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Crystallization is one of the most fundamental nonequilibrium
phenomena universal to a variety of materials. It has so far been
assumed that a supercooled liquid is in a “homogeneous disor-
dered state” before crystallization. Contrary to this common belief,
we reveal that a supercooled colloidal liquid is actually not homo-
geneous, but has transient medium-range structural order. We find
that nucleation preferentially takes place in regions of high struc-
tural order via wetting effects, which reduce the crystal–liquid in-
terfacial energy significantly and thus promotes crystal nucleation.
This novel scenario provides a clue to solving a long-standing mys-
tery concerning a large discrepancy between the rigorous numer-
ical estimation of the nucleation rate on the basis of the classical
nucleation theory and the experimentally observed ones. Our find-
ingmay shed light not only on themechanism of crystal nucleation,
but also on the fundamental nature of a supercooled liquid state.

bond orientational order ∣ glass transition ∣ hard-sphere liquid ∣
metastable liquid

Crystallization is a process in which an ordered phase emerges
from a disordered state. It is important not only as a funda-

mental problem of nonequilibrium statistical physics, but also as
that of materials science. The initial state is a disordered liquid
and the final state is a stable crystal. The classical nucleation the-
ory (1–3) considers these initial homogeneous disordered liquid
and final ordered crystal phases as the only key players of nuclea-
tion. In this theory, thus, crystal nucleation is controlled by the
competition between the free-energy gain due to the liquid–crys-
tal transformation and the free-energy loss associated with the
formation of the liquid–crystal interface. The total free-energy
cost to form a spherical crystallite with radius R is

ΔG ¼ −
4

3
πR3nsδμþ 4πR2γ;

where ns is the number density of particles in the solid, δμ is the
difference between the liquid and solid chemical potentials, and γ
is the liquid–solid interfacial tension. This ΔG goes through a
maximum at Rc ¼ 2γ∕ðnsδμÞ (critical nucleus size) and the height
of the free-energy barrier is given by

ΔGc ¼ 16πγ3

3ðnsδμÞ2
:

Then, the crystal nucleation frequency I per unit volume is ob-
tained as

I ¼ k
τt
exp½−ΔGc∕kBT�;

where k is a constant, kB is Boltzmann’s constant, and T is the
temperature. Here the kinetic factor governing I is τt, which is
the characteristic time of material transport controlling crystalli-
zation. We note that it is determined not by the viscosity but by
the translational diffusion (see, e.g., ref. 4).

The essential physics of nucleation and growth of crystals can
be understood in the framework of the above classical nucleation
theory (1–3). This theory was adapted by Russell (5) to hard-
sphere colloidal crystals and was extended by Ackerson and
Schätzel (6). However, there remain many fundamental open
questions even now (see, e.g., refs. 7–9). Nature provides intri-
guing ways to help crystallization beyond the above simplified

picture. An important point is that the initial and final states
are not necessarily only the players. This idea goes back to the
step rule of Ostwald (10), which was formulated more than a cen-
tury ago. He argued that the crystal phase nucleated from a liquid
is not necessarily the thermodynamically most stable one, but the
one whose free energy is closest to the liquid phase. Stranski and
Totomanow (11), on the other hand, argued that the phase that
will be nucleated should be the one that has the lowest free-en-
ergy barrier. Later Alexander and McTague (12) argued, on the
basis of the Landau theory, that the cubic term of the Landau free
energy favors nucleation of a body-centered cubic (bcc) phase in
the early stage of a weak first-order phase transition of a simple
liquid. Since then, there have been a lot of simulation studies on
this problem, but with controversy (see, e.g., refs. 13 and 14 and
the references therein). Recently, ten Wolde et al. showed by nu-
merical simulations of a Lennard–Jones system that (i) precritical
nuclei are predominantly bcc, despite that the stable crystal struc-
ture is face-centered cubic (fcc), but (ii) as the nucleus grows to its
critical nucleus size, the core becomes fcc ordered while its inter-
face retains a high degree of bcc-like ordering (13, 14).

However, the story does not end here. Recently, Auer and
Frenkel (15) examined the absolute crystal nucleation frequency
I of a hard-core liquid, using numerical simulation. They directly
estimated the free-energy barrier ΔGc instead of a brute-force
approach in which we have to wait for nuclei to form sponta-
neously in a coarse of simulations. They defined an order para-
meter which acts as a “reaction coordinate” for the process of
crystal nucleation. The order parameter they employed for this
purpose is the bond orientational order parameter q6 (13, 14)
(see Materials and Methods and Discussion). The estimated
free-energy barrier is found to be considerably larger than that
estimated from experiments, which leads to the crystal nucleation
frequency I lower than that of experiments (16, 17) by many or-
ders of magnitude (9, 15). This seminal paper shows us that our
current understanding of crystal nucleation is still far from being
complete. Recent advances in confocal microscopy have also con-
tributed to the basic understanding of crystal nucleation (8, 18,
19), because it allows us to directly observe a nucleation process
with a particle-level resolution. For example, Gasser et al. (19)
showed that the crystal nucleus is not necessarily spherical, unlike
what is assumed in the classical nucleation theory, and may be
anisotropic (elliptic). Furthermore, they found that the value
of the interfacial tension is almost four times lower than that
found by simulations (15). It may be worth noting that this value
is consistent with the estimate of the density functional theory
(20). This difference in γ may be directly related to the above-
mentioned discrepancy in I between simulations and experi-
ments. Whether these discrepancies stem from nonideal factors
of experiments [e.g., small charges on colloid surfaces (19)], from
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the classical nucleation theory itself, or from assumptions made
in the estimate from simulations has remained elusive.

In this paper, we study this problem, using Brownian dynamics
simulations of colloidal liquids (seeMaterials and Methods). In all
previous theories of crystallization including the classical nuclea-
tion theory, it has been implicitly assumed that an initial super-
cooled liquid before crystallization is in a “homogeneous”
disordered state. Contrary to this common belief, here we reveal
that a supercooled liquid is not spatially homogeneous, but intrin-
sically has static structural heterogeneity, more specifically,
medium-range bond orientational order, and it is this temporally
fluctuating structural order that promotes crystal nucleation via
wetting effects.

Results
Structure and Dynamics of a Supercooled Liquid. First we character-
ize the dynamics and structure of a supercooled state of a mono-
disperse hard-sphere-like liquid system we investigated. Although
this system is not a good glass former at all (or, easily crystallizes),
it exhibits behavior characteristic of a supercooled state of a glass-
forming system, which includes drastic slowing down of the
dynamics and the growing correlation length upon cooling. Here
a supercooled state means a stationary metastable state, which
evolves from an initial random configuration of particles, but
is still before crystal nucleation.

Fig. 1A indicates the ϕ dependence of the self-part of the in-
termediate scattering function Fsðqp;tÞ. The wavenumber qp
corresponds to the first peak of the structure factor SðqÞ. The so-
lid line indicates the Kohlrausch–Williams–Watts function:
A exp½−ðt∕ταÞβ�, which is fitted to the α relaxation in Fsðqp;tÞ.
From this fitting, we obtain the structural relaxation time τα as
well as the stretching exponent β. Fig. 1B shows the ϕ dependence
of the structural relaxation time τα. The solid line indicates the
fitting by the Vogel–Fulcher–Tammann (VFT) relation: τα ¼
τ0 exp½Dϕ∕ðϕ0 − ϕÞ�, where D is the fragility index and the ϕ0

is the ideal glass transition point. We note that larger D indicates
that a liquid is less fragile (i.e., stronger). The fitting yields D ¼
0.0743 and ϕ0 ¼ 0.56. The inset of Fig. 1B shows the ϕ depen-
dence of β. We see that the β decreases as ϕ increases, which in-
dicates that dynamic heterogeneity grows with an increase in ϕ
(see below). Here we note that the stability limit of the crystal is
confirmed to be located between 0.498 and 0.501 for our system.
This limit is very close to the hard-sphere freezing point ϕF ¼
0.494 (99% agreement).

Fig. 1C indicates the ϕ dependence of the characteristic size of
clusters having high bond orientational order Q6 (see Materials
and Methods for the definition), ξMRCO. Here we call the struc-
tural order in a supercooled liquid “medium-range crystalline or-
der” (MRCO). Strictly speaking, our MRCO should be called
medium-range bond orientational order linked to a geometry
of the equilibrium crystal; we use MRCO hereafter for simplicity.
The ξMRCO is estimated from ξMRCO ¼ ðNMRCOÞ1∕3, where
NMRCO is the average number of particles belonging to a cluster
(MRCO) with Qk

6 > 0.28. NMRCO is obtained as NMRCO ¼
∑nc

j¼1 N
2
j ∕∑

nc
j¼1 Nj, where nc is the number of the clusters and

Nj is the number of particles belonging to jth cluster. We confirm
that the choice of the above threshold value (0.28) does not affect
the ϕ dependence of ξ, and affects only the value of ξ0 slightly.
The solid line is a power-law fit: ξMRCO ¼ ξ0½ϕ∕ðϕ0 − ϕÞ�2∕3. Here
ϕ0 is the ideal glass transition point obtained by VFT fitting (see
above), and we use ξ0 as the only adjustable parameter, whose
value is determined as ξ0 ¼ 0.512. Finally, Fig. 1D shows the re-
lationship between τα and ðξMRCO∕ξ0Þ3∕2. The solid line indicates
the relation τα ¼ τ0 exp½DðξMRCO∕ξ0Þ3∕2�.

All these behaviors are the same as those of other glass-form-
ing liquids we studied (21–24), indicating that even a monodis-
perse hard-sphere liquid exhibits typical glassy behavior under
supercooling.

Process of Crystal Nucleation. Now we show structural fluctuations
and a crystal nucleation process, both of which are observed in a
supercooled state of a monodisperse hard-sphere (colloidal) sys-
tem, in Fig. 2 (see also SI Text). To characterize structural order,
we use the correlation map of the two types of rotationally in-
variant bond orientational order parameters, Q6 and Q4 (see

A C
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Fig. 1. Dynamics and structure of a supercooled state of a monodisperse
colloidal suspension (N ¼ 4;096). (A) The ϕ dependence of the intermediate
scattering function Fsðqp;tÞ. The solid lines are the fittings of the Kohlrausch–
Williams–Watts function: A exp½−ðt∕ταÞβ�. (B) The ϕ dependence of τα. The
solid line indicates the fitting by the VFT relation. The inset shows the ϕ de-
pendence of β. The solid line is a guide to the eye. (C) The ϕ dependence of
the characteristic size of clusters having high Q6, ξMRCO. The solid line is a
power-law fit: ξMRCO ¼ ξ0½ϕ∕ðϕ0 − ϕÞ�2∕3. (D) Relationship between τα and
ðξMRCO∕ξ0Þ3∕2. The solid line is the fitting by the relation τα ¼
τ0 exp½DðξMRCO∕ξ0Þ3∕2�.

Q6 0.28 0.40 0.55

t =t'+110
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Fig. 2. Birth of a crystal nucleus from medium-range structural order (see
Supporting Information) for a system of N ¼ 16;384. The process of nuclea-
tion of a crystal at ϕ ¼ 0.533. Particles with intermediate Q6 (0.28 ≤

Q6 ≤ 0.40) are colored red, whereas those with highQ6 (Q6 ≥ 0.4) are colored
green. The time unit is the Brownian time of a particle, τB. We can see the
birth of a crystal and its growth. Time t ¼ t0 is when a supercooled liquid
reaches a sort of quasi-equilibrium steady state after the initiation of simula-
tions from a random disordered state.
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Materials and Methods and below) (25, 26) to specify the local
symmetry of crystalline structures. For a 2D system, a similar ana-
lysis was made by Glaser and Clark (27); tenWolde et al. (14) and
Gasser et al.(19) also employed the combination of Q6 and Q4

distributions to analyze a 3D structure of crystal nuclei. Fig. 3
shows the transition process from medium-range crystal-like
bond orientational order to a crystal, which is shown in Fig. 2, on
the Q4–Q6 correlation map. From Fig. 2, we can see that bond
orientational order before crystal nucleation is characterized
by hcp-like symmetry, whereas crystals nucleated have a mixed
character of hcp and fcc-like order. The latter suggests a random
hexagonal close packing (rhcp) structure of nuclei, consistent
with simulation (15) and experimental results (19). On noting
that an fcc structure is the most stable crystal structure for hard
spheres, which was also confirmed by microgravity experiments
(28), the rhcp structure of crystal nuclei can be interpreted as
a manifestation of Ostwald’s step rule (10), as suggested by Auer
and Frenkel (15). By combining the information in Figs. 2 and 3,
we can draw the following physical scenario. In a metastable
supercooled state before the emergence of (green) crystal nuclei,
we can see temporally fluctuating clusters of high hcp order,
which are colored red in Fig. 2. After an incubation time, crystal
nuclei with an rhcp-like structure (colored green in Fig. 2) are
nucleated selectively inside regions of high hcp-like order (co-
lored red), because the reduction of the interface energy due
to wetting of a crystal nucleus to regions of high bond orienta-
tional order significantly reduces the free-energy barrier for crys-
tal nucleation. An emerging crystal nucleus dresses a region of
high hcp-like bond orientational order around it. Once nuclei
are formed, structural fluctuations in a liquid are pinned by them.

The relevance of this scenario of wetting-induced preferential
nucleation in regions of high MRCO is supported by the fact that
more than 100 nucleation events observed in this study all occur
selectively in high MRCO regions. This result implies the lower
free-energy barrier of crystal nucleation, i.e., the lower liquid-
crystal interfacial energy for higher MRCO regions, which is con-
sistent with the experimental observation of Gasser et al. (19) that
the value of the interfacial tension γ is almost four times lower
than that found by simulations (15). By contrast, the result of
Gasser et al. (19) is not consistent with an older density functional
study (29) and computer simulations of hard spheres (15, 30),
which gave results approximately four times as large. The lower
interfacial tension estimated from the experiments might be due

to slight charges of colloidal particles (8, 19). However, we point
out here that there is another possibility that leads to larger γ in
simulations (30). The estimation of γ was made for a flat interface
between a large crystal and liquid (30), which extends over a
length scale much longer than ξ. Thus, even if their liquid state
includes MRCO, the interfacial energy for such a large crystal
should be the average over low and high MRCO regions, whereas
for a small crystal nucleus, the interfacial energy is exclusively
between a high MRCO region and crystal in our scenario. This
difference may be a possible cause of the discrepancy. However,
further careful studies on the interfacial energy are highly desir-
able for settling this issue in a conclusive manner.

It might be thought that this temporally fluctuating order in a
supercooled liquid can be interpreted as precritical nuclei whose
size is smaller than the size of a critical nucleus, Rc, and does not
grow. However, this interpretation is not appropriate. As des-
cribed above, the correlation length of bond orientational order
ξ is larger than the size of a critical nucleus Rc, which excludes a
possibility that these red regions of high hcp-like order are pre-
critical nuclei. We argue that the ordering should be regarded as
spontaneous critical-like fluctuations of bond orientational order
intrinsic to a supercooled state of a liquid. We stress that this tran-
sient ordering accompanies little density fluctuations, as will be
shown below, which indicates the absence of positional (or, trans-
lational) ordering. Thus, this hcp-like bond orientational ordering
is essentially different from the crystal nucleation, which should
accompany positional ordering. This point is crucial to support
our argument. This conclusion is further supported by the fact
that a polydisperse system, which does not crystallize, also exhi-
bits transient hcp-like bond orientational order with a long life-
time. For example, Fig. 4 indicates a series of snapshots of MRCO
over 4τα for the polydispersity of Δ ¼ 6%, where we can avoid
crystal nucleation during our simulation time. At t ¼ t0, there exist
islands of MRCO, but at t ¼ t0 þ 4τα, some of them already dis-
appear. This transient nature of MRCO tells us that MRCO is
nothing to do with crystal nuclei which should grow with time.
Unlike crystal nuclei, MRCO has a finite lifetime: a few times
of τα in this case. The lifetime becomes longer with an increase
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Fig. 3. Temporal change of the structure on the Q4–Q6 correlation map. (A)
The distributions of Q4 and Q6 on the correlation map for fcc, hcp, and bcc
crystals and liquids. Due to thermal fluctuations, even homogeneous crystals
have a distribution of the order parameters. (B–D) Temporal change on the
Q4–Q6 correlation map, corresponding to Fig. 2. We can see that the initial
temporally fluctuating high Q6 regions (red particles in Fig. 2) have high hcp-
like bond orientational order, whereas crystal nuclei (green particles in Fig. 2)
have rhcp-like (a mixed character of hcp and fcc) bond orientational order.

Fig. 4. Snapshot of MRCO for a period of 4τα at ϕ ¼ 0.557 and Δ ¼ 6% (N ¼
4;096). At t ¼ t0 there exist clusters of high MRCO. At t ¼ t0 þ 4τα some of
them already disappear, which indicates that MRCO is temporally fluctuating
and has a finite lifetime, and thus it is nothing to do with crystal nuclei.
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in ϕ. Because there is no crystallization in a system ofΔ > 6% and
fluctuating order continues to exist in a stationary manner, this
structural ordering can be regarded as an intrinsic structural
feature of a supercooled liquid.

Difference Between MRCO and Crystal Nuclei. Concerning this hid-
den structural ordering in a supercooled liquid, we have recently
studied the origin of dynamic heterogeneity in a supercooled
liquid state and found that medium-range bond orientational or-
dering is responsible for dynamic heterogeneity in some glass-
forming liquids. The correlation length of bond orientational
order ξ appears to diverge toward the ideal glass transition tem-
perature T0. We confirmed this result in 2D polydisperse colloids
(22), driven polydisperse granular hard spheres (23), and spin
liquid with internal energetic frustration (21). Consistent with
these results, we have also revealed, by using the above-men-
tioned Q4–Q6 correlation map, that slow regions in 3D polydis-
perse colloidal liquids, which form glass rather than crystal upon
densification because polydispersity avoids crystallization, have
high hcp-like bond orientational order with a finite lifetime
(see Fig. 4). For the present system (Δ ¼ 0), we confirm the same
behavior (see Fig. 1), including the diverging length scale of
spatial static heterogeneity ξ, the VFT-like divergence of the
structural relaxation time τα, and the link between them. This be-
havior suggests some universality of such critical-like fluctuations
of bond orientational ordering in a supercooled liquid (24). We
note that structural ordering in a supercooled colloidal suspen-
sion is driven purely entropically, as in its crystallization: hcp-like
bond orientational ordering decreases configurational entropy,
but increases vibrational (or correlational) entropy, which in total
decreases the free energy of the system.

As shown in Fig. 5A, we emphasize that before crystallization
the structure factor SðqÞ of a supercooled liquid does not have
any excess scattering in the low q region around a wavenumber
corresponding to the size of medium-range crystalline order, ξ,
but crystallization induces a steep rise at low q, reflecting a higher
density of the crystal than the liquid. We also confirm this result in
real space. We apply Voronoi tessellation and analyze a local
volume of the Voronoi cell of each particle. We can clearly
see in Fig. 5 that crystal nuclei colored green with rhcp-like order
have a high local density (Fig. 5 E–G), whereas regions with high
hcp bond orientational order, which has a finite lifetime, accom-
pany little density change (Fig. 5 B–D). Thus, the bond orienta-
tional ordering (MRCO) is decoupled from density change. This
fact again leads us to the conclusion that the transient medium-

range bond orientational order observed in a supercooled state is
an intrinsic structural feature of a metastable supercooled state of
a liquid and should not be regarded as precritical nuclei. We can
use (i) decoupling of medium-range bond orientational order and
coupling of a crystal nucleus with density change (i.e., positional
ordering) and (ii) the local symmetry as fingerprints for whether
crystal nucleation takes place or not.

Here it is worth mentioning the pioneering work by Schätzel
and Ackerson (31) that shows the growth of long-wavelength
density fluctuations during the crystallization of hard colloidal
spheres by small-angle light scattering measurements. A mea-
sured structure factor exhibits a distinct peak at finite scattering
vectors, reflecting the conserved nature of the particle density.
This work indicates a strong coupling of the observed conserved
density parameter to the nonconserved crystal-order parameter.
Indeed, the real-space structure shown in Fig. 5 F and G tells us
that crystal nuclei appearing red (V < V̄ ) accompany depleted
regions around them appearing green or blue (V > V̄ ), clearly
indicating such a coupling. Although our system size is too small
to see a distinct peak in SðqÞ in the low q region, the low q rise of
SðqÞ observed in Fig. 5A suggests the existence of such a scatter-
ing peak because the conservation of the particle density tells us
that SðqÞ should go to nearly zero when q approaches zero. The
low q behavior of SðqÞ needs to be checked by larger-size simula-
tions in the future.

Crystal Nucleation Frequency. Finally, we directly measured the
number of crystal nuclei as a function of time t to calculate the
crystal nucleation frequency for each ϕ. Crystal nuclei were iden-
tified by the criterion Q6 ≥ 0.4 and eye inspection. Because the
number density of nuclei is low and they grow with time, this sim-
ple method is robust enough. We confirmed that the decrease of
the Voronoi volume per particle in a nucleus, which is a distinct
feature of crystal absent in MRCO (see Fig. 5). Fig. 6A shows the
ϕ dependence of the crystal nucleation number density NðtÞ∕L3,
where NðtÞ is the number of the crystal nuclei as a function of t,
and L is the box size. The solid straight lines in the figure are the
results of linear fitting: NðtÞ∕L3 ¼ Iðt − t0Þ, where we use the nu-
cleation rate I and the incubation time for nucleation t0 as the
fitting parameters. To calculate NðtÞ, we performed seven inde-
pendent simulations for averaging. For the case of the lowest ϕ,
the system crystallizes only twice for seven simulation runs. In
each simulation, we estimate the time when a crystal nucleus starts
to grow and we accumulate the number of crystal nuclei. In this
way, we produce the stair-like functions over all independent
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Fig. 5. Density ordering upon crystal nucleation. (A) Difference in SðqÞ before and after crystal nucleation at ϕ ¼ 0.533 (N ¼ 16;384). The blue line is SðqÞ
before crystal nucleation (averaged from t0 to t0 þ 50), the green line is SðqÞ just after nucleation (averaged from t0 þ 50 to t0 þ 70), and the red line is SðqÞ after
crystallization (averaged from t0 þ 110 to t0 þ 150). Here the time unit is τB. We can see the increase of SðqÞ at low q for a system after crystal nucleation,
indicating the density change upon crystallization. (B–D) Before crystal nucleation (t ¼ t0 þ 1.0) at ϕ ¼ 0.537 (N ¼ 4;096). (B) High Q6 clusters; (C) the spatial
distribution of the volume of Voronoi polygon for all the particles; (D) the spatial distribution of the volume of Voronoi polygon for particles with high Q6

(see B). E–G shows the same information as B–D, respectively, but after crystal nucleation (t ¼ t0 þ 56.7) at ϕ ¼ 0.537 (N ¼ 4;096). The average volume per
particle V̄ ¼ 1.285 (related to the average density) is indicated by the arrow on the color bar. Here we can clearly see crystal nuclei (green particles in E)
have a density higher than the average (V < V̄ ) (appears as red), and is surrounded by depleted regions (V > V̄) (appears as green or blue).
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simulations for each ϕ to obtain NðtÞ. The slope provides us with
the nucleation rate I.

In Fig. 6B we show the ϕ dependence of the dimensionless re-
duced crystal nucleation frequency Ir ¼ IðσeffÞ5∕D0 (seeMaterials
and Methods of σeff and D0) obtained by the above-mentioned
direct simulations of a crystallization process (see Fig. 6A) and
compare it with the results of experiments (17) and the numerical
estimate by Auer and Frenkel (15). We can clearly see that the
reduced crystal nucleation frequency Ir estimated from our simu-
lations almost coincides with that of experiments. The slight dif-
ference in Ir between them may stem from the small difference in
the polydispersity Δ (32): Δ ¼ 0% for our case, whereas Δ ¼
2.5% in the experiments. We also confirm that our results for N ≥
4;096 are free from finite size effects (see Fig. 6B and SI Text). We
speculate that the discrepancy between our results and those of
Auer and Frenkel (15) may arise from (i) whether additional de-
grees of freedom [MRCO in a supercooled liquid and density
change accompanied by crystallization (also linked to (ii)] are
taken into account or not and (ii) whether the ensemble used
in simulations is the canonical, constant temperature–constant
volume (NVT) ensemble or isothermal–isobaric ensemble. The
details are discussed in SI Text.

Discussion
Here we summarize our physical scenario of crystallization. After
a quench from an equilibrium liquid state to a supercooled state,
medium-range bond orientational ordering whose symmetry has

a connection to an equilibrium crystal structure (hcp in hard-
sphere colloids) is first formed transiently and then positional or-
dering follows via the first-order phase transition by overcoming a
free-energy barrier for nucleation. The sequence of crystalliza-
tion from melt is thus described as follows: (i) initial homo-
geneous equilibrium liquid → (ii) “inhomogeneous” supercooled
liquid with bond orientational order→ (iii) intermediate ordered
phase (10–14) → (iv) final crystalline phase. In the conventional
scenario, step (ii) is replaced by “homogeneous disordered super-
cooled liquid.”

Our finding may fundamentally alter the conventional picture
of the state of liquid that a (supercooled) liquid is spatially homo-
geneous and possesses no structural order (at most short-range
order). Since Ostwald’s seminal argument, intermediate states
between the initial liquid and the final crystal state have been
searched from the crystal side (10–14). However, our study de-
monstrates that it is equally important to consider hidden order-
ing in a supercooled liquid, which may be regarded as an inter-
mediate state formed from the liquid side. This hidden ordering
in a supercooled liquid further suggests an intimate link between
crystallization and glass transition. Namely, a supercooled liquid
is intrinsically heterogeneous and, in this sense, homogeneous nu-
cleation may necessarily be “heterogeneous.” How universal this
scenario is to more complex liquids remains for future investiga-
tion. Finally, we mention that we may view the above effects as
enhanced crystal nucleation (positional ordering) by critical fluc-
tuations associated with another phase ordering (bond orienta-
tional ordering), which was originally proposed for crystal-
lization in protein solutions (33), if glass transition involves a sort
of critical phenomena associated with bond orientational order-
ing, which is supposed to occur at the ideal glass transition point
T0 (21–24).

Materials and Methods
Simulation Methods.A hard-sphere system is often used as one of the simplest
model systems for studying phase transitions observed in condensed matter
(34). The control parameter of this system is the volume fraction ϕ rather than
the temperature T , and the effective temperature is Teff ¼ 1∕ϕ. As a model of
hard-sphere colloids, we employ a colloidal system interacting with
the Weeks–Chandler–Andersen (WCA) repulsive potential (35): UjkðrÞ ¼
4ϵfðσjk∕rÞ12 − ðσjk∕rÞ6 þ 1∕4g for r < 2

1
6σjk, otherwise UjkðrÞ ¼ 0, where

σjk ¼ ðσj þ σkÞ∕2 and σj represents the size of particle j. For the monodisperse
system mainly studied here, σi ¼ σ. For a system of polydispersity, we intro-
duce the Gaussian distribution of particle size σj . Its standard deviation is re-
garded as polydispersity; Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhσ2i − hσi2Þ

p
∕hσi. We used standard Brownian

dynamics simulations in the NVTensemble. Wemainly used simulation results
for a system which contains N ¼ 4;096 particles. To check the finite size ef-
fects, we also made simulations for N ¼ 1;024 and N ¼ 16;384. We confirm
there is few finite size effects for systems of N ≥ 4;096. The temperature
is fixed at kBT∕ϵ ¼ 0.025. We define the volume fraction by

ϕ ¼ 1∕ð6L3Þ∑
N

j¼1

πðσeffj Þ3;

where L is the box size and σeffj is the effective diameter of the particle j;
σeffjk ¼ ðσeffj þ σeffk Þ∕2 is characterized as Ujkðσeffjk Þ ¼ kBT . We use the effective
(scaled) diameter σeff ¼ ð1∕NÞΣiσ

eff
i and volume fraction ϕ for comparing our

results with those of hard-sphere systems. In the study of glass transition, we
confirmed that our WCA system with this definition of the volume fraction is
equivalent with driven hard-core granular matter (22, 23), which suggests
that our system can be practically regarded as hard-sphere colloids. The time
unit was set to be the Brownian time τB ¼ ðσeffÞ2∕D0, where D0 is the self-
diffusion coefficient at infinite dilution.

Structural Characterization: Bond Orientational Order and SðqÞ. To characterize
bond orientational order around particle k, Steinhardt et al. (36) introduced
the rotationally invariant parameter

qkl ¼
 

4π

2lþ 1 ∑
l

m¼−l

jqklmj2
!

1∕2

:
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Fig. 6. Crystal nucleation dynamics. (A) Temporal change of the number of
crystal nuclei for a system of N ¼ 4;096 (see also Supporting Information).
From the rate of the increase in the number of crystal nuclei, we estimated
the crystal nucleation frequency I. The numbers in the figure indicate the vo-
lume fraction ϕ. (B) The ϕ dependence of the reduced crystal nucleation fre-
quency Ir for our work, the numerical estimate by Auer and Frenkel (15), and
the experimental work by Sinn et al. (17). Curves are guides to the eye. The
errors in our estimate of Ir are about the size of the symbols. We also show
the results for three different system sizes (N ¼ 1;024; 4,096; and 16,834),
which indicate few finite size effects for N ≥ 4;096. Our work almost repro-
duces the experimental results (17), including the ϕ dependence, i.e., the
shape of the curve. The slight difference between our result and the experi-
mental one may reflect the difference in the polydispersity between them.
Here the degree of polydispersity Δ is the variance of the size distribution.
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Here

qklm ¼ 1∕nkb ∑

nkb

j¼1

Y lmð ~rkjÞ;

where Ylmð ~rkjÞ is a spherical harmonic function of degree l and order m, and
nk
b is the number of bonds of particle k. Then its coarse-grained version

including the information of the second neighbor shell was introduced by
Lechner and Dellago (37) as

Qk
l ¼

 
4π

2lþ 1 ∑
l

m¼−l

jq̄klmj2
!

1∕2

;

where

q̄klm ¼ 1∕Nk
b ∑

Nk
b

j¼0

qjlm

and here the sum from j ¼ 0 to Nk
b runs over all neighbors of particle k (Nk

b
particles) plus the particle k itself. Thus, to calculate Qk

l of particle k, one uses
the local orientational order vectors averaged over particle k and its sur-
roundings. Whereas qk

l holds the information of the structure of the first
shell around particle k, its averaged version Qk

l also takes into account
the second shell. This spatial averaging added to the standard Steinhardt
bond orientational order parameter (36) has tremendous significance in de-
tecting local ordering with a high sensitivity (37). Here we mainly used the
coarse-grained parameters Qk

l : Q
k
6 and Qk

4 which are l ¼ 6 and l ¼ 4 of Qk
l ,

respectively. The time-averaged rotationally invariant lth order bond
orientational order parameter of particle k is also calculated as

Q̄k
l ¼

1

τα

Z
t0þτα

t0

dtQk
l :

Here the time average is taken for a period of τα. This time-averaged para-
meter was used only in Fig. 4. We also observe the structure factor SðqÞ in a
supercooled liquid state. SðqÞ is calculated as SðqÞ ¼ 1∕ðρNÞhρðqÞρð−qÞi, where

ρðqÞ ¼
Z

∑
N

j¼1

δð ~r − ~rjÞei ~q· ~rd ~r ¼ ∑
N

j¼1

ei ~q· ~rj :

Characterization of MRCO. For characterization of the structure of MRCO in
3D, we make a correlation map of the two types of coarse-grained bond or-
ientational order parameters, Qk

4 and Qk
6 (26), for MRCO together with those

for crystals (fcc, hcp, and bcc), and a disordered liquid at a finite temperature
(with thermal noises). The result is shown in Fig. 3A. Fig. 3 shows that the
bond orientational order parameters’ distribution for MRCO is very similar
to that for hcp, but very different from those of the other structures (fcc
and bcc) for both of them. In particular, our results rule out a possibility that
MRCO has an icosahedral bond orientational order. Here we note that at the
zero temperature (without thermal noises) the simple cubic lattice has
ðQ4;Q6Þsc ¼ ð0.764;0.354Þ, the body-centered cubic lattice has ðQ4;Q6Þbcc ¼
ð0.036;0.511Þ, the fcc has ðQ4;Q6Þfcc ¼ ð0.191;0.574Þ, the hcp has ðQ4;Q6Þhcp ¼
ð0.097;0.485Þ, and the icosahedral symmetry gives ðQ4;Q6Þico ¼ ð0;0.663Þ (see,
e.g., ref. 25). The crystal nuclei have a mixed character of fcc and hcp, which is
indicative of an rhcp structure.
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