaling. Congruently, flg22 perception leads to
EIN3 accumulation (31). This model may explain the long-
established observation that PAMP perception triggers increased
ethylene biosynthesis (14–16). Our results show an unexpected
layer of regulation by ethylene tomaintain optimal levels of innate
immune receptors.

Materials and Methods
Plant Material and Growth Conditions. Arabidopsis thaliana ecotype Colum-
bia (Col-0) was used as the wild-type control. Arabidopsis plants used in this
study were grown as one plant per pot at 20–21 °C with a 10-h photoperiod
in environmentally controlled chambers or on plates containing Murashige
and Skoog (MS) medium (including vitamins) (Duchefa) and 1% sucrose
supplemented with 8% agar for the first 5 d at 22 °C and with a 16-h
photoperiod. The first set of 10,000 T-DNA SALK lines (17) was obtained
from the Nottingham Arabidopsis Stock Center. The mutant lines used in this
study are: fls2 (SALK_093905), cerk1-2 (GK-096F09), rbohD, etr1-1, ein2-1
ein2-5, ein3-1, eil1-1, sid2-2, ein3-1 eil1-1, and ein3-1 eil1-1 sid2-2.

Elicitor. Flg22 peptide was purchased from Peptron and solubilized in
sterile water.

Identification of fin Mutants. To identify flg22 insensitive (fin) mutants, we
screened ∼35,000 Arabidopsis seedlings from the first set of 10,000 T-DNA
SALK lines produced in the Col-0 background (17). Surface-sterilized seeds

Fig. 4. EIN3/EIL1 directly control FLS2 expression at the transcriptional level.
(A) Alignment of ChIP-Seq reads across the FLS2 (At5g46330) gene and
promoter region as shown with Anno-J viewer. Col-0 or ein3-1 etiolated
seedlings were grown in hydrocarbon-free air for 3 d, treated with 10 ppm
ethylene gas for 4 h, and then used in ChIP-Seq analysis using an anti-EIN3
polyclonal antibody. The proximal and distal regions with significant en-
richment are highlighted by red brackets and dashed lines. Results from two
independent experiments are presented. Reads are normalized for each
sample. Gene annotation is depicted at the top; filled boxes and open boxes
represent the 5′- and 3′-untranslated regions and exons of the gene, re-
spectively. (B) Enrichment of the indicated EIN3-associated DNA fragments
after ChIP-PCR. Chromatin from wild-type Col-0 and ein3-1 light-grown
seedlings was immunoprecipitated with an anti-EIN3 polyclonal antibody.
Enrichment of associated DNA fragments was verified by qPCR using specific
primers and is presented as relative to Col-0. (C) Sequence alignment of EIN3
binding sites in ERF1, EBF2, and FLS2 promoters. EIN3 binding sites in the
promoters of ERF1 (23) and EBF2 (25) are presented. Identified by ChIP-Seq,
the two potential binding sites of EIN3 to the FLS2 promoter are also shown.
(D) Quantitative RT-PCR analysis of FLS2 expression in Col-0, ein2-5, ein3-1,
eil1-1, and ein3-1 eil1-1 seedlings. Transcript levels are normalized to the
U-box housekeeping gene and are presented as relative to Col-0. Data are
representative of one of two experiments. (E) Total ROS production trig-
gered by 100 nM flg22 in Col-0, ein2-5, ein3-1, eil1-1, and ein3-1 eil1-1
mutants. Values are expressed as percentage of ROS obtained with Col-0 for
40 min and are mean ± SE (n = 20). Statistical significance by comparison
with (B) ein3-1 and (C) Col-0 was assessed using one-way ANOVA followed
by Dunnett’s test. *P < 0.05; **P < 0.01; ***P < 0.001. Similar results were
observed in at least three independent experiments.
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were individually dispensed in 96-well plates containing 1× Gamborg B5
medium (including vitamins) (Duchefa) supplemented with 1% sucrose, pH
5.7. After 2 d of stratification at 4 °C, plates were transferred to light for 9 d.
Liquid media were then removed and replaced by assay solution containing
10 μg/mL peroxidase from horseradish Type VI-A (Sigma), 100 μM luminol
(Sigma), and 100 nM flg22. ROS production was measured immediately and
during the 15-min period using a Varioskan microplate luminometer
(Thermo Scientific). Seedlings with a ROS production comparable with flg22-
insensitive fls2 mutant were rescued by rinsing in water and transferred to
the greenhouse. Three and four weeks later, production of oxidative burst
was tested again with two leaf discs and 100 nM flg22 as described in ref. 44.
SALK lines were considered as fin candidates when they produce repeatedly,
in the leaf disk assay, less than 60% of the ROS production obtained with
wild-type Col-0.

Map-Based Cloning. The fin3 mutation (in Col-0 background) was identified
by map-based cloning as described in SI Materials and Methods.

Measurement of Reactive Oxygen-Species Generation. Oxidative-burst mea-
surement was performed as previously described (44). ROS was elicited with
100 nM flg22, and elicitation in the absence of any PAMP (water treatment)
was included in all experiments as negative control. Twenty leaf discs from
10 5-wk-old plants were used for each condition. ROS was also triggered by
500 nM calyculin A (NEB) using whole 7-d-old sterile seedlings grown in 1×
Gamborg B5 liquid medium (including vitamins) supplemented with 1%
sucrose (pH 5.7). Luminescence was measured over time using an ICCD
photon-counting camera (Photek).

Seedling-Growth Inhibition and Callose Assays. Quantitative seedling-growth
inhibition was assessed using 12 seedlings per condition as described in ref.
45. Callose deposition analysis was performed as described in ref. 46.

MAP Kinase Activation. MAPK assays were performed on six 2-wk-old seed-
lings grown in liquid medium. Seedlings were then elicited with 100 nM flg22
or water for 5, 10, or 30 min and frozen in liquid nitrogen. MAPK activation
was monitored by Western blot with antibodies that recognize the dual
phosphorylation of the activation loop of MAPK (pTEpY). Phospho-p44/42
MAPK (Erk1/2) (Thr202/Tyr204) rabbit monoclonal antibodies from Cell Sig-
naling were used according to the manufacturer’s protocol. Blots were
stained with colloidal Coomassie blue (CCB) to verify equal loading.

Induced Resistance to Bacteria. Induced resistance assays were realized as
described in ref. 34. Briefly, water or 1 μM flg22 was infiltrated with a nee-
dleless syringe into leaves of 5-wk-old Arabidopsis plants. After 24 h, the
same leaves were syringe-infiltrated with 105 cfu/mL of P. syringae pv. to-
mato DC3000. Bacterial growth was determined 2 d postinoculation.

RNA Isolation and Quantitative RT-PCR. Total RNAwas extracted from six 2-wk-
old seedlings grown in liquid medium using TRIzol reagent (Invitrogen)
according to the manufacturer’s instructions. RNA samples were treated with
Turbo DNA-free DNase (Ambion) and quantified with a Nanodrop spectro-
photometer (Thermo Scientific). cDNA synthesis and qRT-PCR were realized
as described in SI Materials and Methods.

Protein Extraction and Immunoblot Assays. To prepare samples for examining
the accumulation of PRR proteins, five leaf discs (0.38 cm2 each) from soil-
grown plants or six 13-d-old seedlings grown in sterile conditions were
harvested and ground in liquid nitrogen. Total protein crude extracts were
prepared with 100 μL of extraction buffer [50 mM Tris-HCl, pH 7.5, 150 mM
NaCl, 1 mM EDTA, 2 mM DTT, 0.5 mM PMSF, 10% glycerol, 1% vol/vol
protease inhibitor mixture for plant cell (Sigma)]. The lysates were cleared by
centrifugation at 16,000 × g for 5 min. The supernatants were collected, and
protein concentrations were determined by Bradford quantification (Bio-
Rad) according to the manufacturer’s indications; 30 μg of total proteins
were separated on SDS/PAGE gels. FLS2 was detected with 1:1,000 rabbit
anti-FLS2 polyclonal antibodies (44). A peroxidase-conjugated goat anti-
rabbit IgG (Sigma) was used as secondary antibody.

ChIP-Seq and ChIP-PCR. ChIP was performed as described in ref. 47 with
modifications using Col-0 or ein3-1 etiolated seedlings grown for 3 d in
hydrocarbon-free air treated for 4 h with 10 ppm ethylene gas followed by
sequencing as per Illumina specifications. Sequencing data were visualized
using the Anno-J viewer (http://www.annoj.org). Enrichment values have
been determined using PeakSEq (48). ChIP was performed again using 13-d-
old light-grown Col-0, ein2-5, and ein3-1 seedlings followed by quantitative
PCR. Actin was used as internal control for normalization. Primers used for
quantitative PCR are as follows: FLS2 (At5g46330)-1251 binding site, forward
5′-CAAGTCTTCAAGTAAACATGATATGG-3′ and reverse 5′-GATTTGGACAAC-
CTCATCTTGACCC-3′; FLS2 (At5g46330)-267 binding site, forward 5′-CAA-
TCGCTCAAAACTAAATCGG-3′ and reverse 5′-CGGATGTGAAAAGGCCAAGA-
CGC-3′; ACTIN (At5g09810) forward 5′-CGTTTCGCTTTCCTTAGTGTTAGCT-3′
and reverse 5′-AGCGAACGGATCTAGAGACTCACCTTG-3′ (49). In silico motif
analysis of the FLS2 promoter for the presence of primary ethylene response
elements (AYGWAYCT) was realized using the fuzznuc software (http://
embossgui.sourceforge.net/demo/fuzznuc.html).

SA Measurement. SA extraction followed by liquid chromatography-MS
quantification was realized using 5-wk-old plants as described in ref. 50.

Statistical Analysis. Statistical significances based on t test andone-wayANOVA
analyses were performed with Prism 5.01 software (GraphPad Software).
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