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SIRT1 Promotes the Central Adaptive Response to Diet
Restriction through Activation of the Dorsomedial and
Lateral Nuclei of the Hypothalamus
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Diet restriction retards aging and extends lifespan by triggering adaptive mechanisms that alter behavioral, physiological, and biochem-
ical responses in mammals. Little is known about the molecular pathways evoking the corresponding central response. One factor that
mediates the effects of diet restriction is the mammalian nicotinamide adenine dinucleotide (NAD)-dependent deacetylase SIRT1. Here
we demonstrate that diet restriction significantly increases SIRT1 protein levels and induces neural activation in the dorsomedial and
lateral hypothalamic nuclei. Increasing SIRT1 in the brain of transgenic (BRASTO) mice enhances neural activity specifically in these
hypothalamic nuclei, maintains a higher range of body temperature, and promotes physical activity in response to different diet-
restricting paradigms. These responses are all abrogated in Sirtl-deficient mice. SIRT1 upregulates expression of the orexin type 2
receptor specifically in these hypothalamic nuclei in response to diet-restricting conditions, augmenting response to ghrelin, a gut
hormone whose levels increase in these conditions. Our results suggest that in the hypothalamus, SIRT1 functions as a key mediator of the
central response to low nutritional availability, providing insight into the role of the hypothalamus in the regulation of metabolism and

aging in mammals.

Introduction

Animals employ a variety of strategies to survive when food is
limited, including adaptive mechanisms that alter their behav-
ioral, physiological, and biochemical responses to low nutritional
inputs. For example, it has been reported that animals reduce
their physical activity during the initial stages of food depriva-
tion, but increase it during the later stages (Wang et al., 2006).
This increase in physical activity could be an adaptive response to
search for food and to survive through such life-threatening con-
ditions. In rodents, the increase in physical activity has also been
observed in diet restriction (DR) (Yu et al., 1985; Ingram et al.,
1987), the single, most reliable regimen known to retard aging
and extend lifespan in a variety of organisms, including yeast (Lin
et al., 2000), worms (Lakowski and Hekimi, 1998), flies (Chapman
and Partridge, 1996), rodents (McCay et al., 1935; Weindruch and
Walford, 1982), and primates (Colman et al., 2009). DR has also
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been known to delay the onset and slow the progression of many
age-related diseases (Weindruch et al., 1986; Bronson and Lipman,
1991; Fontana et al., 2004; Colman et al., 2009). Whereas a num-
ber of hypotheses have been proposed to explain mechanisms for
the physiological effects of DR (Masoro, 2005), recent evidence
suggests that DR triggers highly coordinated adaptive responses
that translate nutritional cues to alterations in fundamental cel-
lular processes, thereby mediating a variety of physiological re-
sponses at a systemic level (Sinclair, 2005; Bishop and Guarente,
2007a).

Although little is known about the mechanisms of these adap-
tive responses to DR, the evolutionarily conserved Sir2 (silent
information regulator 2) family of NAD-dependent deacetylases/
ADP-ribosyltransferases, also called “sirtuins,” has recently
drawn much attention as a critical regulator that mediates phys-
iological responses to DR (Sinclair, 2005; Bishop and Guarente,
2007a; Imai, 2009a). Sirtuins play a critical role in the regulation
of aging and longevity in experimental model organisms, such as
yeast, worms, and flies (Kaeberlein et al., 1999; Tissenbaum and
Guarente, 2001; Rogina and Helfand, 2004). Sirtuins are also
required for the DR-mediated lifespan extension in those organ-
isms with certain genetic backgrounds (Lin et al., 2000; Anderson
et al,, 2003; Rogina and Helfand, 2004; Wang and Tissenbaum,
2006). In mammals, there are seven sirtuins, SIRT1 through
SIRT7. Numerous studies have demonstrated that SIRT1 regu-
lates essential metabolic pathways in response to low energy in-
take in multiple tissues, as well as cell survival in response to stress
and damage (Sinclair, 2005; Imai and Guarente, 2007; Schwer
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and Verdin, 2008). Results from loss- and gain-of-function
mouse studies have provided genetic evidence connecting SIRT1
to DR (Imai, 2009a). For example, it has been reported that the
DR-induced elevation of physical activity is abrogated in SirtI-
deficient mice (Chen et al., 2005), providing a clue for the poten-
tial role of SIRT1 in the central regulation of physiological
response to DR. Therefore, we decided to examine whether and
how SIRT1 controls central adaptive responses to DR using both
gain- and loss-of-function SIRT1 mutant mice. Our present
study reveals a novel function for SIRT1 in the hypothalamus,
particularly in the dorsomedial and lateral hypothalamic nuclei,
as a key mediator of the central adaptive response to DR. These
findings also provide important insight into the physiological
mechanism that conveys the anti-aging and the lifespan-
extending effects of DR in mammals.

Materials and Methods

BRASTO and Sirtl-deficient mice. To generate brain-specific SIRT1-
overexpressing (BRASTO) transgenic mice, the mouse prion (PrP)
promoter-driven, HA-tagged Sirt] transgene was constructed by insert-
ing a 2.3 kb fragment of the mouse Sirt] cDNA into the vector carrying
the mouse PrP promoter (Wang et al., 2005) (a kind gift from Dr. David
Borchelt, University of Florida, Gainesville, FL) after eliminating three
NotI sites without changing the SIRT1 amino acid sequence and adding
the HA tag to the 3’ end of the SirtI coding sequence. The PrP-Sirt1-HA
transgene was linearized, purified, and microinjected into C57BL/6] X
CBA hybrid blastocysts in the Washington University Mouse Genetic
Core Facility. Transgenic mice were identified by PCR genotyping with
tail DNA. Two transgenic founders (lines 1 and 10) were established, and
the mice were backcrossed to wild-type C57BL/6 mice (Jackson Labora-
tories) for 6-7 generations before analysis. Nontransgenic littermates
were used as controls. SirtI-deficient (Sirt] ~/~) mice, which were orig-
inally established in the 129sv/B6 mixed background, were described
previously (Cheng et al., 2003). Sirtl-heterozygous mice were back-
crossed to wild-type FVB mice (Jackson Laboratories) for six generations
(akind gift from Dr. Jeffrey Milbrandt, Washington University, St. Louis,
MO), and Sirt] ~/~ mice were generated by crossing SirtI-heterozygous
mice. Sirtl ~/~ FVB mice at 3-5 months of age were used for this study.

Diet-restricting paradigms. For 48 h fasting, chow was removed from
both male and female mice at 4-5 months of age at 8:30 A.M. for 48 h.
After 48 h fasting, the ambulatory behavior of mice was carefully re-
corded by a video camera, and physical activity was scored by counting
the number of times that each mouse crossed from one quadrant to
another over 10 min (supplemental Movies S1-4, available at www.
jneurosci.org as supplemental material). For DR, wild-type C57BL/6,
BRASTO, Sirtl ~/~, and respective control male mice at 8—12 weeks of
age were fed with 1 g pellets of a semisynthetic chow, AIN-93M (Bioserv).
Ad libitum-fed (AL) control mice were given pellets equal to calculated
average daily food intake (~4 pellets), while diet-restricted mice were
given pellets equal to 60% of average daily food intake. For short-term
DR (14 d), mice were fed everyday at 5:00 P.M. and killed between 9:00
AM. and 10:00 A.M. To assess the effects of this short-term DR on
locomotor activity, the groups were tested over a 24 h (12 h/12 h light/
dark) period according to previously published procedures (Wozniak et
al., 2004). For long-term DR (104 d), the feeding cycle was as follows: 8
and 4-5 pellets on Monday and Wednesday and 10-11 and 6-7 pellets
on Friday for AL and DR mice, respectively, and chow was delivered
between 4:00 and 5:00 P.M. This DR regimen with intermittent feeding is
to create conditions that allow us to conduct other physiological tests,
such as intraperitoneal glucose tolerance tests, as similar as possible to
regular procedures. In one of these DR experiments, for example, after 3
months of DR, glucose levels on Thursday morning were 150 = 6.9 and
105 = 4.5 mg/dl for AL and DR males, respectively, while glucose levels
on Friday morning were 130 *+ 6.0 and 76.4 £ 6.1 mg/dl for AL and DR
males, respectively. Therefore, physiological tests that normally require
fasting before the experiments were usually conducted on Wednesday or
Friday morning, and we confirmed that DR mice showed significantly
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improved glucose tolerance (data not shown). However, to separate the
long-term effects of DR from those of fasting, tissue and plasma samples
were collected between 9:00 A.M. and 10:00 A.M. on Tuesday and Thurs-
day morning. For timed DR, male mice at 4-5 months of age were
maintained in 12 h/12 h light/dark schedule and housed individually
with a running wheel. Mice were fed only from 1:00 P.M. [zeitgeber time
6 (ZT6)] to 5:00 P.M. (ZT10). Running-wheel revolutions in 1 min bins
were recorded using Clocklab software (Actimetrics) as described previ-
ously (Aton et al., 2004). All animal procedures were approved by the
Washington University Animal Studies Committee.

Twenty-four-hour locomotor activity test. Starting at 10:00—10:30 A.M.,
locomotor activity was evaluated over a 24 h period by placing individual
mice into transparent (47.6 X 25.4 X 20.6 cm high) polystyrene enclo-
sures as described in previous studies involving a 1 h test (Wozniak et al.,
2004). Each enclosure was surrounded by a frame containing a 4 X 8
matrix of photocell pairs, the output of which was fed to an on-line
computer (Hamilton-Kinder). Another frame that contained eight pairs
of photocells and was raised 7 cm above the floor of the enclosure was
used to quantify vertical activity. Variables that were analyzed included
the total number of ambulations (whole-body movements), as well as the
number of vertical rearings over the 24 h period.

Rectal body temperature. Rectal body temperature was measured at
9:00-9:30 A.M. by a Microtherma 2 Type (TW2-193) thermometer with
a mouse rectal probe (model RET-3).

Immunohistochemistry. Mice were anesthetized with ketamine/xyla-
zine and perfused with PBS followed by 4% paraformaldehyde (PFA).
Brains were fixed with 4% PFA overnight and placed into 15% sucrose
followed by 30% sucrose. Thirty-micrometer sections were made by a
cryostat and stored at —30°C. Immunostaining results were analyzed for
each hypothalamic nucleus as follows: Because brain sections from one
mouse were used for multiple analyses, hypothalamic sections at the
same coronal planes were always chosen for all mice analyzed. For each
mouse, two brain sections around bregma —0.82 mm were used for the
PVN and SCN and one to two brain sections around bregma —1.58 mm
were used to cover the Arc, VMH, DMH, and LH. We usually used three
to four mice for each analysis and therefore analyzed four to eight sec-
tions per hypothalamic nucleus. When signals/counts were relatively
low, we analyzed more sections. To quantify SIRT1 protein signals in
each hypothalamic nucleus, brain sections were stained by 3,3'-
diaminobenzidine (DAB) with rabbit anti-mouse SIRT1 (1:3000)
(Moynihan et al., 2005) and biotinylated goat anti-rabbit IgG (1:500)
antibodies with the ABC kit (Vector Laboratories). SIRT1 protein signals
were quantified by measuring the intensity per area in each hypothalamic
nucleus after subtracting surrounding background signal levels using the
Histogram function of Adobe Photoshop. For double immunofluores-
cent staining of HA-tagged SIRT1, samples were stained first with the
same rabbit anti-mouse SIRT1 (1:1000) and HRP-conjugated goat anti-
rabbit IgG (1:2000) antibodies using the FITC TSA kit (Parkin Elmer)
and then with anti-HA (1:1000, Covance) and HRP-conjugated goat
anti-mouse IgG (1:10,000) antibodies using the Cy3 TSA kit, according
to the manufacturer’s protocol. To stain cFOS in each hypothalamic
nucleus, samples were stained by the DAB detection method with anti-
cFOS (1:100,000, Calbiochem) and biotinylated goat anti-rabbit IgG (1:
200) antibodies with the ABC kit. The numbers of cFOS-positive cells
were quantified by Image]J software. For the double staining of cFOS and
OX2R, samples were stained for cFOS first and then with anti-OX2R
(1:100, Alpha Diagnostics) and HRP-conjugated goat anti-rabbit IgG
(1:1000) antibodies with the Cy3 TSA kit.

In situ hybridization. Brain sections were fixed in 4% PFA, acetylated
with triethanol amine/acetic anhydrite, and prehybridized in hybridiza-
tion buffer (10 mm Tris-HCI [pH 7.4], 600 mm NaCl, 1 mm EDTA, 1X
Denhardt’s solution, 25 ug/ml yeast ribosomal RNA, 12.5 pug/ml salmon
testis DNA, 10% dextran sulfate, and 40% formamide). Prehybridized
samples were then hybridized in hybridization buffer containing digoxi-
genin (DIG)-labeled antisense RNA probes of Ox2r (nucleotides 595-
1034) at 60°C overnight. Sense probes were used as negative controls.
After samples were hybridized, samples were sequentially washed with
2X SSC/50% formamide, 0.1 X SSC, and washing buffer (100 mm maleic
acid, 150 mm NaCl, 0.3% Tween 20, pH 7.5) and then incubated with



10222 - J. Neurosci., July 28, 2010 - 30(30):10220 -10232

blocking solution (PerkinElmer). Signals were visualized by incubating
with a peroxidase-conjugated anti-DIG antibody and the TSA kit. The
signal intensity per area in each hypothalamic nucleus was quantified
after subtracting surrounding background signal levels by using the His-
togram function of Adobe Photoshop.

Laser-microdissection. The brain was removed, immediately frozen in
OCT compound on dry ice, and stored at —80°C until laser-microdis-
section. Twenty-five-micrometer brain sections were mounted on PEN-
membrane slides (Leica), and kept on dry ice. The mounted slides were
hydrated sequentially in 100%, 95%, 75%, and 50% ethanol for 30 s each.
The hydrated slides were stained with 1% Cresyl Violet (Sigma) for 1
min, and dehydrated with 50%, 75%, 95%, and 2 cycles of 100% ethanol
for 30 s each. The dehydrated slides were then incubated in xylene twice
for 1 min each. After being air-dried for 5 min, Arc, VMH, DMH, and LH
were microdissected using the Leica LMD 6000 laser-microdissection
system.

Quantitative real-time RT-PCR. Total RNA was extracted from each
hypothalamic nucleus using the RNeasy kit (Qiagen) and reverse-
transcribed into cDNA with the High Capacity cDNA Reverse Transcrip-
tion kit (Applied Biosystems). Quantitative real-time RT-PCR was
conducted with the TagMan Fast Universal PCR Master mix and appro-
priate TagMan primers for each gene in the GeneAmp 7500 fast sequence
detection system (Applied Biosystems). Relative expression levels were
calculated for each gene by normalizing to Gapdh levels and then to one
of the wild-type control individuals.

Luciferase assay. HEK293 cells were transfected with a luciferase re-
porter driven by a ~1kb Ox2r promoter and a SirfI minigene or a control
vector (Revollo et al., 2004). Transfected cells were cultured in media
with 5 mM glucose for 48 h. Cell extracts were prepared, and luciferase
activity was determined with the Dual-Luciferase Reporter Assay System
(Promega) according to the manufacturer’s protocol. Luciferase activity
levels were normalized to protein concentrations of each sample.

Chromatin-immunoprecipitation assay. Mouse hypothalamus was in-
cubated sequentially with freshly prepared 5 mm DTBP and 1% PFA.
After washing with PBS, pellets were stored at —80°C until analysis.
Pellets were resuspended in buffer (1% Triton X-100, 0.1% deoxy-
cholate, 50 mm Tris-HCI [pH 8.1], 5 mm EDTA, 150 mm NaCl, 1% SDS,
and protease inhibitors) and placed on ice for 20 min. After centrifuga-
tion, chromatin was sheared by sonicating with nuclei buffer (50 mm
Tris-HCI, pH 8.0, 10 mm EDTA, 0.01% SDS, and 0.1 mm PMSF) to a final
size between 200 bp and 600 bp. Before immunoprecipitation, soluble
chromatin was incubated with protein A agarose/salmon slurry (Milli-
pore) at 4°C for 30 min. An aliquot of supernatant was removed as
“input” and used in PCR analysis. The remainder of supernatant was
incubated with SIRT1 antibody or rabbit IgG at 4°C overnight. Immune
complexes were isolated by incubating with protein A agarose/salmon
slurry for 1.5 h at 4°C. The complexes were washed with low-salt buffer,
high-salt buffer, LiCl buffer, and TE, pH 8.0. The complexes were eluted,
de-cross-linked with 125 mm NaCl at 65°C overnight, and then treated
with RNase A at 37°C for 30 min and with proteinase K at 45°C for 90
min. The purified DNA was resuspended with TE and analyzed by PCR
by specific primer sets.

Measurement of serum ghrelin levels. Mouse plasma samples were col-
lected into tubes containing 4-(2-aminoethyl)-benzenesulfonyl fluoride
(AEBSF, Sigma), incubated for 30 min at room temperature, and centri-
fuged at 5000 X gfor 10 min at 4°C. The supernatant was stored at —30°C
until analysis. The levels of ghrelin in serum were determined by a rat/
mouse total ghrelin ELISA kit (LINCO Research).

Ghrelin administration. After 4 d of habituation to handling and mock
injection, BRASTO, Sirt] ~/~, and control male mice were injected with
octanoylated rat ghrelin (Pi Proteomics) at a dose of 30 nmol/kg body
weight or with an equal volume of PBS. Ninety and one hundred twenty
minutes after injection, mice were anesthetized and killed to collect
brains.

Statistical analyses. Statistical analyses were performed using unpaired
or paired Student’s ¢ tests for two groups and one-way ANOVA with the
Tukey—Kramer post hoc test for more than two groups. Two-way
ANOVA was also applied to the data shown in Figures 2 A, 3D, 3E, 4A,
4D, 4E,7A, and 7C, to assess the main effects of two different factors and
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the interaction between them. For this analysis, full statistics are pre-
sented in supplemental Table S1 (available at www.jneurosci.org as sup-
plemental material). A Wilcoxon matched-pairs signed-ranks test was
used to compare differences of hourly wheel counts through the light and
dark times between wild-type versus BRASTO mice and day 0 vs day 5 in
each genotype, respectively. In all analyses, we set the « level at 0.05. We
used Microsoft Excel 2008 and SPSS 11.0 to conduct statistical analyses.

Results

SIRT1 is expressed in major hypothalamic nuclei

We initially surveyed the expression pattern of the SIRT1 protein
in the mouse brain using a rabbit polyclonal, affinity-purified
antibody (Imai et al., 2000). This antibody did not produce any
significant positive signals on Sirtl-deficient brain sections, as-
suring its specificity (supplemental Fig. S1A, B, available at www.
jneurosci.org as supplemental material). SIRT1 showed nuclear
localization in the hypothalamus and hippocampus, and ex-
tranuclear localization in dorsal regions of the cerebral cortex
(data not shown). In the hypothalamus, SIRT1 was expressed in
the arcuate nucleus (Arc), the ventromedial, dorsomedial, and
lateral hypothalamic nuclei (VMH, DMH, and LH, respectively),
and the paraventricular nucleus (PVN), brain regions that all play
critical roles in the central regulation of adaptive responses to
food availability (Elmquist, 2001) (Fig. 1 A). SIRT1 was also ex-
pressed in the suprachiasmatic nucleus (SCN), a region impor-
tant for the central regulation of circadian rhythm (Green et al.,
2008) (Fig. 1A). These results are consistent with the reported
distribution of Sirt] mRNA in the hypothalamus (Ramadori et
al., 2008).

Both SIRT1 levels and the number of activated neurons
increase in the DMH and LH of diet-restricted hypothalami
Because SIRT1 protein levels are upregulated and downregulated
in multiple tissues and even within the same tissue in response to
DR (Imai and Guarente, 2007; Chen et al., 2008; Schwer and
Verdin, 2008), we decided to examine whether SIRT1 protein
levels were also altered in hypothalamic nuclei of diet-restricted
mice. Using a semiquantitative DAB-based immunostaining
method with our highly specific SIRT1 antibody (supplemental
Fig. S1A, B, available at www.jneurosci.org as supplemental ma-
terial), we found that SIRT1 protein levels moderately but specif-
ically increased in the DMH, LH, and SCN, but not in the Arc,
VMH, or PVN, in response to short-term (14 d) DR (DMH, p =
0.047; LH, p = 0.043; SCN, p = 0.007) (Fig. 1 B; supplemental Fig.
S2, available at www.jneurosci.org as supplemental material). We
also observed significant increases in the number of cFOS-
positive cells, a well established marker of neural activation
(Sagar et al., 1988; Dragunow and Faull, 1989), in the DMH and
LH under DR (DMH, p = 0.019; LH, p < 0.001) (Fig. 1C,D).
Neither the hippocampus nor the cortex showed any significant
increase in cFOS-positive cells (data not shown). Similar results
were obtained in hypothalami under long-term (104 d) DR (sup-
plemental Fig. S3A-D, available at www.jneurosci.org as supple-
mental material). These findings suggest that a moderate but
continuous increase in SIRT1 dosage and/or activity might play
an important role in neural activation in the DMH and LH in
response to DR.

To address this possibility, we generated transgenic mice in
which SIRT1 protein levels are selectively increased in the brain
(BRASTO). BRASTO transgenic mice express a C-terminally
HA-tagged mouse SIRT1 cDNA driven by the mouse prion pro-
moter (Fig. 1E). We established two independent BRASTO
transgenic lines, lines 1 and 10. Both lines showed moderate in-
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SIRT1 is expressed in major hypothalamic nuclei, and both SIRT1 levels and the number of activated neurons increase in the DMH and LH in diet-restricted hypothalami. A, Immuno-

fluorescent staining of SIRT1 (green) in major hypothalamic nuclei, including the PVN, SCN, Arc, VMH, DMH, and LH. Nuclei are counterstained by DAPI (gray). B, Signal intensities of SIRT1 staining
in hypothalami after 14 d DR compared to AL (*p << 0.05, **p << 0.01,n = 4 mice, 4 — 8 sections per hypothalamic nucleus). The signal intensity per area was digitally quantified after subtracting
surrounding background. Results are shown as mean values == SEM. C, D, cFOS staining in the DMH and LH after 14 d DR (C), and quantification of the number of cFOS-positive cells in hypothalamic
nuclei (*p < 0.05, ***p < 0.001, n = 4 mice, 4 -8 sections per hypothalamic nucleus). The numbers of cFOS-positive cells are shown as mean values = SEM (D). E, Transgene structure for the
production of BRASTO mice (upper panel) and distribution of SIRT1in major brain regions in both lines 1and 10 of BRASTO mice (lower panels). F, Inmunofluorescent staining of SIRT1 (green) and

HA (red) in hypothalami of BRASTO line 10. Nuclei are counterstained by DAPI (gray).

creases in SIRT1 protein expression in the brain (2.5- to 5.1- and
1.5- to 2.5-fold increases in lines 1 and 10, respectively) (Fig. 1 E).
There were ~2-fold increases in SIRT1 levels in the kidney in
both lines and heart in line 1 (supplemental Fig. S4 A, available at
www.jneurosci.org as supplemental material). Interestingly, ex-
pression profiles of the overexpressed SIRT1 protein mimicked

that of endogenous SIRT1 (Fig. 1 F; supplemental Fig. S4 B, avail-
able at www.jneurosci.org as supplemental material). Particularly
in line 10, SIRT1 was overexpressed 2.7-fold in the DMH and
1.8-fold in the LH (supplemental Fig. S1 B, right panel, available
at www.jneurosci.org as supplemental material), a similar profile
of increases in SIRT1 levels detected in the hypothalami of diet-
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restricted wild-type mice (Fig. 1 B). These A Line 1
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quantitated, BRASTO females in both
lines 1 and 10 showed enhanced physical
activity compared to control mice after
48 h fasting (WT vs Tg, line 1, p = 0.008;
line 10, p = 0.076; percentage count, L1,
p = 0.002; L10, p = 0.060) (Fig. 2A; sup-
plemental Table S1, available at www.
jneurosci.org as supplemental material).
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This phenotype was not obvious in
BRASTO males, although there appears to
be a similar trend, particularly in line 10
(supplemental Fig. S6 A, available at www.
jneurosci.org as supplemental material).
Therefore, instead of an acute fasting con-
dition, we evaluated the general locomo-
tor activity in BRASTO and control males
following a more chronic (14 d) DR con-
dition. Interestingly, while diet-restricted
BRASTO males showed a trend toward
more total ambulations (whole-body
movements) over a 24 h light/dark cycle, they exhibited signifi-
cantly higher counts of rearing (vertical activity) compared to
controls (light plus dark periods, p = 0.049; dark period alone,
p = 0.007) (Fig. 2B). This increase in rearing activity was more
obvious particularly during the dark period. Increases in rearing
often signify heightened arousal levels and augmented environ-
mental exploration and nonselective attention (Vallone et al.,
2002). Therefore, these findings suggest that both BRASTO males
and females have a greater propensity to increase their physical
activity compared to control mice in response to diet-restricting
conditions.

We also examined BRASTO and control mice in a different
experimental paradigm in which they were fed daily from 1:00
P.M. (ZT6) to 5:00 P.M. (ZT10). In this timed DR paradigm, the
food-anticipating activity (FAA) of mice significantly increases
within several days of timed DR (Mistlberger, 1994; Stephan,
2002). Under this paradigm, BRASTO mice in both lines 1 and 10
exhibited enhanced FAA compared to control mice after 5 d of
timed DR, although line 1 showed a much larger variability (sup-
plemental Fig. S6B, available at www.jneurosci.org as supple-
mental material). Interestingly, BRASTO mice showed a greater
increase in their FAA during ZT0-6 ( p = 0.03) (Fig. 2C), par-

Figure2.

BRASTO mice exhibit enhanced physical activity in response to multiple diet-restricting paradigms. A, Physical activity
levels of BRASTO female mice after 48 h fasting in line 1 (left) and line 10 (middle). Activity counts (the numbers of quadrants
crossed; leftand middle) and percentage counts relative to the fed condition (right) are shown as mean values = SEM (**p << 0.01,
***p <20.001 by one-way ANOVA with Tukey—Kramer post hoc test, n = 912 mice). B, Numbers of total ambulations (left) and
rearings (right) of BRASTO (Tg) and control (WT) male mice in line 10 after 14 d DR are shown as mean values == SEM (*p << 0.05,
*¥p < 0.01,n = 6mice). L/D, Light plus dark periods; D, dark period alone. C, Wheel-running activity levels of BRASTO male mice
in line 10 during a timed DR paradigm. Activity counts per hour through a 24 h light/dark cycle are shown. Shading represents
feeding time (ZT6 to 10). Counts at each time point are shown as mean values == SEM (day 0 vs day 5, *p << 0.05, **p << 0.01,
***p < 0.001 by paired Student’s ¢ or Wilcoxon matched-pairs signed-ranks tests; WT vs Tg, §p << 0.05 by a Wilcoxon matched-
pairs signed-ranks test; n = 5-10 mice).

ticularly ZT5-6 right before feeding time, and a greater decrease
in their night-time activity at ZT12-18 (p = 0.047) (Fig. 2C),
supporting the idea that BRASTO mice might be able to reallo-
cate their physical activity more efficiently than control mice,
with the plausible purpose of seeking food. Together, these find-
ings suggest that SIRT1 in the brain plays an important role in
promoting physical activity in response to different diet-
restricting conditions.

BRASTO mice show enhanced neural activation in the DMH
and LH in response to diet-restricting conditions

We next examined which brain regions were more highly acti-
vated in BRASTO mice than in controls in response to different
diet-restricting paradigms. In ad libitum conditions, there were
only very small numbers of cFOS-positive cells in both wild-type
and BRASTO hypothalami, except for the SCN that normally
shows circadian rhythms of neural activation (Gooley et al.,
2006), and no significant differences were observed between
wild-type and BRASTO mice (supplemental Fig. S7A, available at
www.jneurosci.org as supplemental material). After 48 h fasting,
90%, 46%, and 163% increases in the numbers of cFOS-positive
cells were detected in the DMH, LH, and PVN of BRASTO mice,
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other hypothalamic nuclei did not show
any significant differences between
BRASTO and control mice, further sup-
porting the importance of the DMH and
LH in response to diet-restricting condi-
tions. Because chow was always delivered
M between 4:00 P.M. and 5:00 P.M. in this
DR regimen (see Materials and Methods),
the observed activation of the DMH and
LH does not appear to be related to the
time of feeding. In the timed DR para-
digm, 67% and 120% increases in the
numbers of cFOS-positive cells were de-
tected on day 5, first in the DMH and then
in the LH of BRASTO mice, respectively,

DR

OWT
HTg

% 140 - oWt * owt compared to those in control mice during
O 120 mTg M "Tg the 2 h time course before feeding (DMH,
D 100 p = 0.034; LH, p = 0.002) (Fig. 3C; sup-
:(‘% 80 | plemental Fig. S7D, available at www.
8_ - . e jneurosci.org as supplemental material).
0 0. M The SCN is known to show circadian
O rhythms of neural activation peaking
% 20 1 around ZT6 (Gooley et al., 2006). SIRT1
0- E appears to suppress this oscillatory pattern,
PVN SCN Arc VMH DMH LH PVN SCN Arc VMH DMH LH qualitatively consistent with the effect of
D ~ E -~ SIRT1 on peripheral circadian rhythms
& 40 - = owr & 384 » OWT (Nakahata et al., 2008; Ramsey et al., 2009).
o mTg ) Tew 1 HWTg Thus, the most important point concerning
% 35 | . % 37 1 these results is that the enhanced neural ac-
5 —/ 5 ‘ tivation in the DMH and LH is tightly asso-
g— g— 36 1 1 ciated with increased physical activity in
9 30 1 2 5 BRASTO mice under all three diet-
= = | restricting paradigms that we examined,
2 254 2 34 namely, 48 h fasting, DR, and timed DR.
Fed Fasted AL DR To further confirm that the observed
enhancement of DMH and LH activation
Figure3.  BRASTOmice show enhanced neural activation in the DMH and LH in response to multiple diet-restricting paradigms. ~ in BRASTO hypothalami is physiologi-

A-(, Quantification of cFOS-positive cells in major hypothalamic nuclei after 48 h fasting (), 14 d DR (B), and 5 d of timed DR (C)
in BRASTO mice in line 10 (*p << 0.05, **p << 0.01, n = 4 for 48 h fasting and DR, 4 — 8 sections per hypothalamic nucleus; n = 2
at each time point for timed DR, 25 sections per hypothalamic nucleus). The numbers of cFOS-positive cells are shown as mean
values = SEM. D, E, Rectal body temperature of BRASTO mice after 48 h fasting (D) and during 14 d DR (E). Levels of rectal body
temperature are shown as mean values == SEM (*p << 0.05, **p << 0.01, ***p << 0.001 by one-way ANOVA with Tukey—Kramer

post hoc test, n = 67 for 48 h fasting, n = 6 for DR).

respectively, compared to those of control mice (DMH, p =
0.0014; LH, p = 0.048; PVN, p = 0.002) (Fig. 3A; supplemental
Fig. S7B, available at www.jneurosci.org as supplemental mate-
rial). The profile of the increases in cFOS-positive cells in hypo-
thalamic nuclei of fasted BRASTO mice were very similar to those
in diet-restricted wild-type mice (Fig. 1 D), with the exception of
the additional neural activation in the PVN. As the PVN is known
to control the stress response through the stimulation of glu-
cocorticoid secretion from adrenal glands, this additional PVN
activation might correspond to a stress component imposed by
sustained food anticipation under 48 h fasting. Indeed, a small
but significant increase in plasma corticosterone levels was de-
tected in fasted BRASTO females, compared to those in control
fasted females (supplemental Fig. S8, available at www.jneurosci.org
as supplemental material). After 14 d DR, the BRASTO DMH and
LH exhibited 32% and 43% increases in the numbers of cFOS-
positive cells, respectively, compared to those in control mice
(DMH, p = 0.008; LH, p = 0.049) (Fig. 3B; supplemental Fig. S7C,
available at www.jneurosci.org as supplemental material), whereas

cally relevant, we examined rectal body
temperature in BRASTO and control
mice in response to 48 h fasting and DR. It
has been demonstrated that neural acti-
vation in the DMH and LH plays an
important role in the induction of ther-
mogenesis in rodents (Cerri and Morrison,
2005; DiMicco and Zaretsky, 2007; Morrison et al., 2008). While
both BRASTO and control mice showed significant decreases in
rectal body temperature after 48 h fasting and 14 d DR, BRASTO
mice were able to maintain higher levels of rectal body tempera-
ture compared to controls (WT vs Tg, fasted, p = 0.032; DR, p =
0.023) (Fig. 3D,E; supplemental Table S1, available at www.
jneurosci.org as supplemental material), consistent with en-
hanced physical activity (Fig. 2A,B) and enhanced neural
activation in the DMH and LH (Fig. 3A,B) in fasted and diet-
restricted BRASTO mice. These results further support the im-
portance of SIRT1 in the regulation of neural activation in the
DMH and LH in response to different diet-restricting paradigms.

Sirt1-deficient mice exhibit defects in neurobehavioral
adaptation to diet-restricting conditions

To examine whether SIRT1 is necessary for neurobehavioral ad-
aptation to diet-restricting conditions, we decided to examine
Sirt1-deficient (Sirtl /) mice. Our Sirt] ~/~ mice were back-
crossed to FVB. With this genetic background, Sirtl /~ mice
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grow to adulthood with no significant
early mortality (A.S., C.S.B., and S.L., un-
published observation), despite their pre-
viously reported small body size (Cheng et
al., 2003; McBurney et al., 2003). We put
these Sirt] /™ mice under a 14 d DR and
examined the effects of this dietary change
on their daily locomotor activity levels.
Consistent with previously reported find-
ings (Chen et al., 2005), diet-restricted
Sirt] '~ mice failed to show significant
increases in general ambulatory or rearing
activity over a 24 h light/dark cycle,
whereas diet-restricted Sirtl ™" mice sig-
nificantly increased these indices of activ-
ity compared to levels observed during ad
libitum-fed state (Sirtl™™ vs Sirtl] '~
total ambulations in DR, p = 0.03; rear-
ings in DR, p = 0.037) (Fig. 4A; supple-
mental Table S1, available at www.
jneurosci.org as supplemental material)
(Yu et al., 1985; Chen et al., 2005). Fur-
thermore, Sirt] /= mice only showed
marginal increases in FAA compared to
controls in the timed DR paradigm
(ZT0-6, p < 0.001) (Fig. 4B).

We also compared levels of hypotha-
lamic neural activation in Sirtl ’~ and
control mice under different diet-restricting
conditions. In contrast to BRASTO mice,
Sirt] '~ mice showed significantly lower
numbers of cFOS-positive cells in both
the DMH and LH compared to controls in
response to 14 d DR (DMH, p = 0.006;
LH, p < 0.001) (Fig. 4C, left panel). With
this genetic background, we also detected
a small but significant difference in the
Arc between Sirt] ™" and Sirt] /"~ mice.
After 48 h fasting, the Sirt] ~/~ DMH also
showed significantly lower numbers of
cFOS-positive cells compared to the
Sirt1™"* DMH, although the Sirt] ~/~ LH
did not show a decrease in this genetic
background and condition (DMH, p =
0.011; LH, p = 0.611) (Fig. 4C, middle
panel). In the timed DR paradigm, a sig-
nificant decrease in the number of cFOS-
positive cells was again observed in the
Sirt] /= DMH at ZT4 (p = 0.033) (Fig.
4C, right panel). Consistent with lower
levels of neural activation in the Sirtl ~/~
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Figure 4.  Sirt1-deficient mice have defects in neurobehavioral adaptation to diet-restricting conditions. A, Numbers of total

ambulations (left) and rearings (right) of Sirt7 ™/ and Sirt7 /"~ mice under AL and 14 d DR conditions are shown as mean
values = SEM (*p << 0.05 by one-way ANOVA with Tukey—Kramer post hoc test, n = 5 mice). B, Wheel-running activity levels of
Sirt1 =/~ and Sirt7 /" mice during a timed DR paradigm. Activity counts per hour of control mice (left) and Sirt7 /'~ mice
(right) through a 24 h light/dark cycle are shown. Shading represents feeding time (ZT6 to 10). Counts at each time point are shown
as mean values == SEM (day 0 vs day 5, *p << 0.05, **p << 0.01, ***p << 0.001 by paired Student’s ¢ or Wilcoxon matched-pairs
signed-ranks tests; Sirt7™/* vs Sirt1 =/, Tp << 0.001 by a Wilcoxon matched-pairs signed-ranks test, n = 9 and 4 for Sirt7+/*
andSirt7 ~/~ mice, respectively). €, Quantification of the number of cFOS-positive cells in hypothalamic nuclei after 14 d DR (left),
48 hfasting (middle), and 5 d of timed DR (right) in Sirt7 ™ mice (*p <<0.05,**p < 0.01,***p < 0.001,n = 3 mice for DRand
fasting, 6 -9 sections per hypothalamic nucleus; n = 2 mice for timed DR, 2—7 sections per hypothalamic nucleus). The numbers
of cFOS-positive cells are shown as mean values = SEM. D, E, Rectal body temperature of Sirt7 ™/ and Sirt7 ~/~ mice during
14 d DR (D) and after 48 h fasting (E). Levels of rectal body temperature are shown as mean values = SEM (*p << 0.05, ***p <
0.001 by one-way ANOVA with Tukey—Kramer post hoc test, n = 510 for 48 h fasting, n = 5 for DR).

restricting conditions, we conducted microarray analyses to

DMH and LH, Sirt] ~/~ mice were unable to maintain the range
of rectal body temperature detected in SirtI ™" mice in response to
these diet-restricting conditions (Sirt1™"" vs Sirtl /~, DR, p =
0.049; fasted, p < 0.001) (Fig. 4D, E; supplemental Table S1, avail-
able at www.jneurosci.org as supplemental material). Together,
these findings demonstrate that SIRT1 is necessary for the neurobe-
havioral adaptation to acute and chronic diet-restricting paradigms.

SIRT1 upregulates genes that affect neural signaling and
activity in the DMH and LH

To address the molecular mechanism by which SIRT1 promotes
neural activation in the DMH and LH in response to diet-

compare gene expression profiles between whole hypothalami
from 48 h fasted BRASTO and control mice. Although none of
the gene expression changes reached statistical significance in this
particular experiment (data not shown), we noted that several
genes previously reported to regulate neural signaling and activ-
ity might have important functional connections to the observed
phenotypes in BRASTO mice, including the genes encoding
orexin type 2 receptor (OX2R) (Sakurai et al., 1998), cortico-
tropin releasing hormone receptor 1 (CRHR1) (Miller and
Waurst, 2004), and Ca**-activated K* channel (BK) 82 subunit
(KCNMB2) (Dai et al., 2009). We reexamined mRNA expression
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levels of those genes in 48 h fasted BRASTO, Sirt] /", and con-
trol mice by qRT-PCR. Interestingly, all three genes showed op-
posite directions of changes between BRASTO and Sirt] /'~ mice
(supplemental Fig. S9, available at www.jneurosci.org as supple-
mental material). In particular, Ox2r and Kcnmb2 exhibited in-
creases in BRASTO hypothalami and remarkable decreases in
Sirt1 =/~ hypothalami, compared to respective controls. In con-
trast, the orexin type 1 receptor gene (OxIr) (Sakuraietal., 1998) and
the L-type voltage-gated Ca*" channel subtype Ca, 1.3 gene, whose
product is functionally coupled with BK channels (Berkefeld et al.,
2006), did not show any changes in fasted BRASTO and Sirt1 ~/~
hypothalami (supplemental Fig. S9, available at www.jneurosci.org

VMH DMH LH

Arc

48 hr fasting
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as supplemental material). Given that
only specific hypothalamic nuclei exhib-

owT ited significant neural activation in
X mTg BRASTO mice (Fig. 3A-C), we suspected
— that local changes in gene expression

might be averaged out through the whole
hypothalamus. To analyze such local
changes in the expression of Ox2r and Kc-
nmb2, we conducted in situ hybridization
through multiple independent brain sec-
tions from 48 h-fasted BRASTO and
Sirt] /" mice. More Ox2r-positive cells
were clearly detected in the DMH and LH,
but not in other hypothalamic nuclei, of
BRASTO mice compared to those of wild-
type controls (Fig. 5A). When assessing
. i total signal levels in the VMH, DMH, and
uTg LH, Ox2r signal levels showed an ~80%
increase selectively in the BRASTO DMH

and LH relative to wild-type controls

. (DMH, p = 0.02; LH, p = 0.028) (Fig. 5B).
qRT-PCR results with laser-micro-
dissected samples of each hypothalamic
nucleus also confirmed that Ox2r expres-
sion levels increased specifically in the
BRASTO DMH and LH compared to
wild-type controls (DMH, p = 0.038; LH,
p = 0.049) (Fig. 5C,D), consistent with the
observed enhancement of neural activa-
tion in the BRASTO DMH and LH under
diet-restricting conditions (Fig. 3A-C). Kc-
= -~ nmb?2 signal levels increased in 48 h-fasted
BRASTO hypothalami compared to con-

trol hypothalami, but this increase was

— not limited to the DMH and LH (supple-
mental Fig. S10, available at www.
jneurosci.org as supplemental material).
Conversely, fasted Sirtl ~/~ mice showed

VMH DMH LH

SIRT1 upregulates genes that affect neural signaling and activity in the DMH and LH. 4, The in situ hybridization of
Ox2r (green) in the DMH and LH in BRASTO mice fasted for 48 h. Nuclei were counterstained by DAPI (blue). Upper panel, Sense
probe hybridization on wild-type sections; middle and lower panels, antisense probe hybridization on wild-type (WT) and BRASTO
(Tg) sections. B, Quantification of signal levels of Ox2r mRNA in the VMH, DMH and LH. Results are shown as mean values = SEM
(*p < 0.05,n = 3—4 mice for each genotype, 3—8 sections per hypothalamic nucleus). €, D, Laser-microdissection of hypotha-
lamic nuclei (€), and Ox2r expression levels in the Arc, VMH, DMH, and LH by real-time gRT-PCR (D). Results are shown as mean
values = SEM (*p << 0.05, n = 4 mice for each genotype). E, F, The in situ hybridization of Ox2r (green) in the DMH and LH in
Sirt1™/* and Sirt1 ~/~ miice fasted for 48 h (), and signal levels of Ox2r mRNA in the VMH, DMH, and LH are shown as mean
values == SEM (F) (*p < 0.05,n = 2-3 mice for each genotype, 3— 6 sections per hypothalamic nucleus).

fewer Ox2r-positive cells and decreases in
total Ox2r signal levels in the DMH, but
not in the LH, compared to fasted
Sirt1™"* mice (DMH, p = 0.038; LH, p =
0.769) (Fig. 5E,F), also consistent with
significant decreases in neural activation
in the DMH of fasted Sirtl ~/~ mice (Fig.
4C). Given that OX2R and orexin signal-
ing have been reported to play an im-
portant role in the regulation of sleep,
physical activity, and metabolism
(Sakurai et al., 1998; Chemelli et al., 1999;
Funato et al.,, 2009), these results suggest
that the Ox2r gene might be a critical target of SIRT1 in the DMH
and LH in response to diet-restricting conditions.

Diet restriction augments Ox2r expression in the DMH and
LH through SIRT1

To test whether Ox2r expression is indeed induced by SIRT1 in
response to DR, we examined Ox2r expression profiles in hypo-
thalami of diet-restricted wild-type mice. Similar to the results in
BRASTO hypothalami (Fig. 5A, B), DR increased the number of
Ox2r-positive cells and total Ox2r signal levels significantly and
specifically in the DMH and LH, but not in the VMH (DMH, p =
0.002; LH, p = 0.028; VMH, p = 0.718) (Fig. 6A, B). This DR-
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induced enhancement of Ox2r expression A
was totally abrogated in the Sirtl /=
DMH and LH (DMH, p = 0.013; LH, p =
0.015; VMH, p = 0.203) (Fig. 6C,D), sug-
gesting that SIRT1 is required for DR-
induced enhancement of Ox2r expression
in the DMH and LH. Furthermore, we
found that SIRT1 was able to enhance the
activity of the Ox2r promoter in a dose-
dependent manner in cultured cells (1 ug,
p = 0.005; 2 ug, p < 0.001) (Fig. 6E). To
validate the relevance of this in vitro result,
we also conducted chromatin-immuno-
precipitation (ChIP) assays with isolated c
mouse hypothalami to examine whether

SIRT1 resides in the Ox2r promoter re-

gion in vivo. ChIP analyses revealed that

SIRT1 resided specifically in the Ox2r  ++
proximal promoter region spanning from

—110 bp to —457 bp (Fig. 6F). Thus,

these findings suggest that increased

SIRT1 activity in BRASTO and diet-
restricted hypothalami enhances Ox2r ex- -/-
pression and promotes neural activation
specifically in the DMH and LH, which

tightly correlates with enhanced physical
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Diet restriction augments Ox2r expression in the DMH and LH via SIRT1. A-D, In situ hybridization of Ox2r in the DMH

in the hypothalamus. We were particu-
larly interested in ghrelin, an orexigenic
hormone secreted from stomach, because
ghrelin has been reported to stimulate
orexin neurons in LH (Horvath et al.,
2001) and in culture (Yamanaka et al.,
2003). It has also been shown that periph-
eral injection of ghrelin increases the num-
ber of cFOS-positive cells in the DMH in
rats (Kobelt et al., 2008). Therefore, we hy-

and LHin wild-type C57BL/6 male mice (A, B) and Sirt1 ~/~ FVBmale mice (C, D) under 14d DR. Ox2rsignal levels were quantified
in each hypothalamic nucleus under ALand 14 d DR (B) and between diet-restricted Sirt7 7+ and Sirt1 ~/~ mice (D). The signal
intensity per area was digitally quantified after subtracting surrounding background. Results are shown as mean values = SEM
(*p < 0.05,**p < 0.01,n = 3—4each for AL and DR mice (4 —10 sections and per hypothalamic nucleus) and for Sirt7™”" and
Sirt1 =/~ mice (2— 8 sections per hypothalamic nucleus)). E, Luciferase activities were measured by transfecting HEK293 cells with
a luciferase reporter driven by a ~1 kb Ox2r promoter and a Sirt7 minigene or a control vector carrying only the Sirt7 promoter.
Luciferase activities were compared with increasing amounts of the Sirt7 minigene. The luciferase activities in cells transfected with
the promoter-only control vector are normalized to 100%. Results are shown as mean values == SEM (**p << 0.01, ***p < 0.001
by one-way ANOVA with Tukey—Kramer post hoc test, n = 4). F, Chromatin immunoprecipitation for SIRT1in the hypothalamus.
Fixed chromatin was sonicated and subjected to immunoprecipitation with an anti-SIRT1 polyclonal antibody. Extracted DNA was
amplified with each primer set. Primer set 1 was designed for an unrelated genomic region. Locations of primer sets 2— 4 are shown
in the upper panel. Rabbit IgG (rlgG) was used as a negative control.

pothesized that ghrelin contributes to the
peripheral signal responsible for stimulating
DMH and LH neurons in response to DR in wild-type and BRASTO
mice. We first examined serum ghrelin levels in AL and diet-
restricted mice. Ghrelin levels significantly increased in mice under
DR, compared to those in AL mice ( p = 0.006) (Fig. 74, left). Gh-
relin levels also increased similarly in both 48 h fasted control and
BRASTO mice (WT, p < 0.001; Tg, p < 0.001) (Fig. 7A, right; sup-
plemental Table S1, available at www.jneurosci.org as supplemental
material). We next compared neural activation in control and
BRASTO hypothalami to peripheral ghrelin injection. After 4 d of
habituation to handling and mock injection to avoid stress-induced
neural activation, we injected PBS or ghrelin intraperitoneally into
both control and BRASTO mice. Whereas control PBS injection
showed minimal cFOS induction with no baseline differences be-

tween wild-type and BRASTO mice, ghrelin induced cFOS-positive
cells in the Arc, DMH, and LH over 2 h after injection, and the
BRASTO DMH and LH showed significantly higher numbers of
cFOS-positive cells than control DMH and LH after ghrelin in-
jection (WT vs Tg, DMH, p = 0.017; LH, p = 0.019) (Fig. 7B).
Consistent with this DMH- and LH-specific enhancement of
neural activation in BRASTO mice, they were also able to main-
tain higher levels of rectal body temperature compared to con-
trols after ghrelin injection (WT vs Tg, p = 0.048) (Fig. 7G;
supplemental Table S1, available at www.jneurosci.org as supple-
mental material), which mimics the changes in rectal body tem-
perature observed in diet-restricted wild-type and BRASTO mice
(Fig. 3E). Interestingly, the majority of cFOS-positive cells were
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condition). B, The number of cFOS-positive cells in the Arc, DMH, and LH of wild-type (WT) and BRASTO (Tg) mice at 90 min (left)
and 120 min (right) after ghrelin injection (30 nmol/kg of body weight) and after PBS injection (right). cFOS-positive cells are
shown as mean values = SEM (*p << 0.05, **p << 0.01 by one-way ANOVA with Tukey—Kramer post hoc test for each hypothalamic
nucleus, ghrelin injection, 90 min, n = 2-3 mice for each genotype, 712 sections per hypothalamic nucleus; 120 min, n = 3 for
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nucleus). ¢, Rectal body temperature of BRASTO mice 120 min after ghrelin injection. Levels of rectal body temperature are shown
as mean values = SEM (*p << 0.05, **p << 0.01 by one-way ANOVA with Tukey—Kramer post hoc test, n = 6—7). D, Double
immunofluorescent staining of cFOS and 0X2R in the DMH and LH of wild-type (WT) and BRASTO (Tg) mice at 120 min after ghrelin
injection. Arrows indicate cFOS/0X2R-double-positive cells. E, Quantification of the number of cFOS/0X2R-double-positive cells in
the Arc, DMH and LH of wild-type (WT) and BRASTO (Tg) mice at 120 min after ghrelin injection. cFOS/0X2R-double-positive cells
are shown as mean values == SEM (*p << 0.05, n = 3 mice for each genotype, 3—7 sections per hypothalamic nucleus). F,
Percentage of cFOS/0X2R-double-positive cells compared to a total number of cFOS-positive cells in the Arc, DMH, and LH of
Sirt1*/* and Sirt7 =/~ mice at 120 min after ghrelin injection. Percentages of cFOS/0X2R-double-positive cells are shown as
mean values == SEM (*p << 0.05, ***p < 0.001, n = 3 mice for each genotype, 6—12 sections per hypothalamic nucleus). G, A
model for the SIRT1-mediated neurobehavioral adaptation in the hypothalamus in response to DR. See Discussion for details.

also OX2R-positive (82 and 72% in the Arc, 77 and 79% in the
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response to ghrelin through OX2R is sig-
nificantly reduced in the Sirt] ~/~ LH and
DMH. Together, our findings indicate that
peripheral ghrelin, whose levels are signifi-
cantly increased by diet-restricting condi-
tions, triggers the stimulatory signal in the
DMH and LH where SIRT1 enhances the
responsiveness of neurons through the aug-
mentation of Ox2r expression.

Discussion

SIRT1 functions as a key mediator for
the central adaptation to

diet restriction

In this study, we provide several lines of
evidence demonstrating the physiological
significance of SIRT1 in the regulation of
neurobehavioral adaptation to DR: (1)
SIRT1 protein levels and neural activation
are induced specifically in the DMH and
LH by DR, (2) increased SIRT1 dosage in
the brain significantly enhances neural ac-
tivation in the DMH and LH, maintains a
higher range of body temperature, and
promotes physical activity in BRASTO
mice in response to multiple diet-restricting
paradigms, (3) these responses induced by
diet-restricting conditions are abrogated
by SIRT1 deficiency, (4) SIRT1 is required
for the DR-induced enhancement of Ox2r
expression in the DMH and LH and is also
able to enhance the promoter activity of
the Ox2r gene, and (5) ghrelin, a gut hor-
mone whose plasma levels are signifi-
cantly increased by both 48 h fasting and
DR, stimulates OX2R-positive neurons in
the DMH and LH and maintains higher
body temperature in BRASTO mice, while
Sirt] /" mice show significantly reduced
neural activation through OX2R in the
DMH and LH. These findings suggest that
SIRT1 controls a central adaptive mecha-
nism by which animals maintain their
physical activity and body temperature in
response to relatively chronic energy lim-
itation. Given that BRASTO mice show an
enhancement of these neurobehavioral
responses to DR, whereas Sirtl ~/~ mice
exhibit defects in these responses, persis-
tent low energy intake such as DR likely
triggers this adaptive mechanism by aug-
menting SIRT1 activity and thereby Ox2r
expression, at least in part, in the DMH

DMH, and 57 and 72% in the LH in control and BRASTO mice,
respectively, at 120 min after ghrelin injection) (Fig. 7D), and the
numbers of cFOS/OX2R-double-positive cells were significantly
higher in the BRASTO DMH and LH compared to controls at 120
min after ghrelin injection (DMH, p = 0.015; LH, p = 0.012)
(Fig. 7E). We also examined the response of SirtI™* and
Sirt] ~’~ mice to peripheral ghrelin injection. Among all acti-
vated neurons, the percentages of cFOS/OX2R-double-positive
cells were significantly lower in the Sirtl /~ DMH and LH
(DMH, p < 0.001; LH, p = 0.042) (Fig. 7F ), suggesting that the

and LH and enhancing the sensitivity of OX2R-positive neurons
to signals imposed possibly by peripheral ghrelin.

A novel central connection between SIRT1 and OX2R-
mediated orexin signaling

Our finding that SIRT1 enhances Ox2r expression specifically in
the DMH and LH in response to DR illustrates a novel central
connection between two key players in the regulation of metab-
olism and behavior. Orexin-OX1/2R signaling has been demon-
strated to play a critical role in the central regulation of arousal,
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motivational components of physical activity, and metabolism
(Sakurai et al., 1998; Chemelli et al., 1999; Funato et al., 2009). In
particular, hypothalamic orexin signaling plays an essential role
in the fasting-induced enhancement of wakefulness and locomo-
tor activity (Yamanaka et al., 2003). It has also been shown that
orexin neuron-ablated mice have a severe defect in the food-
anticipatory enhancement of wakefulness and locomotor activity
under timed DR (Mieda et al., 2004). It has recently been dem-
onstrated that orexin-OX2R signaling regulates metabolic rate,
food intake, and leptin and insulin sensitivity and thereby con-
veys resistance to high-fat diet-induced metabolic complications
(Funato et al.,, 2009). Thus, hypothalamic orexin signaling func-
tions as a critical mediator of central adaptive responses to alter-
ations in energy intake.

Similarly, it has been well established that SIRT1 mediates a
variety of critical metabolic effects in response to nutritional cues,
particularly to low nutritional input, in major metabolic tissues,
such as liver, adipose tissue, and skeletal muscle (Sinclair, 2005;
Imai and Guarente, 2007; Schwer and Verdin, 2008; Imai and
Guarente, 2010). Most recently, it has been reported that phar-
macological inhibition or Arc-specific knockdown of hypotha-
lamic SIRT1 suppresses food intake and body weight gain, likely
through the central melanocortin signaling, in rats (Cakir et al.,
2009). SIRT1 is expressed in pro-opiomelanocortin (POMC)
neurons (Ramadori et al., 2008) and appears to regulate Pomc
expression through deacetylation of FOXO1 (Cakir et al., 2009).
These studies reveal hypothalamic SIRT1 function in response to
acute nutritional deprivation. Our present study further extends
this interesting aspect of SIRT1 function in the hypothalamus
and reveals a new metabolic role of SIRT1 in different hypotha-
lamic nuclei, namely the DMH and LH, in response to more
chronic nutritional alterations. SIRT1 appears to control the sen-
sitivity of a particular subset of neurons in the DMH and LH
through the regulation of Ox2r expression and makes them more
responsive to increased ghrelin signal under DR (Fig. 7G). Be-
cause ghrelin directly stimulates orexin neurons (Horvath et al.,
2001; Yamanaka et al., 2003), it is highly likely that those OX2R-
positive DMH and LH neurons are stimulated by the orexin neu-
rons that are activated by ghrelin (Fig. 7G). Although further
investigation will be necessary to clarify the entire signaling cas-
cade, the augmentation of OX2R-mediated neural activation in
response to DR appears to be accomplished by the localized in-
crease in SIRT1 protein levels in the DMH and LH. Nonetheless,
because BRASTO mice do not show significant phenotypes in AL
conditions, hypothalamic SIRT1 activity might also be aug-
mented by increased systemic NAD biosynthesis or other mech-
anisms activated by low nutritional input, as reported in other
cases (Cakir et al., 2009; Imai, 2009b). Detailed analyses are cur-
rently underway to elucidate the molecular mechanism by which
SIRT1 augments Ox2r expression specifically in the DMH and
LH in response to low nutritional input.

The SIRT1-mediated systemic regulatory network for
adaptive responses to diet restriction

It should be noted that persistent neural activation is observed in
the DMH and LH under DR, although other hypothalamic nu-
clei, such as the Arc and VMH, might be involved in regulatory
processes that trigger metabolic changes at an early stage during
DR. Our findings suggest that SIRT1 in the OX2R-positive DMH
and LH neurons might play a critical role in coordinating meta-
bolic responses to chronic diet-restricting conditions at a sys-
temic level. Although their precise nature is currently unclear, the
activation of these OX2R-positive DMH and LH neurons leads to
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the stimulation of thermogenesis and the elevation of physical
activity in response to relatively chronic diet-restricting condi-
tions. Increasing SIRT1 dosage further promotes these responses,
whereas SIRT1 deficiency abrogates them. Given that it has been
shown that DMH and LH neurons regulate thermogenesis in
brown adipose tissue through the control of sympathetic nerve
activity (Cerri and Morrison, 2005; DiMicco and Zaretsky, 2007;
Morrison et al., 2008), it is tempting to speculate that SIRT1
activity in these neurons might affect such systemic responses
through the regulation of sympathetic nerve activity. However, in
light of the complexity of hypothalamic circuits, the fact that
some hypothalamic nuclei appear to be more homogeneous than
others in their responses does not necessarily allow us to conclude
that those particular nuclei are central in such systemic responses.
Definitive tests await the generation of necessary genetic tools,
such as DMH- or LH-specific Cre-driver mice. Nonetheless, it
will also be of great importance to examine where these OX2R-
positive DMH and LH neurons send their projections and which
neurons control activities of those DMH and LH neurons.

It is conceivable that those specific hypothalamic neurons, as
well as other hypothalamic neurons such as AgRP and POMC
neurons, might also be important for age-associated alterations
in neurobehavioral adaptive responses to nutritional inputs and
possibly for longevity as well in mammals, given that it has been
demonstrated that a very specific subset of sensory neurons,
namely SKN-1-positive neurons, mediates DR-induced longev-
ity through an endocrine mechanism in C. elegans (Bishop and
Guarente, 2007b). Such a hierarchical regulatory network might
play a universal role in the regulation of aging and longevity in
animals, and SIRT1 might be an integral component in the DMH
and LH to modulate systemic signals in response to changes in
energy intake in mammals. Indeed, peripheral administration of
ghrelin, an orexigenic hormone produced in the stomach, trig-
gers the activation of the DMH and LH neurons and induces
changes in body temperature, mimicking the effect of DR. In-
creased SIRT1 dosage enhances this neural response to ghrelin
and allows animals to maintain a higher range of body tempera-
ture. Therefore, SIRT1 might function as a critical modulator in
this hierarchical regulatory network for the regulation of central
adaptive responses. Alteration in SIRT1 activity in these neurons
might cause significant changes in the system dynamics of this
adaptive mechanism. In this regard, it is intriguing that systemic
NAD biosynthesis appears to decline over age, resulting in reduc-
tions in SIRT1 activity and glucose-stimulated insulin secretion
in pancreatic 3 cells in aged mice (Ramsey et al., 2008; Imai,
2009b). Such an age-associated decrease in systemic NAD bio-
synthesis might contribute to the alteration of certain neurobe-
havioral adaptations, such as reduced motivation for activity and
sleep disorders, both of which are common in the elderly (Kmiec,
2006).

In conclusion, our present study demonstrates the physio-
logical significance of SIRT1 as a key central mediator for the
neurobehavioral adaptation to DR. These findings provide
critical insights into the molecular mechanism by which mam-
mals control their neurobehavioral adaptive responses to
search for food and to survive through diet-restricted, life-
threatening environments.

References

Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA (2003)
Nicotinamide and PNCI1 govern lifespan extension by calorie restriction
in Saccharomyces cerevisiae. Nature 423:181-185.

Aton SJ, Block GD, Tei H, Yamazaki S, Herzog ED (2004) Plasticity of cir-



Satoh et al. @ The Hypothalamic Role of SIRT1 in Diet Restriction

cadian behavior and the suprachiasmatic nucleus following exposure to
non-24-hour light cycles. J Biol Rhythms 19:198-207.

Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S, Klugbauer N,
Reisinger E, Bischofberger J, Oliver D, Knaus HG, Schulte U, Fakler B
(2006) BKCa-Cav channel complexes mediate rapid and localized
Ca2+-activated K+ signaling. Science 314:615—620.

Bishop NA, Guarente L (2007a) Genetic links between diet and lifespan:
shared mechanisms from yeast to humans. Nat Rev Genet 8:835—844.
Bishop NA, Guarente L (2007b) Two neurons mediate diet-restriction-

induced longevity in C. elegans. Nature 447:545-549.

Bronson RT, Lipman RD (1991) Reduction in rate of occurrence of age
related lesions in dietary restricted laboratory mice. Growth Dev Aging
55:169-184.

Cakir I, Perello M, Lansari O, Messier NJ, Vaslet CA, Nillni EA (2009) Hy-
pothalamic Sirtl regulates food intake in a rodent model system. PLoS
ONE 4:e8322.

Cerri M, Morrison SF (2005) Activation of lateral hypothalamic neurons
stimulates brown adipose tissue thermogenesis. Neuroscience 135:627—
638.

Chapman T, Partridge L (1996) Female fitness in Drosophila melanogaster:
an interaction between the effect of nutrition and of encounter rate with
males. Proc Biol Sci 263:755-759.

Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Rich-
ardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M,
Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin
knockout mice: molecular genetics of sleep regulation. Cell 98:437—451.

Chen D, Steele AD, Lindquist S, Guarente L (2005) Increase in activity dur-
ing calorie restriction requires Sirt1. Science 310:1641.

Chen D, Steele AD, Hutter G, Bruno ], Govindarajan A, Easlon E, Lin §J,
Aguzzi A, Lindquist S, Guarente L (2008) The role of calorie restriction
and SIRT1 in prion-mediated neurodegeneration. Exp Gerontol
43:1086-1093.

Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R,
Appella E, Alt FW, Chua KF (2003) Developmental defects and p53 hy-
peracetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad
Sci U S A 100:10794-10799.

Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley
TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R
(2009) Caloric restriction delays disease onset and mortality in rhesus
monkeys. Science 325:201-204.

Dai S, Hall DD, Hell JW (2009) Supramolecular assemblies and localized
regulation of voltage-gated ion channels. Physiol Rev 89:411-452.

DiMicco JA, Zaretsky DV (2007) The dorsomedial hypothalamus: a new
player in thermoregulation. Am J Physiol Regul Integr Comp Physiol
292:R47-R63.

Dragunow M, Faull R (1989) The use of c-fos as a metabolic marker in
neuronal pathway tracing. ] Neurosci Methods 29:261-265.

Elmquist JK (2001) Hypothalamic pathways underlying the endocrine, au-
tonomic, and behavioral effects of leptin. Physiol Behav 74:703-708.
Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restric-
tion is highly effective in reducing the risk for atherosclerosis in humans.

Proc Natl Acad Sci U S A 101:6659—6663.

Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, Sakurai T, Yanagisawa
M (2009) Enhanced orexin receptor-2 signaling prevents diet-induced
obesity and improves leptin sensitivity. Cell Metab 9:64-76.

GooleyJJ, Schomer A, Saper CB (2006) The dorsomedial hypothalamic nu-
cleus is critical for the expression of food-entrainable circadian rhythms.
Nat Neurosci 9:398—407.

Green CB, Takahashi JS, Bass ] (2008) The meter of metabolism. Cell
134:728-742.

Horvath TL, Diano S, Sotonyi P, Heiman M, Tschop M (2001) Minireview:
ghrelin and the regulation of energy balance—a hypothalamic perspec-
tive. Endocrinology 142:4163—4169.

Imai S (2009a) SIRT1 and caloric restriction: an insight into possible trade-
offs between robustness and frailty. Curr Opin Clin Nutr Metab Care
12:350-356.

Imai S (2009b) The NAD world: a new systemic regulatory network for
metabolism and aging—Sirtl, systemic NAD biosynthesis, and their im-
portance. Cell Biochem Biophys 53:65-74.

Imai S, Guarente L (2007) Sirtuins: a universal link between NAD, metabo-
lism, and aging. In: The molecular biology of aging (Guarente L, Partridge
L, Wallace D, eds), pp 39-72. New York: Cold Spring Harbor Laboratory.

J. Neurosci., July 28, 2010 - 30(30):10220 -10232 « 10231

Imai S, Guarente L (2010) Ten years of NAD-dependent SIR2 family
deacetylases: implications for metabolic diseases. Trends Pharmacol Sci
31:212-220.

Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional
silencing and longevity protein Sir2 is an NAD-dependent histone
deacetylase. Nature 403:795—-800.

Ingram DK, Weindruch R, Spangler EL, Freeman JR, Walford RL (1987)
Dietary restriction benefits learning and motor performance of aged
mice. ] Gerontol 42:78—81.

Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and
SIR2 alone promote longevity in Saccharomyces cerevisiae by two different
mechanisms. Genes Dev 13:2570-2580.

Kmiec Z (2006) Central regulation of food intake in ageing. ] Physiol Phar-
macol 57 [Suppl 6]:7-16.

Kobelt P, Wisser AS, Stengel A, Goebel M, Inhoff T, Noetzel S, Veh RW,
Bannert N, van der Voort I, Wiedenmann B, Klapp BF, Taché Y, Monni-
kes H (2008) Peripheral injection of ghrelin induces Fos expression in
the dorsomedial hypothalamic nucleus in rats. Brain Res 1204:77—86.

Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caeno-
rhabditis elegans. Proc Natl Acad Sci U S A 95:13091-13096.

Lin S-J, Defossez P-A, Guarente L (2000) Life span extension by calorie
restriction in S. cerevisize requires NAD and SIR2. Science
289:2126-2128.

Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing
Dev 126:913-922.

McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR,
Lansdorp PM, Lemieux M (2003) The mammalian SIR2alpha protein
has a role in embryogenesis and gametogenesis. Mol Cell Biol 23:38-54.

McCay CM, Crowell MF, Maynard LA (1935) The effect of retarded growth
upon the length of life span and upon the ultimate body size. ] Nutr
10:63-79.

Mieda M, Williams SC, Sinton CM, Richardson JA, Sakurai T, Yanagisawa M
(2004) Orexin neurons function in an efferent pathway of a food-
entrainable circadian oscillator in eliciting food-anticipatory activity and
wakefulness. ] Neurosci 24:10493—-10501.

Mistlberger RE (1994) Circadian food-anticipatory activity: formal models
and physiological mechanisms. Neurosci Biobehav Rev 18:171-195.

Morrison SF, Nakamura K, Madden CJ (2008) Central control of thermo-
genesis in mammals. Exp Physiol 93:773-797.

Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-
Méneur C, Permutt MA, Imai S (2005) Increased dosage of mammalian
Sir2 in pancreatic 3 cells enhances glucose-stimulated insulin secretion in
mice. Cell Metab 2:105-117.

Miiller MB, Wurst W (2004) Getting closer to affective disorders: the role of
CRH receptor systems. Trends Mol Med 10:409—-415.

Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente
LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1
modulates CLOCK-mediated chromatin remodeling and circadian con-
trol. Cell 134:329-340.

Ramadori G, Lee CE, Bookout AL, Lee S, Williams KW, Anderson J, Elmquist
JK, Coppari R (2008) Brain SIRT1: anatomical distribution and regula-
tion by energy availability. ] Neurosci 28:9989-9996.

Ramsey KM, Mills KF, Satoh A, Imai S (2008) Age-associated loss of Sirt1-
mediated enhancement of glucose-stimulated insulin secretion in £ cell-
specific Sirtl-overexpressing (BESTO) mice. Aging Cell 7:78—88.

Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B,
Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass ] (2009)
Circadian clock feedback cycle through NAMPT-mediated NAD+ bio-
synthesis. Science 324:651—654.

Revollo JR, Grimm AA, Imai S (2004) The NAD biosynthesis pathway me-
diated by nicotinamide phosphoribosyltransferase regulates Sir2 activity
in mammalian cells. ] Biol Chem 279:50754-50763.

Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a
pathway related to calorie restriction. Proc Natl Acad Sci USA
101:15998-16003.

Sagar SM, Sharp FR, Curran T (1988) Expression of c-fos protein in brain:
metabolic mapping at the cellular level. Science 240:1328-1331.

Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams
SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE,
Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy
NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a



10232 - J. Neurosci., July 28, 2010 - 30(30):10220 -10232

family of hypothalamic neuropeptides and G protein-coupled receptors
that regulate feeding behavior. Cell 92:573-585.

Schwer B, Verdin E (2008) Conserved metabolic regulatory functions of
sirtuins. Cell Metab 7:104—112.

Sinclair DA (2005) Toward a unified theory of caloric restriction and lon-
gevity regulation. Mech Ageing Dev 126:987-1002.

Stephan FK (2002) The “other” circadian system: food as a zeitgeber. ] Biol
Rhythms 17:284-292.

Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends
lifespan in Caenorhabditis elegans. Nature 410:227-230.

Vallone D, Pignatelli M, Grammatikopoulos G, Ruocco L, Bozzi Y, Westphal
H, Borrelli E, Sadile AG (2002) Activity, non-selective attention and
emotionality in dopamine D2/D3 receptor knock-out mice. Behav Brain
Res 130:141-148.

Wang J, Xu G, Slunt HH, Gonzales V, Coonfield M, Fromholt D, Copeland
NG, Jenkins NA, Borchelt DR (2005) Coincident thresholds of mutant
protein for paralytic disease and protein aggregation caused by restric-
tively expressed superoxide dismutase cDNA. Neurobiol Dis 20:943-952.

Wang T, Hung CC, Randall DJ (2006) The comparative physiology of food
deprivation: from feast to famine. Annu Rev Physiol 68:223-251.

Wang Y, Tissenbaum HA (2006) Overlapping and distinct functions for a

Satoh et al. @ The Hypothalamic Role of SIRT1 in Diet Restriction

Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev
127:48-56.

Weindruch R, Walford RL (1982) Dietary restriction in mice beginning at 1
year of age: effect on life-span and spontaneous cancer incidence. Science
215:1415-1418.

Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of
aging in mice by dietary restriction: longevity, cancer, immunity, and
lifetime energy intake. J Nutrit 116:641-654.

Wozniak DF, Hartman RE, Boyle MP, Vogt SK, Brooks AR, Tenkova T,
Young C, Olney JW, Muglia L] (2004) Apoptotic neurodegeneration
induced by ethanol in neonatal mice is associated with profound learning/
memory deficits in juveniles followed by progressive functional recovery
in adults. Neurobiol Dis 17:403—414.

Yamanaka A, Beuckmann CT, Willie JT, Hara ], Tsujino N, Mieda M, Tominaga
M, Yagami K, Sugiyama F, Goto K, Yanagisawa M, Sakurai T (2003) Hypo-
thalamic orexin neurons regulate arousal according to energy balance in
mice. Neuron 38:701-713.

Yu BP, Masoro EJ, McMahan CA (1985) Nutritional influences on aging of
Fischer 344 rats: 1. Physical, metabolic, and longevity characteristics.
] Gerontol 40:657—670.



