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ABSTRACT

Motivation: A gene set test is a differential expression analysis in
which a P-value is assigned to a set of genes as a unit. Gene
set tests are valuable for increasing statistical power, organizing
and interpreting results and for relating expression patterns across
different experiments. Existing methods are based on permutation.
Methods that rely on permutation of probes unrealistically assume
independence of genes, while those that rely on permutation of
sample are suitable only for two-group comparisons with a good
number of replicates in each group.
Results: We present ROAST, a statistically rigorous gene set test that
allows for gene-wise correlation while being applicable to almost any
experimental design. Instead of permutation, ROAST uses rotation, a
Monte Carlo technology for multivariate regression. Since the number
of rotations does not depend on sample size, ROAST gives useful
results even for experiments with minimal replication. ROAST allows
for any experimental design that can be expressed as a linear model,
and can also incorporate array weights and correlated samples.
ROAST can be tuned for situations in which only a subset of the
genes in the set are actively involved in the molecular pathway.
ROAST can test for uni- or bi-direction regulation. Probes can also
be weighted to allow for prior importance. The power and size of
the ROAST procedure is demonstrated in a simulation study, and
compared to that of a representative permutation method. Finally,
ROAST is used to test the degree of transcriptional conservation
between human and mouse mammary stems.
Availability: ROAST is implemented as a function in the
Bioconductor package limma available from www.bioconductor.org
Contact: smyth@wehi.edu.au
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
A gene set test is a differential expression analysis in which a set of
putatively co-regulated genes is treated as a unit. A single P-value
is evaluated for the set rather than evaluating individual P-values
for individual genes. Typically, the gene set is chosen to represent
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a particular molecular pathway. In this way, gene set testing can
simplify and organize differential expression analyses by focusing
attention on larger and more biologically meaningful processes than
individual genes. Gene set tests are valuable for relating expression
patterns across different studies, even across different platforms or
species (Manoli et al., 2006). Gene set tests can be statistically more
powerful than genewise tests as evidence is accumulated from many
genes.

There are a number of gene set testing methodologies with
different aims. This article is concerned with what might be called
focused gene set testing, in which interest focuses on one or more
gene sets of special relevant to the experiment at hand (Dinu et al.,
2007; Goeman et al., 2004; Jiang and Gentleman, 2007; Tian et al.,
2005). This approach contrasts with what might be called battery
gene set testing, in which a large database of gene sets is evaluated
on a microarray dataset, to see whether any sets stand out from
the others (Dørum et al., 2009; Efron and Tibshirani, 2007; Saxena
et al., 2006). Battery gene set testing was made popular by the Gene
Set Enrichment Analysis (GSEA) method of Mootha et al. (2003)
and Subramanian et al. (2005). In focused gene set testing, each set
is evaluated on its own terms. In battery gene set testing, sets are
evaluated relative to the other sets in the database. For this reason,
methods designed for battery testing cannot be applied to individual
gene sets.

Focused gene set tests can be classified into those which evaluate
P-values by permuting samples and those which permute genes.
Methods that permute genes are limited by the fact that they
treat genes as if statistically independent. This assumption is
usually suspect, particularly when the set is specifically chosen to
contain co-regulated genes. Moreover, gene permutation P-values
are very sensitive to inter-gene correlations, potentially leading to
dangerously over-stated statistical significance (Dørum et al., 2009;
Efron and Tibshirani, 2007). This has led some authors to conclude
that statistically rigorous testing is only possible by permuting
samples (Goeman and Bühlmann, 2007).

The need to permute samples to obtain P-values severely limits
the experimental designs which can be analysed. Permutation is
basically limited to two-group comparisons, with a moderate to large
number of replicates in each group. Some authors have adapted
permutation to the needs of one- or two-way ANOVA designs.
Adewale et al. (2008) and Hummel et al. (2008) suggested permuting
sample labels while holding all covariates fixed except the covariate
of interest. Oron et al. (2008) permuted sample labels within each
level of a blocking factor. However, these stratified permutation
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methods are still limited to special designs and moderate to large
numbers of replicates.

Another possibility is to try to model inter-gene correlations
explicitly using mixed linear models (Wang et al., 2008).
As genes operate with complex covariance patterns, this will be
a simplification of the truth and, again, the method is restricted to
experimental designs with a special structure.

We present a statistically rigorous gene set test that fully allows
for gene-wise correlations while being applicable to almost any
experimental design. We have in mind the sort of small but complex
experimental designs that arise frequently in experimental medicine,
which may have many experimental factors but only a few biological
replicates. Instead of permutation, we use rotation, a Monte Carlo
simulation technology recently proposed for multivariate regression
models (Langsrud, 2005). Rotation has also been used recently for
a battery gene set testing (Dørum et al., 2009), but here we use it for
focused testing. Rotation can be viewed as analogous to fractional
permutation. Since there is no limit on the number of rotations which
can be done, the problem of granularity of P-values in small sample
sizes is avoided. Rotation can be applied to the residual space of
a linear model, and so utilizes all the available degrees of freedom
regardless of the experimental design.

Section 2 of this article describes our statistical model for
microarray data. Our implementation of ROAST (rotation gene set
testing) allows for any experimental design, which can be expressed
as a linear model, and also accommodates array quality weights and
correlations between samples. To ensure good behaviour in very
small samples, ROAST uses empirical Bayes t-statistics for gene-
level differential expression (Smyth, 2004). Then our approach to
gene set testing is described. Alternative hypotheses are considered
for gene sets in which all genes are expected to be regulated in
the same direction and for those in which genes may vary in both
directions. Scenarios are considered in which only a subset of the
genes in the set actively contribute to the overall result. Different
gene set summary statistics are developed that are appropriate for
detecting different proportions of active genes.

Next, the numerical implementation of the ROAST algorithm
is outlined. The power and size of the ROAST procedure is
demonstrated in a simulation study, and compared to a representative
permutation method. Finally, ROAST is used to test the degree of
transcriptional conservation between human and mouse mammary
stems

2 THE STATISTICAL MODEL

2.1 Data and gene set
We assume that an experiment or observational study has been
conducted resulting in expression data on G probes in each of
n target RNA samples. Different treatments, phenotypes or other
characteristics are associated with the n samples, and we are
interested in finding genes that are differentially expressed (DE)
between the samples in some particular way. For example, the
samples might be in two or more groups, and we want to find
genes DE between two specified groups. Or we might want to find
genes that show an interaction between two treatments. Or we might
want to find genes that show a trend in a time-course experiments.
Our aim is to accommodate quite general and arbitrarily complex
experiments, so there is no limit on the number of treatment factors

associated with the experiment, provided of course there is enough
data available to estimate all the effects.

We assume that a particular set of probes or genes is of prior
interest. This a priori specified gene set might represent a molecular
pathway believed to be relevant to the experiment, or it might be a
gene list from a previous microarray experiment hypothesized to be
related to the current experiment. We want to test whether the gene
set contains any probes that are DE. In some cases, the expected
direction and magnitude of change may be specified in advance for
individual genes. We are particularly interested in detecting sets that
contain a good proportion, say 25–50% or more, of co-regulated DE
genes. Sets that contain a small proportion of DE genes are of a lower
level of interest.

2.2 The linear model
To be as general as possible, we use a linear model representation
for the experiment, as described previously (Smyth, 2004). Write
ygi for the log2-expression value for sample i and probe g. We
assume that the expression values have already been background
corrected, normalized and, perhaps, filtered in a way appropriate for
the microarray or expression platform. Write yg = (yg1,...,ygn)T for
the vector of expression values for probe g. We assume

E(yg)=Xαg

where X is an n×p design matrix of full column rank and αg an
unknown coefficient vector of length p. The matrix X represents the
design of the experiment, and describes how the different treatment
factors are assigned to the RNA samples. The coefficients αgj , which
make up αg, represent the treatment effects or differences associated
with probe g. We also assume

var(yg)=W−1σ2
g

where σ2
g is the unknown probewise variance and W a positive-

definite matrix of weights. The weight matrix W provides the ability
to incorporate array weights if desired (Ritchie et al., 2006) or to
incorporate correlations between samples (Smyth et al., 2005). If W
is unknown, then it is estimated from the expression data on all G
probes, as described in the papers just cited. After this step, W is
treated as known.

2.3 Distributional assumptions across genes
We assume that the ygi are multivariate normal, at least for the probes
in our gene set, with a general but unknown correlation structure
between the probes. Multivariate normality is theoretically a strong
assumption, but we show later that our test procedure is robust
against departures from normality.

To borrow information across probes when estimating standard
errors, we assume a hierarchical model for the probewise variances,
as described previously (Lonnstedt and Speed, 2002; Smyth, 2004;
Wright and Simon, 2003). We assume that the probewise variances
are sampled from an inverse-χ2 distribution

1

σ2
g

∼ 1

s2
0

χ2
d0

where s2
0 is the prior variance and d0 the prior degrees of freedom.

The prior variance represents typical variability and the prior degrees
of freedom control how consistent the variability is across probes.
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2.4 Probe level tests
A particular contrast of the coefficients, represented by βg =cT αg, is
assumed to be of interest. We want to find genes for which βg is non-
zero. The linear model described above is fitted to the expression
data for each probe. The t-statistic for testing βg =0 is

tg = β̂g

sg
√

v

where β̂g =cT α̂g is the least squares estimator of βg, sg the residual
SD for probe g and v=cT (XT WX)−1c the unscaled SD of β̂g.
Under the null hypothesis, tg follows a t-distribution on d =n−p
degrees of freedom.

Following Wright and Simon (2003) and Smyth (2004), an
improved test can be obtained by computing the posterior variances

s̃2
g = d0s2

0 +ds2
g

d0 +d
(1)

and moderated t-statistics

t̃g = β̂g

s̃g
√

v

Under the null hypothesis, t̃g follows a t-distribution on d0 +d
degrees of freedom. The gain in degrees of freedom of the moderated
over the ordinary t-statistic reflects the information that is borrowed
from other probes when making inferences about an individual
probe. The moderated t-test has been shown to be superior to other
tests in comparative studies (Diboun et al., 2006; Kooperberg et al.,
2005; Murie et al., 2009).

The hyper-parameters s0 and d0 in the prior distribution for σ2
g

are estimated from the expression data on all G probes as described
by Smyth (2004). After this step, s0 and d0 are treated as known.

For the calculations in this article, the moderated t-statistics are
transformed to equivalent standard normal random variables

zg =F−1(Ft(t̃g)) (2)

where F and Ft are the cumulative distribution functions of the
standard normal and td0+d distributions, respectively.

3 APPROACH TO GENE SET TESTING

3.1 Gene set hypotheses
Let S be the set of indices of the probes in our gene set of interest.
We want to test the null hypothesis H0 that βg =0 for all g∈S.
The alternative hypothesis depends on whether the DE genes in S
are expected to change in the same direction or not, and whether
this direction is specified in advance. We consider three possible
alternative hypotheses. The up hypothesis Hu is that βg >0 for at
least one g∈S. The down hypothesis Hd is that βg <0 for at least
one g∈S. The mixed hypothesis Hm is that βg �=0 for at least one
g∈S, i.e. the genes can change in mixed (up or down) directions.
Clearly, it is possible for more than one of the alternative hypotheses
Hm, Hu or Hd to be true for the same gene set.

3.2 Gene weights
In some cases, there are prior reasons to give more weight to some
genes in the gene set than others; for example, genes that are more
highly expressed might be of more interest. We, therefore, allow the

possibility of gene weights ag, which are used to weight the zg when
the gene set summary statistic T is computed, similar to a suggestion
of Jiang and Gentleman (2007).

Positive or negative gene weights can be used to reflect the
expected direction of change of genes in the gene set. For example,
the gene weights might be ±1 depending on whether the genes are
known to be up- or down-regulated in a particular pathway, or the
gene weights might be set equal to the log-fold changes for these
genes in a prior experiment.

3.3 Gene set statistics
A test statistic T for the gene set S is constructed from the moderated
t-statistics for probes in the set. Several gene set level summary
statistics have been proposed in previous research on gene set testing
(Ackermann and Strimmer, 2009; Jiang and Gentleman, 2007). We
propose a number of new summary statistics that have a good power
for different gene set scenarios. Our statistics are computed in terms
of the z-scores zg.

When all genes in the set S are DE by about the same amount,
the weighted mean of the genewise statistics is a logical gene set
statistic. Write A=∑

g∈S |ag| for the sum of absolute gene weights
of genes in the set. To test the directional hypotheses Hu or Hd ,
we define Tmean = (

∑
g∈S agzg)/A. To test Hm, agzg is replaced by

|agzg|.
When only a few genes in the set are DE, or if some log-

fold-changes are much larger than others, the mean of the squared
genewise statistics is a more sensitive measure. To test the mixed
hypothesis Hm, we define Tmsq = (

∑
g∈S |ag|z2

g)/A. To test Hu, the
sum in the numerator of the statistic is taken only over those agzg
that are positive. To test Hd , the sum in the numerator of the statistic
is taken only over those agzg that are negative.

We define two more gene set statistics that are designed to be
sensitive to gene sets in which about half of the genes are DE. The
first is the mean-50 statistic. Let h be the smallest integer greater
than or equal to half the number of genes in the set, i.e. h=�(m+
1)/2�, where m is the number of genes in the gene set. The mean50
statistic Tmean50 is the weighted mean of the top h most significant
z-statistics. To test Hm, the mean50 statistic is the mean of the h
largest absolute agzg values. To test Hu, the mean50 statistic is the
mean of the h largest agzg values. To test Hd , the mean50 statistic
is the mean of the h smallest agzg values.

The last statistic is inspired by the max–mean statistic of Efron
and Tibshirani (2007). We call it floor-mean because it applies a
floor value to the z-statistics. To test Hu, we compute the floored
genewise statistics fg =max(zg,0). To test Hd , the floored statistics
are fg =min(agzg,0). To test Hm, the floored statistics are fg =
max(|zg|,0.67), where 0.67 is the square-root of the median of the
χ2

1 distribution. In each case, Tfloormean is computed as for Tmean
but with fg in place of zg. The floor-mean statistic behaves similarly
to the mean50 statistic, but is faster to compute.

3.4 Assigning P-values
We now seek to assign a P-value to the gene set statistic T . The
distribution of T is unknown, because the correlation of expression
scores between probes is unknown, so a resampling method must be
used to assign the P-value. We avoid permuting genes because this
would destroy the inter-probe dependence (Goeman and Bühlmann,
2007). We also avoid permuting samples, for several reasons. First,
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permutation requires a large number of replicate samples in order
to provide a reliable P-value estimate, whereas we wish to analyse
experiments with small numbers of replicates. Second, permutation
does not have the ability to test general linear model hypotheses,
such as we have specified. Third, permutation assumes samples to
be identically distributed and exchangeable, whereas we wish to
accommodate various types of weighting and correlation structures.

We instead adapt the idea of rotation tests from Langsrud (2005).
Rotation tests use a type of simulation to generate P-values. The first
step is to remove the nuisance parameters in the linear model, all
the αgj other than the contrast of interest βg, by projecting the data
for each probe onto the d+1 dimensional residual space orthogonal
to them. This yields a set of d+1 independent residuals, such that
the t-statistic t̃g can be computed from the first residual. This step
allows us to test βg =0 without making assumptions about the other
coefficients in the linear model. The second step randomly rotates
the residuals in d+1 dimensional space. For each rotation, the gene
set statistic T is re-computed, and compared to the observed value.
The final P-value is p= (b+1)/(B+1), where B is the total number
of rotations and b the number that yield a rotation statistic at least as
extreme as that observed. This is an exact P-value (Barnard, 1963).

3.5 Estimating the active proportion
The above procedure attaches a P-value to the gene set. When the
P-value is statistically significant, it is of interest to know how many
genes in the set are contributing to this result. We consider a gene to
be active in the result if zg >

√
2 (for Hu) or zg <−√

2 (for Hd ) or
|zg|>√

2 for (for Hm). The threshold of
√

2 is somewhat arbitrary
but is motivated by Akaike’s information criterion in the model
selection theory, wherein the addition of one parameter to a model
is considered worthwhile if it improves the χ2 goodness of fit by
two or greater.

4 NUMERICAL IMPLEMENTATION

4.1 Independent residual effects
For the statistical model considered here, we are able to substantially simplify
the rotation P-value computations outlined by Langsrud (2005), resulting in
a very fast algorithm. All the computations below are for genes g in S only.
Other genes can be ignored.

The first step is to remove the nuisance parameters, i.e. the contrasts not
of interest, from the linear model. This is done by projecting each yg onto
the space orthogonal to the columns of X not involved in the null hypothesis.

Let C be an invertible p×p matrix with last column equal to c, and write
βg =CT αg. Note

Xαg =X(CT )−1βg

and that βg, as defined in Section 2.4, is the last element of βg. In this way,
the linear model is re-parameterized so that the null hypothesis concerns the
last regression coefficient.

The projection is obtained as a byproduct of the usual QR decomposition
used in the numerical calculations for fitting the linear model,

W1/2X(CT )−1 =QR.

We use the full QR-decomposition in which Q is n×n. Let Q2 be Q with the
first p−1 columns removed. Then the nuisance parameters are removed by
the projection

ug =QT
2 W1/2yg

for each g in S. In the actual numerical computations, the vector ug can be
obtained from the QR-decomposition without forming Q or Q2 explicitly.

Under the null hypothesis, the elements ug1,...,ug,d+1 of ug are
independent and identically N(0,σ2

g ). We have

s2
g = 1

d

d+1∑

i=2

u2
gi,

then the posterior variance is computed from (1), and finally the moderated
t-statistics are

t̃g =ug1/s̃g

4.2 Rotation
Let ρ2

g =uT
g ug. The rotation test method rotates the vector of residuals ug

to a random point u∗
g on the d+1-sphere of radius ρg. For every rotation,

the moderated t-statistics and the overall gene set statistic T are recomputed.
After a large number of rotations, the Monte Carlo P-value is computed as
above.

It is actually only necessary to randomly generate the first element u∗
1

of u∗
g , because the residual variances for the rotated data can be computed

from s∗2
g = (ρ2

g −u∗2
1 )/d. The computation is extremely efficient. A random

rotation vector r is generated satisfying rT r=1. Then u∗
1 is generated for all

probes in the gene set by
u∗

1 =Ur

where U is the m×(d+1) matrix with rows uT
g for g in S. This yields rotated

t-statistics and z-statistics for each gene in the gene set, and hence to a null
distribution value T∗ of the gene set statistic. New rotation vectors r and T∗
are generated large number of times, typically B=10000.

5 SIMULATION STUDY

5.1 Scenarios
Four multi-group experimental designs were simulated. The first
design (D1–3) was a three-group experiment with n1 =n2 =3
replicate samples in the first two groups and n3 =20 replicate
samples in the third. Interest is in differential expression between
the first two groups. The second design (D1–5) was the same but
with n1 =n2 =5 replicate samples in the first two groups. The third
(D2–3) and fourth (D2–5) designs were two-way factorial designs
with two levels per factor, with three samples and five samples
per group, respectively. For the factorial designs, interest was in
differential expression for the first factor, the other being a blocking
factor.

Each simulated dataset had G=10000 probes per array. Genes
were divided either into 250 gene sets of 40 genes each, or into
10 gene sets of 1000 genes each. In each case, only the first gene
set was simulated to contain DE genes. Genewise variances were
simulated according to the model described in Section 2 with d0 =4
and s0 =0.25.

For each design, datasets were simulated in 10 scenarios with
different proportions of up- and down-regulated genes in the set,
and either independent or correlated expression profiles. In each
scenario, the DE genes share the same fold-change. The fold-change
was chosen for each scenario to make the highest powers around
80%. Table 1 shows the scenarios for designs D1–3 and D1–5.
Smaller fold-changes were simulated with 1000 genes in each set
than with 40 so as to keep the power about the same in each case
(Table 1).

5.2 Size
The most important property of a statistical test is that its size
(Type I error rate) is controlled correctly. It follows from the theory
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Table 1. Ten simulated scenarios for designs D1–3 and D1–5

Scenario Proportion Proportion Correlation Log-fold Hypothesis
up down change tested

1 1.00 0.00 0.0 0.1 (0.02) up
2 1.00 0.00 0.1 0.2 (0.2) up
3 0.25 0.00 0.0 0.3 (0.07) up
4 0.25 0.00 0.1 0.4 (0.2) up
5 0.50 0.50 0.0 0.2 (0.07) mixed
6 0.50 0.50 0.1 0.2 (0.2) mixed
7 0.20 0.20 0.0 0.3 (0.1) mixed
8 0.20 0.20 0.1 0.4 (0.2) mixed
9 0.00 0.00 0.0 0.0 (0.0) up/mix
10 0.00 0.00 0.1 0.0 (0.0) up/mix

Fold-changes are for 40 genes per set (or 1000 genes per set). Genes regulated in the
same direction are positively correlated, those in opposite directions are negatively
correlated. In Scenario 10, the correlation applies to all genes in the set. Scenarios
differ according to the proportion of up- and down-regulated genes in the set and the
intergene correlation.

of rotation tests that ROAST must hold its size correctly if the
data is normally distributed, and this was confirmed by simulations
(Supplementary Tables S1 and S4).

To explore the robustness of ROAST to non-normal data, we
simulated expression data to be exponentially distributed. The
exponential distribution is highly right skew, far more non-normal
than would be seen in any real microarray experiment. To simulate
correlated exponential random variables, data was first simulated
as for the normal simulations (Table 1, Scenarios 9 and 10), then
transformed to be exponentially distributed, via the appropriate
normal and exponential cumulative distribution functions. Even in
this extreme situation, ROAST continued to hold its power correctly
when used with the mean, mean50 or floor-mean gene set statistics
(Supplementary Table S2). This was not quite true with the msq gene
summary statistic but, even then, the true test sizes were only slightly
higher than nominal sizes. We conclude that ROAST is likely to be
robust to non-normality in realistic data situations.

5.3 Power
ROAST was found to have good power to detect sets containing DE
genes with very modest fold-changes, across a range of scenarios
(Supplementary Tables S3 and S5). The mean set statistic was the
best of the statistics for detecting scenarios with all genes changing
(Supplementary Tables S3 and S5, Scenarios 1, 2, 5 and 6). The msq
set statistic was the best of the statistics for detecting scenarios with
only a minority of genes changing (Supplementary Tables S3 and S5,
Scenarios 3, 4, 7 and 8). The mean50 and floor-mean statistics were
intermediate between the mean and msq statistics in both scenarios.
The statistics can be ordered as mean, floor-mean, mean50, then
msq, in terms of increasing sensitivity to a subset of DE genes and
decreasing sensitivity to all genes changing by the same amount. In
all cases, power was reduced for a given fold-change when the genes
in set had correlated expression values. More genes in the gene set
increased power, but this increase was not so apparent when the
genes were correlated (Supplementary Tables S3 and S5).

5.4 Comparison with permutation tests
The key advantage of ROAST is the ability to handle situations for
which no other gene set test is suitable. It is of interest, however, to

see how ROAST compares with other methods when conditions are
suitable for them. We compared ROAST to GSEAlm (Oron et al.,
2008). We chose GSEAlm because it is a high-quality representative
of permutation methods, and because it has more flexible options that
most permutation software, being able to handle one-way ANOVA
or block designs.

No permutation algorithm can be expected to work well on
design D1–3, with only three arrays per group. Indeed, we found
that GSEAlm failed to hold its size when the number of available
permutations was not large (data not shown). This can be traced to
the way in which the permutation P-values are computed. Whereas
ROAST computes an exact P-value, GSEAlm, like all permutation
software that we know of, computes an estimate p̂=b/B of the
P-value, where B is the number of permutations and b the number
of permuted statistics as extreme as that observed. This estimated
P-value can often be zero if the number of permutations is modest,
resulting in an over-statement of statistical significance (Ernst,
2004).

GSEAlm was compared with ROAST on designs D1–5, D2–3
and D2–5. GSEAlm is computationally time consuming, so only 100
datasets were simulated for each scenario for each design. On design
D1–5, GSEAlm is somewhat less powerful than ROAST, regardless
of scenario and regardless of ROAST set statistic (Supplementary
Table S6). This was presumably because ROAST is able to make
use of residual degrees of freedom from the 20 arrays in the third
group that is not involved in the hypothesis test. GSEAlm was not
tested on the mixed scenarios, as it is not able to test bi-directional
hypotheses. On the two-factor designs D2–3 and D2–5, for testing
directional hypotheses, GSEAlm is similar in power to ROAST with
the mean gene set statistic (Supplementary Tables S7 and S8).

6 MAMMARY STEM CELLS
Mammary epithelial cells can be sorted into a family tree of cell
populations, including a mammary stem cell-enriched population
(MaSC), luminal progenitor cells (LP) and mature luminal cells
(ML) (Visvader and Lindeman, 2006). This family tree is of
tremendous interest for many reasons, for example, because
mammary stem cells or luminal progenitor cells may represent the
cell of origin for different types of breast cancer (Lim et al., 2009).
Most experimental research on mammary cells is undertaken using
mouse as the model organism. Hence it is critically important to
establish that results observed for mice will remain valid for humans.

Gene set testing provides a powerful way to relate expression
profiles across different platforms or different species. In this
example, we use gene set tests to demonstrate that the transcriptional
differences between MaSC, LP and ML cells are broadly conserved
between mouse and human. We focus particularly on stem cells.
We define a gene set associated with stem cells in mouse, then
examine the profile of this set in the human data. This allows us to
confirm conclusions from Lim et al. (2010), but here we use ROAST
to formally take account of inter-gene correlation in evaluating
statistical significance, which we were not able to do in the earlier
publication.

Mammary epithelial and stroma cells were sorted from breast
tissue samples from three human patients. RNA was profiled on
two Illumina HumanWG-6 V3 BeadChips, comprising 12 arrays
(Table 2).Asimilar experiment was undertaken using mouse samples
and Illumina mouse WG-6 V2 BeadChips. The microarray data
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Table 2. Human mammary cell populations profiled

Array Cell population Patient BeadChip Block

1 MaSC enriched A 4380071023 1
2 Stroma A 4380071023 1
3 ML A 4380071023 1
4 LP A 4380071023 1
5 MaSC enriched B 4380071023 2
6 Stroma B 4380071023 2
7 ML B 4380071027 3
8 LP B 4380071027 3
9 MaSC enriched C 4380071027 4
10 Stroma C 4380071027 4
11 ML C 4380071027 4
12 LP C 4380071027 4

Block represents unique patient–BeadChip combinations.

was normalized and annotated as previously described (Lim et al.,
2010). The data is available as GEO database series GSE16997 and
GSE19446 for human and mouse, respectively.

A set of genes was selected to represent the transcriptional
signature of MaSC cells in mouse, as previously described (Lim
et al., 2010). Briefly, we identified signature probes as those
significantly up- or down-regulated in MaSC cells versus both of
the other two mammary epithelial populations, LP and ML. This
yielded 2616 up- and 2305 down-regulated MaSC signature probes
in mouse, corresponding to 3410 unique gene symbols, of which
2754 had human orthologs. This defined then a set of 2754 human
gene symbols. We set gene weights ai equal to the log-fold-change
observed for that gene in the mouse date, specifically the average
of the log-fold-changes observed for MaSC versus LP and MaSC
versus ML. Hence genes were weighted according to the strength
and direction of their regulation in MaSC cells.

It is important to account for biological and technical correlations
when analysing microarray data, as this improves the precision and
reliability of the results, even with high-quality data such as we
analyse here. For the human samples described in Table 2, it is
essential to account for correlations between samples taken from the
same patient.Also to be expected are more or less subtle batch effects
between BeadChips. Our linear modelling approach permits us to
adjust for patient and BeadChip effects in a variety of ways. We could
include patient as a fixed effect in our linear model, when testing for
differential expression between the cell populations. Alternatively,
we could include patient as a random effect, with BeadChip as a
fixed effect. The effects were relatively subtle, so we combined
patient and BeadChip into one blocking factor (Table 2), which was
included as a random effect. In this approach, samples are treated
as correlated only if they corresponded to the same patient and the
same BeadChip. Using the method of Smyth et al. (2005), the intra-
block correlation was estimated to be 0.08, a small but detectable
positive correlation between samples in the same block. Our weight
matrix W , therefore, was made up of correlations ρij , where ρij was
1 if i= j, 0.08 if arrays i and j are in the same block and 0 otherwise.

ROAST was used to test whether the mouse MaSC signature
gene set was able to distinguish human MaSC from LP cells, and
human MaSC from ML (Table 3). Genes were weighted in the
test by their direction of change in mouse, hence the alternative
hypothesis Hu corresponds to genes changing in the same direction

Table 3. ROAST P-values for distinguishing human cell populations using
the mouse MaSC signature gene set

MaSC−LP MaSC−ML

Summary statistic Hu Hd Hu Hd

mean 0.001 1.000 0.001 1.000
mean50 0.001 0.397 0.001 0.396
floormean 0.001 0.345 0.001 0.318
msq 0.001 0.074 0.001 0.048

P-values based on 999 rotations.

in human as they did in mouse, whereas Hd represents change in
opposite directions. The highly significant results for Hu show that
the main body of genes change in the same direction in human as in
mouse. The non-significant P-values for Hd for the mean, mean50
and floormean statistics deny any sizeable group of genes changing
in the opposite direction. The msq statistic is highly sensitive to
even a small number of genes, and gives suggestive P-values for
Hd . Close inspection of individual genes shows that a small number
of the signature genes do indeed move in the reverse directions in
human and mouse, explaining the msq result. Nevertheless, the high
degree of conservation across species supports mouse as a model
system for the study of mammary gland development.

7 DISCUSSION
ROAST is the first focused gene set test that correctly allows for
inter-gene correlation and gives statistically rigorous P-values for
small or complex microarray experimental designs. Like Dørum
et al. (2009), we use rotation to evaluate P-values, but our
methodology is for self-contained tests with specially targeted gene
sets, whereas they considered competitive tests between a large
database of gene sets. ROAST is the only existing software that
could have been used for our mammary stem cell data example.

The use of rotation offers many advantages over permutation.
It is computationally much faster. It yields exact P-values, so
that ROAST holds its nominal size correctly even for small
samples. The number of rotations can be chosen large enough
to avoid any problem with granularity of P-values. Dørum et al.
(2009) considered one or two-group t-tests, whereas we take
full advantage of the possibilities of linear models. ROAST is
applicable to any experiment that can be analysed using an
linear model, i.e. to arbitrarily complex experiments. The gene
set can be tested in any contrast between the coefficients, not
necessarily a simple comparison between two groups. Indeed, our
development could easily be extended to test gene sets in two or
more contrasts simultaneously. In that case, we would replace our
moderated t-statistics with F-statistics. Our implementation allows
for correlations between RNA samples and for array quality weights,
assuming that the correlations or weights can be estimated from
the entire ensemble of probes on the arrays. In all cases, the test
takes advantage of all available residual degrees of freedom. Our
implementation uses empirical Bayes test statistics, which should
add additional stability in small samples, especially when the gene
set contains only a few genes.

Rotation theoretically depends on multivariate normality, but
simulations with grossly non-normal data shows that ROAST is
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insensitive to departures from normality, agreeing with analogous
results of Dørum et al. (2009).

We propose a number of new set summary test statistics. Like
Jiang and Gentleman (2007), but unlike Ackermann and Strimmer
(2009), we find that the choice of summary statistic does affect
performance. Our summary statistics are designed to vary in their
sensitivity to gene sets that contain a small proportion of DE genes.
No statistic is universally better than the others in all situations.
When the mean statistic is used, a gene set can be significant for the
up or down hypothesis, but not both. With the other set statistics, a
gene set can be judged as significant in both directions, if there is
a subset of genes that are up-regulated and a subset that are down-
regulated. Therefore, floormean, mean50 and especially msq give
higher resolution results, more nuanced but potentially less clear cut.
To help make judgements in this respect, ROAST gives an estimate
of the proportion of genes that actively contribute to a significant
result. The simulations presented in this article assumed a uniform
fold-change for all DE genes. Simulations with random fold-changes
tend to improve the performance of msq, and also of mean50 and
floormean, relative to that of the mean statistic (data not shown). We
suggest mean50 as a good compromise in many biological situations.

Potential applications for ROAST include those where the set
might not be made up of genes. We have for example used it in
exon-level expression analyses to test whether any exon of a given
gene is DE.
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