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spindle formation, Aurora B activation and chromosomal congression
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RASSF7, a member of the N-terminal Ras association domain
family, has increased expression in various cancers and, on the
basis of our previous work in Xenopus embryos, may be a
regulator of mitosis. In the present study, we address, for the first
time, the role of human RASSF7 in mitosis. We demonstrate that
RASSF7 is expressed in a broad range of different cell types and
that this expression could be enhanced following exposure to
hypoxia. Knocking down RASSF7 in human cell lines inhibited
cell growth and induced defects in mitosis, including aberrant
spindle formation and a failure in chromosomal congression. In
order to understand the molecular basis of the defects in more
detail, we analysed the activity of mitotic signalling proteins

and found that activation of Aurora B did not occur in cells
in which RASSF7 was knocked down. We also show that
endogenous RASSF7 protein localizes to the centrosome and
demonstrate using microtubule-regrowth assays that RASSF7 is
an important regulator of microtubule dynamics. On the basis
of these observations, we propose that, owing to its key role in
regulating the microtubule cytoskeleton, RASSF7 is required for
mitosis in human cells.

Key words: Aurora kinase, centrosome, hypoxia, microtubule,
mitosis, Ras association domain family protein (RASSF protein).

INTRODUCTION

RASSF7 (Ras association domain family 7), previously known as
HRC1 (HRASTI cluster 1) [1] and C11orf13, is a member of the
N-terminal RASSF family [2], a group of four proteins (RASSF7—
RASSF10) which are structurally distinct from the classical
RASSF proteins (RASSF1-RASSF6) [3,4]. There is emerging
evidence to suggest that at least two members of the N-terminal
RASSF family may be tumour suppressors. RASSF8 has reduced
expression in lung cancers and knocking down its expression
causes an increase in growth [5-7], and RASSF10 expression is
epigenetically inactivated in leukaemias and thyroid cancers [8,9].
In contrast, microarray studies have demonstrated that RASSF7
expression is up-regulated in a range of cancers [10-14], but
little is known about its function. Our previous work showed
that knocking down the expression of Xenopus rassf7 in embryos
caused a failure in spindle formation, nuclear fragmentation and
apoptosis [15]. This suggests that RASSF7 is required for mitosis,
a complex process involving microtubule nucleation from the
spindle pole and the stable attachment of microtubules to the
kinetochore [16-18]. However, RASSF7 function has not been
studied in species other than Xenopus and the role that it plays in
mitosis remains unknown. In the present study, we investigated the
function of human RASSF7 and established why it is required for
mitotic progression. Our data show that knocking down RASSF7
causes a reduction in cell growth and multiple defects in mitosis,
including a failure in spindle formation, Aurora B activation
and chromosomal congression. In addition, we have shown that

RASSF7 localizes to the centrosome and that it plays a crucial
role in regulating microtubule growth. These results indicate that
RASSF function is crucially important for mitosis because it
regulates microtubule growth from the centrosome.

EXPERIMENTAL
Cell culture

Cell culture medium and reagents were purchased from Sigma.
H1792 and HeL a cells were maintained at 37 °C under 5 % CO, in
DMEM (Dulbecco’s modified Eagle’s medium), with 10 % fetal
bovine serum, 1% penicillin/streptomycin and 1 % glutamine.
Mitotic cell enrichment and the microtubule-depolymerization
and -regrowth assays were carried out as described in [19,20].
To expose cells to hypoxic conditions, cultures were placed
in a humidified 37°C multigas incubator with 5% CO,/95 %
nitrogen for 3 h. Residual O, levels were monitored regularly and
were found to be consistently less than 0.1 %. Control cultures,
maintained under nomoxic conditions (21 % O,), were processed
in parallel.

Cloning, transfection and gene silencing

The coding sequence of human RASSF7 (IMAGE clone:
40032773) was cloned into the expression vector pcDNA3-
DESTS53 (Invitrogen) using TOPO® and Gateway® cloning (Invi-
trogen) to generate a GFP (green fluorescent protein)-fusion

Abbreviations used: CENP-A, centromere protein A; GFP, green fluorescent protein; H a E, haematoxylin and eosin; INCENP, inner centromere protein;
PLK1, Polo-like kinase 1; RASSF, Ras association domain family; shRNA, short hairpin RNA; siRNA, small interfering RNA.
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protein. This was transfected into HelLa cells using
Lipofectamine™ (Invitrogen). H1792 cells were transiently
transfected with siRNA (small interfering RNA) oligonucleotides
targeting RASSF7, RASSF7 KD1 (Ambion oligonucleotide
ID 13242) and RASSF7 KD2 (Ambion oligonucleotide ID
13338) or a control oligonucleotide targeting luciferase (MWG)
using Oligofectamine™ (Invitrogen). The soft agar colony-
forming assay was conducted as described in [7]. shRNA (short
hairpin RNA) silencing of gene expression was achieved using
RASSF7 (code KHO9867N) and scrambled control shRNA.
pGeneClip/Neo vectors from SuperArray Bioscience. Approx.
2x 10° HeLa cells were seeded 1day before transfection.
Transfected cells were selected for 14 days in 1.2 mg/ml G418
(Sigma) and subsequently counted and analysed. The experiment
was repeated as described above, except that the seeding of 2 x 10°
HeLa cells was carried out after selection.

Immunoblotting

Immunoblotting was carried out and quantified using an Optichem
detector with associated software (Ultra Violet Products) as
described in [21]. After transfer, the membranes (Whatman) were
blocked in 5% (w/v) non-fat dried skimmed milk powder in
Tris-buffered saline containing Tween 20. Antibodies used were
rabbit anti-RASSF7 (Aviva Systems Biology ARP34390_T100),
mouse anti-B-tubulin (Sigma T4026), mouse anti-(phospho-
histone H3) (Abcam 14955). The anti-RASSF7 antibody
produced a band at 34 kDa as predicted.

Immunofluorescence

Cells were grown on coverslips, fixed and permeabilized at
—20°C in methanol for 10 min and incubated in blocking
solution (PBS, 1% BSA and 3% normal goat serum).
Primary antibodies were: rabbit anti-pericentrin (Covance PRB-
4325), mouse anti-y-tubulin (Sigma T6557) and mouse anti-
RASSFI1A (eBioscience 14-6888). The rabbit anti-RASSF7
antibody required antigen retrieval to unmask the epitope, which
involved EDTA treatment (1 mM, pH 8.0) for 1.5 h at 37 °C before
blocking. For mouse anti-«-tubulin (Sigma T9026), mouse anti-
(Aurora A) (BD Biosciences 610938), mouse anti-(Aurora B) (BD
Biosciences 611082), rabbit anti-phospho-Aurora (Cell Signaling
Technology 2914), rabbit anti-phospho-PLK1 (Polo-like kinase
1) (Biolegend 618601), mouse anti-INCENP (inner centromere
protein) (Upstate Biotechnology 05-940), rabbit anti-phospho-
CENP-A (centromere protein A) (Millipore 04-792) and rabbit
anti-(active caspase 3) (Abcam ab13847) cells were fixed in 4 %
(w/v) paraformaldehyde and permeabilized in 0.1 % Triton X-100
at room temperature (22 °C). Incubation with relevant secondary
antibodies and DAPI (4',6-diamidino-2-phenylindole) (1 pg/ml;
Sigma) followed. Cells were then mounted in Mowiol (Sigma),
visualized using a Zeiss LSM 510 confocal microscope, and
images were captured and processed using LSM image browser
software.

Promoter methylation analysis

COBRA (combined bisulfite restriction analysis) [8] was used to
determine the methylation status of the 5" CpG island associated
with the RASSF7 gene. Primers used for methylation analysis
were 5-TTTAGGAGYGGGGTTAGATATTTATTT-3' and 5'-
TTAACTACCTCTATCACRCCCCTCCC-3'.

Mouse in situ hybridization

In situ hybridization was carried out as described previously [7].
The mouse Rassf7 probes were generated using a pCMV.sport6
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vector (IMAGE clone 4206694) and an SP6 (sense) or T7
polymerase (antisense) following digestion with Stul or AhdI
enzymes respectively. H a E (haematoxylin and eosin) staining
was performed on paraffin sections using standard methods.

Statistical analysis

Means and S.D. values were calculated and plotted using
Microsoft Excel. Each experiment was repeated at least three
times. P <0.05 was considered significant. Statistical analysis
was carried out using unpaired Student’s ¢ tests.

RESULTS AND DISCUSSION

We began by establishing which tissues and cell types express
RASSF7. In situ hybridization was carried out on mouse embryos
and adult organs, and Rassf7 was found to be expressed in
all tissues examined; however, the level of expression varied,
with particularly high levels seen in the lung and the brain
(Figures 1A—1C). Immunoblotting of lysates from mammalian
and human cell lines showed a major band which migrated
at the predicted size of RASSF7 (34 kDa) (Figure 1D) and
this band is specific for RASSF7 because it was reduced by
two different knockdown approaches (Figures 2A and 2B).
The immunoblotting showed that RASSF7 was expressed in
all cell lines tested (Figure 1D). Consistent with the fact that
RASSF7 is expressed in a number of different cancerous cell
lines, and in contrast with other RASSF proteins [3,4], we
found no evidence of RASSF7 gene silencing by promoter
methylation in 57 cancer cell lines (see Supplementary Figure
S1A at http://www.Biocheml].org/bj/430/bj4300207add.htm, and
results not shown). RASSF7 mRNA is up-regulated by hypoxia
[22,23], which, given the hypoxic nature of solid tumours, might
explain the increase in RASSF7 expression seen in tumour cells
[10-14]. Western blotting demonstrated that RASSF7 protein
levels are also increased by hypoxic insult (Figure 1E), showing
that RASSF7 protein is likely to be increased by the hypoxic
environment found in solid tumours.

Several members of the RASSF family are believed to be
tumour suppressors and act to restrain growth [3,4]. Consistent
with this idea, knockdown of RASSF6 or RASSFS8 causes an
increase in the anchorage-independent growth of the human lung
adenocarcinoma cell line H1792 [7,24]. To establish whether
RASSF7 functions in a similar way, we analysed the effect of
RASSF7 knockdown on anchorage-independent growth. RASSF7
expression was knocked down in cells transfected with RASSF7
KD2 siRNA (Figure 2A). In contrast, RASSF7 KD1 did not
efficiently knock down RASSF7 and this siRNA was used as an
additional negative control along with the standard control siRNA
(Figure 2A). H1792 cells showed significantly lower colony-
forming activity in soft agar after RASSF7 KD2 siRNA treatment
as both the size and the number of colonies was reduced compared
with the controls (Figure 2A). These findings show that, unlike
RASSF6 and RASSFS, which act to restrain growth, RASSF7
is essential for anchorage-independent growth. The fact that
RASSF7 is required for growth may explain why its expression
is not silenced in the cancer cell lines analysed above.

To address why RASSF7 is required for growth, we
carried out shRNA knockdowns in HeLa cells. The alternative
knockdown strategy ensures the specificity of the phenotype,
and HeLa cells were used as they are easier to analyse than
H1792 cells. Consistent with the data in H1792 cells, sShRNA
knockdown of RASSF7 in HeLa cells caused a reduction in
cell number (Figure 2B). This could be caused by increased
apoptosis; however, the percentage of active caspase 3-positive
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Figure 1 RASSF7 is expressed in a wide range of cell types

(A) In situ hybridization on E (embryonic day) 10.5 mouse embryos (x22). (B) In situ hybridization on E15.5 mouse embryos (x8). (C) /n situ hybridization on mouse adult tissues (x50). The H
a E staining shows the tissue architecture. (D) Western blotting shows expression of RASSF7 protein in different mammalian cell lines. Molecular masses are indicated in kDa. (E) RASSF7 protein
expression levels increased in HeLa cells exposed to hypoxic conditions. *P < 0.05 compared with corresponding controls. esense, antisense.

RASSF7 KD cells was not significantly different from controls
(see Supplementary Figure S2 at http://www.Biocheml].org/
bj/430/bj4300207add.htm). To establish whether the reduction
in cell number was caused by a defect in mitosis, analogous
to that seen in Xenopus, knockdown cells were examined
and mitotic aberrations in metaphase RASSF7-knockdown cells
were clearly evident. Loss of RASSF7 resulted in a failure
in chromosomal congression, demonstrated by an increase in
the number of mitotic cells which had failed to align their
chromosomes (63 % compared with 18 % in controls, n =300,
P <0.01) (Figure 2C), an increase in metaphase cells with lagging
chromosomes (21.5 % compared with 6 % in controls, n =300,
P < 0.01) (Figure 2C, white arrows) and a decrease in metaphase
cells with correctly aligned DNA (15.7 % compared with 75.7 %
in controls, n =300, P < 0.001). Spindle defects were also found
in RASSF7-deficient cells, with spindles showing less pronounced
polarization towards the DNA and a more radial organization of
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microtubules (Figure 2C, red arrows). Finally, there was a small
increase in the rate of multi-polar spindles (32.6 % compared with
23.7 % in controls, n =300, P < 0.05) (Figure 2C, arrowheads).
In order to understand the molecular basis for these mitotic
defects, we examined the effect of RASSF7 knockdown on
established regulators of mitosis. Analysis of the activation of
PLK1 [25], using an antibody which recognizes the active form,
showed similar staining in RASSF7-knockdown and control cells
(Figure 3A). The localization of RASSF1A, which is required for
progression through mitosis [26—28], to the centrosome appeared
to be the same in knockdown and control cells (Figure 3B).
The localization and activation of Aurora A and Aurora B
[29] was also examined (Figures 3C and 3D). An antibody
against Aurora A and B and a phospho-specific antibody which
recognizes the active form of Aurora A and B enzymes were
used. Aurora A was present at the centrosome in RASSF7
(Figure 3C, arrows) and Aurora B was present at the kinetochores
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Figure 2 RASSF7 knockdown caused a reduction in cell number and defects in mitosis

(R) RASSF7 siRNA oligonucleotides KD2, but not KD1, blocked RASSF7 expression and prevented H1792 cells from forming colonies (arrows). Quantification is based on the number of colonies
bigger than 50 pem (**P < 0.01 for RASSF7 KD2 compared with Luciferase KD and RASSF7 KD1). (B) shRNA knockdown of RASSF7 reduced HeLa cell numbers. The difference between control
and RASSF7-depleted cells was 2.6 + 0.6-fold (***P < 0.001), based on five independent experiments. This was not due to variations in the selection process as it was observed when cells were
selected, replated at the same density and then allowed to grow (1.9 + 0.4-fold reduction). (G) RASSF7-knockdown Hela cells exhibit defects in spindle formation (red arrows highlight the more
radial microtubules) and chromosomal congression, with an increase in cells which had failed to align their DNA (63 % compared with 18 % in controls, n =300, P < 0.01) and an increase in cells
with lagging chromosomes (21.5 % compared with 6 % in controls, n= 300, P < 0.01, white arrows). There was also a small increase in tripolar spindles (32.6 % compared with 23.7 % in controls,

n=300, P < 0.05, arrowheads). Scale bars, 100 .m (A and B) and 5 z«m (C).

(Figure 3D, arrowheads). The active Aurora staining was present
at the centrosomes (Figures 3C and 3D, arrows), but strongly
reduced at the kinetochore (Figures 3C and 3D, arrowheads) in
the RASSF7 knockdowns, with only 9.3 % of cells showing strong
Aurora B staining compared with 83.8 % in the controls (n = 240,
P <0.001), suggesting a failure in Aurora B activation. This loss
appeared to be restricted to metaphase as the activation of Aurora
B during cytokinesis appeared normal (see Supplementary Figure
S3A at http://www.Biocheml].org/bj/430/bj4300207add.htm). To
confirm the loss of Aurora B activity, the phosphorylation of an
Aurora B target, CENP-A [30], was analysed. Phospho-CENP-A
levels were reduced (Figure 3E), with only 22 % of cells showing
strong staining compared with 93.4% of control cells (n=
210, P <0.001), providing further evidence that Aurora B is
not activated normally in the absence of RASSF7. The loss of
Aurora B activity is likely to contribute to the mitotic defects
seen in RASSF7 knockdowns and, consistent with this hypothesis,
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inhibiting Aurora B causes chromosomal congression defects
similar to those in RASSF7-knockdown cells [31,32].

To begin to understand the mechanistic basis for these mitotic
defects, we analysed the subcellular localization of RASSF7.
Xenopus rassf7 fusion proteins localize to the centrosome
[15] and a GFP-tagged human RASSF7 protein also localized
to the centrosome in HeLa cells (see Supplementary Figure
S4A at http://www.BiochemlJ.org/bj/430/bj4300207add.htm). To
establish the localization of endogenous RASSF7, HeLa cells
were stained with an anti-RASSF7 antibody. This showed strong
staining which co-localized with y-tubulin, a component of the
pericentriolar material (Figure 4A) and this staining was specific
as the signal was not present in RASSF7-knockdown cells (see
Supplementary Figure S4B). RASSF7 staining was found at
the centrosome in interphase cells and throughout all stages of
mitosis (Figure 4A), showing that RASSF7 is not recruited to
the centrosome during mitosis, but localizes there in dividing and
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Figure 3 Analysis of mitotic signalling proteins in RASSF7-knockdown Hela cells
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(A) Active PLK1 (green) appeared normal. (B) RASSF1A (green) appeared normal. (G and D) Aurora A (red, arrows) and Aurora B (red, arrowheads) appeared to localize normally. Phospho-Aurora at
the centrosomes (green, arrows) appeared normal, but phospho-Aurora at the kinetochore (green, arrowheads) was reduced (9.3 % of cells showed strong Aurora B staining compared with 83.8 %
in the controls, n= 240, P < 0.001) suggesting that activation of Aurora B fails. (E) Phospho-CENP-A (green, arrow) was reduced (22 % of cells showed strong staining compared with 93.4 % of

control cells, n =210, P < 0.001). Blue shows nuclear staining. Scale bars, 5 em.

non-dividing cells. The amount of RASSF7 protein was also not
increased in mitotic cells (see Supplementary Figure S1B), so,
despite RASSF7 having a role in mitosis, RASSF7 protein levels
do notappear to be regulated during the cell cycle. The localization
of RASSF7 at the centrosome was not affected by microtubule
depolymerization with nocodazole (Figure 4B), indicating that
human RASSF7 is an integral centrosomal component whose
localization is microtubule-independent. Our previous data with
Xenopus rassf7 suggested that its localization was microtubule-
dependent [15]; this discrepancy could well be due to the use of
a fusion protein in the Xenopus experiments.

The localization of RASSF7 at the centrosome and the spindle
defects seen in the knockdowns suggest that RASSF7 might have

© 2010 The Author(s)

a role in regulating microtubules. To test whether RASSF7 is
required for microtubule polymerization, we investigated whether
microtubule regrowth was affected by the loss of RASSF7.
Cells were treated with nocodazole and subsequent microtubule
regrowth was examined. The initial nucleation of microtubules
in knockdown cells appeared normal (5 min), but after 15 min,
53 % of RASSF7-knockdown cells showed a delay in microtubule
regrowth compared with 14 % of controls (n =100, P <0.001)
(Figure 4C, arrows). The microtubules in RASSF7-knockdown
cells also appeared more bent and looped than controls (Figure 4C,
arrows). A similar delay in microtubule regrowth was seen at
30 min. After 60 min, the number of microtubules in the RASSF7-
knockdown cells resembled the controls (Figure 4C), showing that
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Figure 4 RASSF7 localizes to the centrosome and knocking down its expression causes defective microtubule regrowth in HelLa cells

(R) Co-localization of RASSF7 with the centrosomal marker y-tubulin (arrows). (B) Microtubules (a-tubulin/green) were disrupted by treatment with nocodazole (300 ng/ml) for 1 h at 37°C (top
panels). This did not affect RASSF7 localization at the centrosomes which were stained for y-tubulin (arrows, bottom panels). (C) Microtubule-regrowth assay. Microtubules were disrupted with
nocodazole (300 ng/ml) for 1 h and subsequent regrowth was monitored at different time points. RASSF7 knockdowns had fewer microtubules (after 15 and 30 min) and more bent microtubules
(arrows). Quantification showed that, after 15 min, 53 % of knockdown cells had a delay in regrowth compared with 14 % of controls (n =100, P < 0.001). Blue shows nuclear staining. Scale bars,

5 pm (A) and 10 zem (B and C).

RASSF7-knockdown cells eventually produce similar numbers
of microtubules to control cells. However, the microtubules still
appeared less straight than the control microtubules (Figure 4C,
arrows). This assay demonstrates that RASSF7 is a key regulator
of microtubule growth and provides an explanation for the spindle
defects seen in mitosis. The broad expression of RASSF7 and its
localization to the centrosomes of interphase cells suggests that
RASSF7 may also regulate microtubules in non-dividing cells.
A role in regulating microtubules can explain the defects in
spindle formation seen in the knockdowns, but why is RASSF7,
which localizes at the centrosome, required for the activation of
Aurora B at the kinetochores? Aurora B activation requires the
recruitment of INCENP [33], but RASSF7 knockdown did not
compromise the localization of this protein (see Supplementary
Figure S3B). Interestingly, Aurora B activation also requires

© 2010 The Author(s)

contact with microtubules [34,35]. We propose that the defect
in spindle formation seen in the RASSF7-knockdown cells might
stop microtubules from correctly interacting with Aurora B and
cause the failure in Aurora B activation. This argues that the
primary role of RASSF7 is in regulating microtubule growth and
that mis-regulation of this process is responsible for the spindle
defects and the loss of Aurora B activation. The aberrant
spindle and loss of Aurora B would then both contribute to the
dramatic failure in chromosomal congression seen in RASSF7-
knockdown cells.

In summary, the present study provides the first functional
analysis of human RASSF7 and shows that down-regulation
of RASSF7 impairs cell growth and causes defects in mitosis,
including abnormal spindle assembly, loss of Aurora B activation
and a failure in chromosomal congression. We propose that these
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mitotic defects are caused because RASSF7 localizes to the
centrosome and regulates microtubule dynamics.
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Human RASSF7 regulates the microtubule cytoskeleton and is required for
spindle formation, Aurora B activation and chromosomal congression
during mitosis
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Figure S1 Expression of RASSF7

(A) Methylation of the RASSF7 promoter. Analysis of the methylation status of the 5 CpG island associated with the RASSF7 gene was carried out using COBRA (combined bisulfite restriction
analysis). The full-length PCR product was 206 bp and complete digestion with BstUl would generate products less than 86 bp. Efficient enzyme activity is indicated by complete digestion of plasmid
DNA (positive control). No methylation was observed in any of the cancer cell lines analysed (20 lung, 12 breast, eight colorectal, eight kidney, five glioma and four neuroblastoma). Data from ten cell
lines are presented. Sequencing of samples identified the correct PCR product and confirmed the unmethylated state. (B) Expression of RASSF7 protein in mitosis. Hela cell lysates were enriched
with M-phase cells through nocodazole treatment (75 ng/ml) for 18 h followed by mitotic shake off. There was no significant change in RASSF7 protein expression levels. Expression of the positive
control, active histone H3 expression, increased as expected. **P<0.01 compared with corresponding controls.
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Figure S2 RASSF7 knockdown did not cause a significant increase in apoptosis

RASSF7 depletion in HelLa cells did not significantly increase the number of active caspase 3-positive cells (green, highlighted by arrows) compared with controls. More than 500 cells were counted
for each sample from three independent experiments. Blue shows nuclear staining. Scale bar, 20 zem.
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Figure S3  Aurora B activity during mitosis

(A) Aurora B phosphorylation appears normal during cytokinesis in RASSF7-knockdown HeLa cells. (B) INCENP (green), which is required for Aurora B activation, maintains its correct localization
during metaphase in RASSF7-knockdown Hela cells. Blue shows nuclear staining. Scale bar, 5 em.
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Figure S4 Localization of RASSF7

(A) AGFP-RASSF7 fusion protein localizes to the centrosomes (arrows), marked with pericentrin,
when expressed at low levels in Hela cells. When expressed at high levels, GFP-RASSF7
formed large aggregates (results not shown). We did not see any stabilization of microtubules
by RASSF7 (high or low levels), reminiscent of the striking phenotype seen after expressing
RASSF1A. (B) The endogenous centrosomal RASSF7 staining is lost in RASSF7-knockdown
HeLa cells (arrows). Blue shows nuclear staining. Scale bar, 5 m.
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