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Abstract
We introduce a novel experimental methodology for the reverse-phase protein microarray
platform which reduces the typical measurement CV as much as 70%. The methodology, referred
to as array microenvironment normalization, increases the statistical power of the platform. In the
experiment, it enabled the detection of a 1.1-fold shift in prostate specific antigen concentration
using approximately six technical replicates rather than the 37 replicates previously required. The
improved reproducibility and statistical power should facilitate clinical implementation of the
platform.
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Immunoassays such as Western blots and ELISA are a primary source of quantitative
information in the fields of clinical chemistry and proteomics. In addition to these
benchmark methods, researchers have begun developing new assays to meet the high-
throughput challenges of 21st century biology. The level of imprecision (CV) is one of the
main criteria used to evaluate the effectiveness and ultimate utility of these assays [1,2].
Here, we describe a novel method for improving the reproducibility of measurements made
by the developing platform known as reverse-phase protein microarrays (RPMAs). We refer
to this new method as “Array Microenvironment Normalization” (AMN) and experiments
indicate that it reduces measurement CV as much as 70%.

RPMAs are unique in that they immobilize protein extracts from many samples onto a
planar substratum (typically nitrocellulose) via robotic printing and probe all extracts
concomitantly with a well-validated antibody directed against a target protein. A detailed
protocol for an iteration of the assay can be found in Spurrier et al. [3]. Typical within-array
CV for the RPMA assay is approximately 15% in the linear range of detection while across-
array variability is somewhat greater [4]. The variability can be broken into two types:
random and systematic. Random variability arises from unknown and unpredictable sources
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and is accounted for by increasing the number of sample replicates. Systematic variability is
due to identifiable imperfections in the assay itself and increasing the number of replicates
may not account for the bias introduced. Potential sources of systematic error in RPMAs,
analogous to many cDNA microarray sources [5–7], include but are not limited to the
following:

i. Spatial inconsistencies in the planar substratum (nitrocellulose) density and
permeability.

ii. Non-uniform reagent and antibody incubation.

iii. Pin-head inconsistency in dimensions and printing properties.

iv. Evaporation of lysate buffer from the source plate throughout the robotic deposition
process.

v. Humidity and temperature differences that affect the nitrocellulose-protein and
antibody-protein binding kinetics, as well as the spread of reagents during
incubation.

vi. Differences in reagent lot and diluted antibody concentration from incubation to
incubation.

vii. Image collection and analysis process.

The simultaneous contribution of all sources of systematic error cause the measured
variability to be spatially heterogeneous within arrays and unpredictable across arrays. Each
spot on every array experiences a unique microenvironment of conditions (i–vii above) that
influence the magnitude of variation in measured intensity. Thus, any viable variability
reduction strategy must attempt to correct for the local microenvironment effects.

Total protein normalization (TPN) is used to account for systematic errors that result in total
protein deposition differences across replicate spots within an array. TPN is also vital to
enable the comparison of target protein signal across independent samples that have total
protein concentration differences [8]. Using a fluorescent reporter based approach [9], a
SYPRO ruby (Invitrogen) stain is first carried out per manufacturer’s instructions to yield
the total protein signal (scanned at 532 nm). Subsequently, within the same array and after
total protein values are collected, the target protein signal is detected using IRDye680
(LiCor, Lincoln, NE, USA) (scanned at 635 nm). The ratio of target to total protein signal
for each corresponding spot is calculated to normalize expression to the signal per unit
protein. While TPN accounts for total protein deposition differences, it ignores and
potentially contributes to within-array spatial measurement variability and across-array
scaling artifacts.

AMN was developed to correct for the remaining spatial and scaling variability. Figure 1
displays the array design that facilitates the correction for microenvironment measurement
effects. The layout can be described as an alternating (checkerboard) pattern of common
control and experimental samples on the array. Using 185 μm diameter pins, approximately
1500 spots composed of samples of interest and 1500 spots of control sample can be printed
per array. The control sample should be carefully selected to have a total protein
concentration similar to that of the study sample population and a target protein
concentration within the linear range of detection. The ratio of each sample TPN signal to
that of its surrounding controls is used as the feature of interest
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(1)

where indices i and j are the array row and column positions respectively, s is the TPN
sample signal, and c is the TPN control signal.

The assumption is made that the density of target protein per unit total protein is equal for
all controls regardless of the position on the array. Due to this equivalence, the variation in
the control TPN measured intensities can be attributed to variability in the assay. Each
control experiences nearly identical nitrocellulose properties, staining conditions, and even
image focus plane to that of its adjacent samples. Any systematic variability caused by the
microenvironment conditions affects each sample and its surrounding controls congruently,
causing a highly correlated variation in measured intensity. The ratio of each sample to its
local controls (Eqn. 1) thus removes (reduces) the correlated systematic variability. AMN
also scales across-array measurements identically as all reported intensities are relative to
the same control. Lastly, the layout of uniformly distributed controls on the array can
provide a robust quality control construct for the assay. AMN has strong parallels to the
internal control methodology developed by Alban et al. for 2-D DIGE as well as the two-
dye common reference design of cDNA microarray studies, which have each been widely
accepted to reduce systematic variability [10,11].

To test the efficacy of AMN, experimental samples were created by pipetting a calculated
amount of purified prostate specific antigen (PSA) (Calbiochem, San Diego, CA, USA)
(stock solution concentration verified by Immulite 2000, Siemens) into a 250 μg/mL HeLa
cell lysate (BD Biosciences, San Jose, CA, USA). HeLa cell lysate was chosen as it contains
no endogenous PSA and represents a “real world” lysate with a physiological matrix of
proteins. Five samples were created to have 1.4-fold differences in PSA concentration per
sample: 50, 34.76, 24.16, 16.8, and 11.7 ng/mL as well as five samples with 1.1-fold
differences: 28, 25.45, 23.14, 21.04, and 19.12 ng/mL. The sample containing 24.16 ng/mL
PSA was selected as the control for this experiment. Using the layout in Fig. 1, 32 replicates
of each sample were printed (spatially randomized) across each array surface. Four arrays
(FAST Slides Whatman, Florham Park, NJ, USA) were printed with an Aushon 2470
arrayer equipped with 185-μm pins (Aushon Biosystems, Billerica, MA, USA).

Three arrays were stained for both total protein (SYPRO) and PSA. The PSA target protein
stain used an a-PSA antibody from Dako diluted 1:5000 in antibody diluent. The fourth
array underwent the exact same protocol but the a-PSA antibody was omitted as a negative
control. Imaging was carried out using the Vidar Revolution™ 4200 laser scanner (Vidar
Systems, Herndon, VA, USA). All array tiff images (10 μm resolution) were uploaded into
MicroVigene (Vigene Tech, Carlisle, MA, USA) for signal quantification. Text files for
each array were exported from MicroVigene and imported into R to implement AMN
(www.R-Project.org)[12]. Each array was analyzed once utilizing only TPN and then a
second time using AMN. The signal from the negative control stain was not significant,
confirming the specificity of the staining process to the primary antibody. All array images,
raw data, and AMN data are provided:
http://gforge.icm.jhu.edu/gf/project/rpma_locl_cntrl/docman/.

The improvement in reproducibility and linearity for all arrays is exemplified by Fig. 2A and
B, which displays scatter plots of measured relative intensity versus PSA concentration
before and after AMN for array 1. Figure 2C and D displays scatter plots of the AMN
relative intensity versus the TPN relative intensity for each sample of array 1 in order to
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visualize the difference in variability. AMN shows significant improvement in separation of
sample measurements based on PSA concentration. Along the AMN dimension (y-axis),
cutoff intensities can be established that completely separate the samples which differ by
1.4-fold in PSA concentration (Fig. 2C), and near complete separation exists for the samples
with 1.1-fold differences (Fig. 2D). Separation of the data based on PSA concentration is not
feasible without AMN (x-axis of Fig. 2C and D) demonstrating its utility.

The improved resolution of measurements in Fig. 2C and D through the implementation of
AMN can be quantified as a reduction in measurement CV for all three arrays (Fig. 3A).
CVs were calculated for each of the ten samples based on their 32 replicates, the average of
the CVs was taken as the within-array CV. Using the TPN relative intensities, the average
CVs for arrays 1, 2, and 3 were 17, 11, and 33%, respectively. Implementing AMN, the CV
dropped to 4, 4, and 8% for an average relative reduction of 72±6%. Similarly, the average
across-array CV dropped by 68%. The significant improvement in both within and across-
array variability supports the hypothesis that AMN controls for systematic variability as
described. The higher CV of the third array was due to an artifact (region of low signal
possibly caused by systemic error sources (i) and/or (ii) in the staining that can be seen by
downloading the image. The artifact may not have been identifiable without the alternating
control layout and demonstrates AMN’s additional utility for quality control.

AMN’s significant reduction in measurement CV results in an ability to detect smaller shifts
in true target protein concentration using fewer technical replicates, known as an increase in
the statistical power. Figure 3B shows the estimated number of replicates needed to detect
shifts in PSA concentration of 1.05- to 1.5-fold when the CV is 15 versus 5%, representing
the approximate CV reduction by AMN. Each point in Fig. 3B is the calculated number of
replicates needed to detect the specified fold shift in true PSA concentration with a p-value
<0.05 and power >0.80 using a two-sided t-test. In the experiment, measurements were
made using the arrays to detect PSA concentration shifts of both 1.1 and 1.4-fold. In Fig. 3B,
before AMN was implemented, we estimated that detecting the shifts in PSA concentration
of 1.1 and 1.4-fold would require 37 and 4 replicates, respectively. After AMN
implementation, the shifts were predicted to be detectable with just six and two replicates.

These estimates were verifiable using the collected measurements from the arrays. The first
step was to set the number of technical replicates (2–32) to be used in the power calculation.
Then, the PSA samples had the specified number of replicates selected at random from
among their 32 total reps on the array. Using the selected replicate measurements, a t-test
was applied for each of the 1.1 and 1.4-fold comparisons to determine if the null hypothesis
was rejected (cutoff p<0.05). For each number of replicates, random selection and the t-test
significance calculation were repeated 100 times. The percentage of comparisons that
produced a significant p-value was used as the estimate of the power. To achieve a power of
80% with AMN, arrays 1–3 needed to use 4, 4, and 8 replicates to detect a 1.1-fold change
in PSA and 3, 2, and 3 replicates to detect a 1.4-fold shift. Using TPN only, the number of
replicates required to detect the 1.1-fold shift were greater than 32, 16, and greater than 32
as arrays 1 and 3 could not achieve 80% power with all 32 replicates. To detect the 1.4 PSA
shift, the number of replicates required were 4, 3, and 12. The calculated number of
replicates for each array agree well with the number estimated in Fig. 3B, demonstrating that
the theoretical increase in statistical power by AMN implementation translates to the
physical measurements.

Overall, the Pearson correlation coefficient (R2) of measured intensity to PSA concentration
(for arrays 1–3, respectively) increased from (0.92, 0.96, and 0.76) to (0.99, 0.99, and 0.975)
when using AMN. The across-array correlation (array 1 to 2, 2 to 3, and 1 to 3) increased
from R2=(0.98, 0.84, and 0.84) to (0.99, 0.99, and 0.99), while the slope of the linear fit
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improved from (0.56, 0.57, and 0.99) to (1.02, 1.02, and 0.998). A perfect across-array
intensity correlation with no variability would result in a slope of 1 and R2=1, which the data
begins to approach when AMN is implemented. The linear fit approaching a slope of 1
indicates that the array measurements are scaled identically as predicted because the
intensities are all relative to the same control.

The advantages to using RPMAs with AMN have been demonstrated by the results
presented herein. The novel method greatly improves the linearity and reproducibility of
quantification by controlling for the local microenvironment experienced by each sample on
every array. Figure 2 demonstrates that the improvement in reproducibility makes it feasible
to establish cutoff intensities that could discriminate between sample populations, which
would yield more sensitive and specific ROC curves. Figure 3 shows that, when AMN is
implemented, there is an average reduction in CV of 72% resulting in an increase in the
statistical power of the assay to detect shifts in expression. An important current use of the
RPMAs is the measurement of signaling protein activation for patient selection and
stratification for targeted therapeutics. Given the importance that this application would
have in deciding if a patient receives a therapeutic or not, the ability to establish the most
reproducible cut-points for selection is critical. Overall, we believe the AMN strategy will
bring improvement to data reproducibility across all antibodies and RPMA experiments as it
reduces systematic variability. However, the improved reproducibility should be balanced
against the potential increased cost and reduced number of independent samples per array
for each unique RPMA use. When precision and accuracy are vitally important, AMN
should be used. When a study can sacrifice some precision to increase throughput and
decrease cost, AMN may not be necessary. Work is ongoing to establish an AMN control
sample that will be independent of the study samples and applicable for any experiment.

Abbreviations

AMN array microenvironment normalization

PSA prostate specific antigen

RPMA reverse phase microarray

TPN total protein normalization
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Figure 1.
RPMA with AMN experimental design. Top is the array 1 total protein stain. Bottom is a
rendering of the “checkerboard” control layout used to carry out AMN for each sample spot.
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Figure 2.
Linearity and reproducibility improvement with AMN demonstrated for array 1. (A) Scatter
plot of TPN relative intensity (no AMN) for each sample of array 1 versus the known PSA
concentration. (B) Scatter plot of AMN relative intensity for each sample of array 1 versus
the known PSA concentration. (C) Scatter plot of the AMN relative intensity versus TPN
relative intensity for samples of array 1 which differed in PSA concentration by 1.4-fold.
(D) Same as (C) except displays samples differing in PSA concentration by 1.1-fold for
array 1. The spread in the data is always much greater before AMN is implemented.
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Figure 3.
AMN improves the average coefficient of variance by 72% which results in an increased
power to detect shifts in expression with fewer replicates. (A) Bar plots of measured
coefficient of variance for the 32 replicates of each sample containing the specified amount
of PSA for arrays 1, 2 and 3 both with and without AMN. (B) Power curve displaying the
minimum number of technical replicates needed to detect the fold change specified in the x-
axis with p<0.05 and power >0.80 using a t-test when the CV=5 or 15% (representative of
the CV with and without AMN).
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