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Abstract
Investigators interested in whether a disease aggregates in families often collect case-control
family data, which consist of disease status and covariate information for members of families
selected via case or control probands. Here, we focus on the use of case-control family data to
investigate the relative contributions to the disease of additive genetic effects (A), shared family
environment (C), and unique environment (E). We describe an ACE model for binary family data;
this structural equation model, which has been described previously, combines a general-family
extension of the classic ACE twin model with a (possibly covariate-specific) liability-threshold
model for binary outcomes. We then introduce our contribution, a likelihood-based approach to
fitting the model to singly-ascertained case-control family data. The approach, which involves
conditioning on the proband’s disease status and also setting prevalence equal to a pre-specified
value that can be estimated from the data, makes it possible to obtain valid estimates of the A, C,
and E variance components from case-control (rather than only from population-based) family
data. In fact, simulation experiments suggest that our approach to fitting yields approximately
unbiased estimates of the A, C, and E variance components, provided that certain commonly-made
assumptions hold. Further, when our approach is used to fit the ACE model to Austrian case-
control family data on depression, the resulting estimate of heritability is very similar to those
from previous analyses of twin data.
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1 INTRODUCTION
To study familial aggregation of a disease, investigators often sample families through case
and control probands selected based on their disease status. This design is particularly
efficient for rarer diseases. We refer to the resulting data, which consist of disease status and
covariate information for the probands and their relatives, as case-control family data. The
data are typically used to investigate the presence and magnitude of familial aggregation, a
necessary first step for establishing the presence of genetic or shared family environmental
effects [Thomas, 2004]. However, the pattern of familial aggregation in the data can
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sometimes also be used to investigate the relative contributions of additive genetic (A),
shared family environmental (C), and unique environmental (E) effects. This latter goal is
our focus here: more specifically, we introduce an approach that makes it possible to obtain
valid estimates of the relative contributions of A, C, and E from case-control family data,
assuming that certain commonly-made assumptions, including single ascertainment, hold.

Numerous existing methods can be applied to the case-control family data to first establish
the presence and magnitude of familial aggregation. These methods fall into two categories:
regression methods and multivariate methods. Regression methods involve fitting regression
models that treat either the probands’ disease statuses or the relatives’ disease statuses as the
outcomes. A popular example of the latter approach, which is to be preferred [Laird and
Cuenco, 2003], is using logistic regression to model the probability of each relative’s disease
status as a function of proband disease status [Khoury et al., 1993; Hudson et al., 2001;
Laird and Cuenco, 2003], with generalized estimating equations used to handle the
dependence between relatives belonging to the same family [Liang and Pulver, 1996].
Multivariate methods, which in certain special cases can be effectively equivalent to
regression methods, involve fitting multivariate models for the probands’ and relatives’
disease statuses, with some accommodation made for ascertainment based on proband
disease status [Matthews et al., 2005; Zhao et al., 1998; Whittemore, 1995].

After establishing that familial aggregation is present, investigators may be interested in
using the pattern of familial aggregation in the data to disentangle the relative contributions
of latent genetic and environmental effects to the disease. Some of the aforementioned
models for familial aggregation can be adapted for this purpose by modifying them to
incorporate genealogical information in the form of relationship-pair-specific family
aggregation parameters [Zhao et al., 1998]. Here, however, we focus on models specifically
developed to investigate the contributions of genetic and environmental effects. These
models can be formulated, equivalently, as path analysis models or as variance components
models, and, further, the variance components models can be formulated and fitted within
either a structural equation modeling framework or a mixed effects modeling framework
[McArdle and Prescott, 2005]. The best known of these models is the classic ACE model for
twin data, which is used to investigate genetic and environmental effects on complex (i.e.,
non-Mendelian) outcomes. In its variance components formulation, the ACE model is used
to partition the variance in a continuous outcome of interest into variance due to Additive
genetic effects, to Common (or shared) family environment, and to unique (or individual)
Environment. For a binary outcome of interest like disease status, the classic ACE model is
combined with a liability-threshold model [Falconer 1965] such that the variance in an
unobserved continuous ‘liability’ variable hypothesized to underlie the binary variable is
partitioned into variance due to A, C, and E.

The classic ACE model for twin data can be extended to make it appropriate for more
general family data. Numerous papers have proposed ACE or ACE-type models for (single
outcome) binary family data, as well as approaches to fitting these models. Several papers
written in the 1970s and 1980s [Morton and MacLean, 1974; Lalouel et al., 1983; Curnow
and Smith, 1975] described ACE-type models for binary family data within the structural
equation modeling framework; these models were developed to investigate the effects of a
major gene locus, in addition to the effects of A, C, and E. More recent papers have
described ACE or ACE-type models for binary family data within the mixed effects
modeling framework, fitted using a likelihood-based approach [Rabe-Hesketh et al., 2008;
Noh et al., 2006; McArdle and Prescott, 2005; Pawitan et al., 2004; Guo and Wang, 2002;
Pfeiffer et al., 2001] or a Bayesian approach [Burton et al., 1999].
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There are numerous papers that address the issue of ascertainment in pedigree analysis in
general [Thompson, 1986, Chapter 8], as well as several papers, including some of the ones
cited above, that address the use of non-randomly-ascertained binary family data with ACE-
type models in particular. For example, Morton and MacLean [1974] (and its extension
[Lalouel and Morton, 1981]) and Pfeiffer et al. [2001] describe how to adjust the likelihood
for their models for certain types of non-random ascertainment. In addition, Bowden et al.
[2007], Burton [2003], Glidden and Liang [2002] (including comments by Epstein [2002]
and Burton [2002] and rejoinder by Glidden [2002]), Epstein [2002], and Burton et al.
[2001] describe and evaluate various methods of adjusting for ascertainment when fitting
genetic variance components models. Most of these papers address the scenario where all
families (or sibships) with k or more affected individuals are ascertained, and most conclude
that valid estimates of the variance components for the general population can be obtained
from the resulting data if appropriate correction for ascertainment is made and if the
underlying genetic variance components model is correct. However, to our knowledge, no
paper specifically addresses the use of ACE-type models with singly-ascertained case-
control family data (i.e., case-control family data ascertained from a population sufficiently
large relative to the number of probands sampled and relative to the sizes of the families
comprising the population to assume that no family is selected via more than one proband).

To fill this void, we introduce a likelihood-based approach to fitting ACE models to singly-
ascertained case-control family data. The models we fit, which have been proposed
previously, combine a general-family extension of the classic ACE model for twin data with
a (possibly covariate-specific) liability-threshold model for binary outcomes. Our
contribution is to introduce an approach to fitting the models to case-control family data that
yields valid estimates of the (population) values of the A, C, and E variance components.
Our approach to fitting takes its cue from Neale and Maes [2004], who note that, although
using proband-ascertained data to fit variance components models can increase power to
detect effects for rarer diseases, doing so requires “good information on the base rate in the
population studied.” Thus, our approach to fitting involves not only adjusting the likelihood
contribution of each family by conditioning on the disease status of the proband, but also
fixing prevalence to a (good!) pre-specified value during fitting. In particular, for situations
where the prevalence of the disease is not already well-known for the population of interest,
we fix prevalence to estimates obtained from the case-control data themselves [Javaras et al.,
2009].

In Section 2, we describe the case-control family data, including some necessary notation. In
Section 3, we describe the ACE model for binary family data. In Section 4, we introduce our
approach to fitting the model and also discuss likelihood ratio tests for comparing the fit of
the full ACE model to reduced variants. In Section 5, we employ our approach to fit an ACE
model to the actual data from a case-control family study of major depressive disorder
(MDD) in Austria. In Section 6, we discuss the advantages and limitations of our approach,
focusing on the assumptions that must hold for it to yield valid estimates. Finally, in
Supplementary Materials available on the web, we describe the results of simulation
experiments designed to investigate the performance of our fitting approach.

2 CASE-CONTROL FAMILY DATA
The sample consists of case-control sampled probands and their relatives, who we refer to
collectively as subjects. There are na ‘affected’ probands (e.g., MDD present) and nu
‘unaffected’ probands (e.g., MDD absent). For the sake of convenience, the families with
affected probands will be indexed by i = 1, …, na and the families with unaffected probands
by i = na + 1, …, na + nu. Family i has ni sampled subjects; thus, the total number of
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sampled subjects is . A sampled subject from family i is indexed by ij, where j =
1, …, ni and j = 1 if the subject is the proband. Note that our notation implies that each
sampled family has only one proband and that each sampled individual belongs to only one
sampled family, as would be the case in the sufficiently large population described in the
Introduction.

The data for the sample contain information on the subjects’ disease statuses, and possibly
also on covariates such as sex and age. We let Yij denote disease status (i.e., the binary
outcome) for subject ij: for example, Yij = 1 if subject ij has ever had MDD and Yij = 0
otherwise. Further, the length n vector Y contains the disease statuses for all subjects.
Similarly, the length q vector Xij and the n by q matrix X will refer to the q covariates of
interest for subject ij and for all subjects, respectively.

Finally, the data also contain information on the familial relationships between the subjects.
For the sake of simplicity, we focus here on samples that include only first-degree relatives
of probands. We use Tij,ij′ to denote the relationship between subject ij and subject ij′. Thus,
Ti1,ij′ denotes the relationship of proband i1 to relative ij′ and, since we restrict ourselves
here to first-degree relatives, can take values ‘parent-child,’ ‘child-parent,’ or ‘sibling-
sibling’ (or ‘self’ for j′ = 1). For j ≠ 1 and j′ ≠ 1, Tij,ij′ denotes the relationship between
relative ij and relative ij′ and, for first-degree relative sampling, can take the values ‘spouse-
spouse,’ ‘parent-child’ (or vice versa), ‘sibling-sibling’, ‘grandparent-grandchild’ (or vice
versa), and ‘aunt/uncle-niece/nephew’ (or vice versa). We will assume that knowing Ti1,ij
and Ti1,ij′ is sufficient for determining Tij,ij′. In other words, two relatives are related only
through their proband, which disallows relationships such as double cousins.

3 ACE MODEL FOR BINARY FAMILY DATA
Here, we describe an ACE model for binary family data similar (or identical) to models
described previously [e.g., Rabe-Hesketh et al., 2008; Pawitan et al., 2004; Burton et al.,
1999]. As noted above, the model combines a general-family extension of the classic ACE
model with a (possibly covariate-specific) liability-threshold model for binary outcomes.
Further, it is formulated and fitted within the structural equation modeling framework.

In the liability-threshold model for the binary outcomes, it is assumed that

(1)

where  is the unobserved, continuous liability underlying the observed binary outcome Yij,
and where tXij is a covariate-specific threshold. The covariate-specific threshold can be
modeled as a linear function of covariates thought to influence disease liability [Rice et al.,
1981; Chakraborty, 1986; Khoury et al., 1993, Section 7.5.2]:

(2)

where β is a length q parameter vector quantifying how changes in Xij affect tXij. Note that
the thresholds are functions of disease prevalence, as we will discuss in Section 4.

The liability is then represented as the following sum, as in the classic ACE model:
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(3)

where Aij, Cij, and Eij are latent additive genetic, shared family environmental, and unique
environmental error components, respectively, for subject ij. We set the means and variances
of Aij, Cij and Eij, which are arbitrary, to 0 and 1, respectively. In addition, we set the
variance of  to 1. Note that the model in (3) does not include a random error term because
it would be confounded with Eij, which implies that any measurement error in Yij will be
reflected in the unique environmental component of the model. In addition, note that the
model is additive, which implies the assumption that Aij, Cij, and Eij do not interact with
each other in their effect on the liability to the disease. In addition, we assume that Cov(Aij,
Cij) = 0, Cov(Aij, Eij) = 0, and Cov(Cij, Eij) = 0. These assumptions imply, for example, that
genes do not shape environment, either directly or indirectly, and they allow the variance in
liability to be partitioned into separate additive genetic, shared environmental, and unique
environmental variance components, denoted as a2, c2, and e2, respectively. Since

, these variance components can be interpreted as proportions of the variance in
the underlying liability.

Members of the same family may have similar or even identical values for Aij or Cij, a fact
that is reflected in the within-family correlations of the Aijs and Cijs, which are discussed
below. If it is assumed that family members’ outcomes do not directly affect each other, then
the indirect effects of similar genes and shared environment on family members’ liabilities
are the sole source of the observed association between their outcomes, such that:

(4)

Equation (4) means that, once the within-family correlations have been specified, the
observed associations between family members’ outcomes can be used to estimate a2 and c2

(and e2 from 1 − a2 − c2).

Specifying the within-family correlations for the additive genetic component requires
several assumptions commonly made for general family data as well as for twin data. More
specifically, we assume that the genetics of the disease are not influenced by dominance,

epistasis, or assortative mating, which implies that Cor(Aij, Aij′) equals , where d(ij, ij′)
equals the degree of the relationship between ij and ij′ (i.e., 1 for first-degree relatives, 2 for
second-degree relatives, etc.). For spouse-spouse pairs, we assume that d(ij, ij′) is very large
(i.e., spouses are not close relatives); this assumption, combined with that of no assortative
mating, implies that Cor(Aij, Aij′) = 0 for spouse-spouse pairs.

Specifying the within-family correlations for the shared environmental component is more
complicated for general family data than for twin data. With twin data, it is typical to
assume simply that dizygotic twins (reared together) share a family environment to the same
extent as monozygotic twins (reared together). However, with more general family data, it is
not plausible to assume that all types of family member pairs share a family environment to
the same extent, and it can be difficult to determine the extent to which any pair of family
members share a family environment. This complication can be handled in two ways. First,
we could simply assume that shared environment has no effect on the outcome (i.e., c2 = 0),
which may be a reasonable assumption for some diseases. Second, we could attempt to
measure c2 by making certain assumptions about Cor(Cij, Cij′). For instance, we could
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assume that Cor(Cij, Cij′) is a known function of the amount of time that ij and ij′ lived
together [Hopper and Matthew, 1982]. Alternatively, we could set Cor(Cij, Cij′) equal to the
same (pre-specified or estimated) value for all pairs with the same Tij,ij′ value. For example,
it could be assumed that all sibling-sibling, parent-child, and spouse-spouse pairs share
family environments to differing extents reflected in the correlations γsib, γpar, and γmar,
respectively, and that other types of relative pairs (who do not typically live together) do not
share a family environment and thus have Cor(Cij, Cij′) = 0 [Thomas 2004, p. 98]. In this
example, it would be necessary to impose one constraint (e.g., γsib = 1) to identify the model.

It has been noted that the assumptions of the above model may not be valid for a particular
disease. As a first example, the assumptions about shared family environment may not be
valid, which can result in biased estimates of the ACE variance components. As noted
above, specifying the shared family environmental correlations is more difficult for general
family members than for twins. In fact, for various pedigree types typically included in
family data, patterns of shared family environment “easily mimic genetic transmission,”
making it difficult or impossible to separate the two [Gjessing and Lie, 2008]. For instance,
separating the two is difficult with the Austrian data (Section 5), as reflected in a large
negative correlation between the estimates of a2 and c2, and may be impossible with other
data (e.g., data that consist of only probands and siblings). As a second example, the
assumption of no gene-environment interactions may not be entirely appropriate for some
diseases [Moffitt et al., 2005]. As a third example, estimates of genetic components derived
from family members who are unmatched in age may be biased downwards if different
genetic factors account for the variation in liability at different ages [Maes et al., 1997]. As a
fourth example, the assumptions surrounding the liability threshold model may not be valid.
For instance, treating disease status as binary may not be appropriate for late-onset diseases
if the data contain many young subjects whose outcomes will be effectively censored. In this
case, it may be more appropriate to use an ACE model developed for survival outcomes
[Pitkäniemi et al., 2007], although the ACE model for binary family data could still be used
if age were incorporated as a threshold-shifting covariate. However, even if disease status
can reasonably be treated as a binary outcome, some authors [e.g., Kraemer, 1997; Hopper,
1993] have questioned the validity of the liability-threshold model (but see Lyons et al.
[1997] for a defense of its suitability). Relatedly, Glidden and Liang [2002] show that
normal-distribution-based estimates of variance components from sibships are biased if
family members’ liabilities actually follow a multivariate t distribution with five degrees of
freedom, a point that we address further in Section 6.

4 MODEL FITTING
We take a likelihood-based approach to fitting. A likelihood for the variance components
formulation of the ACE model in (3) is

(5)

where γ is a vector containing any shared family environmental correlations being estimated,
and where tx is a vector containing the possibly covariate-specific thresholds (the tXijs) or
else the parameters describing the relationship between the covariates and the covariate-
specific thresholds (e.g., β from equation (2)). The likelihood addresses the case-control
ascertainment by conditioning on the proband’s outcome, following, for example, Hopper
and Matthews [1982]. It does not condition on the family’s, or the family members’,
ascertainment status(es) because, as demonstrated by Tosteson et al. [1991], ascertainment
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status can be ignored under single ascertainment. In addition, the likelihood does not include
a term modeling family size or structure alongside the term modeling family members’
disease statuses, as would be done in the full likelihood approach (see Thompson [1986,
Section 8.2]); this omission implies an assumption that family size and structure do not
convey information about the parameters of interest (a2 and c2).

The conditional probabilities in (5) can be obtained from the joint probabilities of the
outcomes, which can be calculated once we assume a distribution function for the s. Here,
we assume that the joint distribution of  is a ni-dimensional multivariate normal
(e.g., Curnow and Smith, 1975). Thus,

(6)

where

(7)

where

(8)

and where

(9)

The mean vector μ is set to zero in order to identify the model because μ is completely
confounded with the tXijs. Finally, note that, in (7), the same (covariate-specific) thresholds
are used for probands and for relatives, which implies an assumption that case (control)
probands are randomly selected from among affected (unaffected) population members.

4.1 PARAMETER ESTIMATION
We choose to fix the threshold(s) before fitting the ACE model to the case-control family
data. The reason for this choice is that the alternative approach—jointly estimating the
threshold alongside a2, c2, and γ—produces different threshold estimates depending on the
model’s values for the other parameters. More specifically, for reduced variants of the ACE
model that specify low or zero correlations between family members (e.g., the E model,
where a2 = c2 = 0), lowering the threshold estimate improves the model’s fit to data that
exhibit some familial aggregation. However, since the threshold is a function of disease
prevalence and is therefore theoretically the same in all models, comparisons between
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different variants of the ACE model should be based on how well they fit the data for the
same threshold value.

In applications where there is no supplemental information on prevalence, it will need to be
estimated in order to determine the threshold(s). It is possible to obtain valid estimates of
prevalence from case-control family data if certain commonly-made assumptions hold (see
Javaras et al. [2009]). As an example, suppose that there is a single, categorical covariate
thought to affect disease liability, and suppose that subject ij has value Xij = x for that
covariate. (This covariate could be the result of coarsening continuous covariates into
categorical variables and/or combining multiple categorical covariates by crossing their
levels.) To obtain an estimate of the prevalence corresponding to the x stratum, which we
denote πx, we use the following equation:

(10)

where

(11)

where  is the proportion of case (control) probands’ relatives who have covariate
value x and are affected, and where pA (pU) is the proportion of case (control) probands’
relatives who are affected. Then, the corresponding threshold can be obtained from π̂x using
the following equation, which relies on the assumption (stated above) that the liabilities
follow a normal distribution:

(12)

The estimated threshold in (12) is approximately equal to the value obtained by jointly
estimating the threshold alongside the other parameters in the true variant of the ACE
model. In contrast, estimating the threshold using a reduced (e.g., a2 = 0) variant of the true
ACE model results in a smaller estimate of the threshold (or, equivalently, a larger estimate
of the prevalence). For example, when the E model is fitted, the joint threshold estimate is
approximately equal to Φ−1 (1 − px), where px is the proportion of (all) relatives who have
covariate value x and are affected, a quantity that is larger than π̂x and upwardly biased for
the true prevalence when the disease aggregates in families [Javaras et al., 2009].

Once the threshold(s) have been fixed, estimates of a2, c2, and γ can be obtained by
maximizing (5) subject to the constraints that a2 and c2 are each between 0 and 1 and that a2

+ c2 is less than 1. Further, elements of γ are constrained to be between −1 and 1 or, if, as in
the Austrian example, it is reasonable to assume that shared family environment cannot
make outcomes negatively correlated, between 0 and 1.

The simulation experiments described in the web-based Supplementary Materials suggest
that the above approach to fitting yields approximately unbiased estimates of the variance
components when the true variant of the ACE model is fitted. This is true even for datasets
and populations as small as in the Austrian example (i.e., 64 case and 58 control probands
sampled from a population of 500, 000), and the bias is even smaller for larger datasets
sampled from larger populations.
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4.2 INFERENCE
We can form a normal-theory-based confidence interval (CI) for a2 (or c2) using the
standard asymptotic distribution of the parameter estimates, which is normal with mean
equal to the true parameter values and variance equal to the inverted information matrix.
Since the normal approximation tends to be more appropriate for quantities with an
unrestricted range, we choose to form a CI for a Fisher z-transformation of ( ) and
then re-transform the upper and lower bounds to obtain a CI for a2.

In addition, we may want to constrain the full ACE model in order to test various
hypotheses, including whether the disease aggregates at all within families (Model E: a2 =
c2 = 0) or whether it is affected by additive genetic effects (Model CE: a2 = 0) or by shared
family environment (Model AE: c2 = 0). We can test these hypotheses by calculating the
usual likelihood ratio test (LRT) statistic for the constrained and unconstrained models.
However, the LRTs for tests such as H0: Model AE versus H1: Model ACE will not have the
standard χ2 asymptotic distributions because the null hypotheses constrain parameters to be
on the boundary of the parameter space. P-values calculated from the standard χ2

distribution will be conservative (i.e., too big), meaning that the standard LRT or related
procedures like AIC [Akaike, 1987] will choose overly parsimonious models that result in
overestimates of the retained variance components [Sullivan and Eaves, 2002]. For the
hypotheses mentioned above, the true distributions of the LRT statistics are mixtures of χ2

distributions with different degrees of freedom. The exact mixture has been derived for a
number of different situations [Chernoff, 1954; Self and Liang, 1987; Stram and Lee, 1994
and 1995; Verbeke and Molenberghs, 2003], including the classic ACE model for
continuous twin data [Dominicus et al., 2005], but not for the ACE model for case-control
family data. Thus, we recommend using a Monte Carlo test [see Ripley, 1987] in which the
p-value is determined by comparing the actual LRT statistic to the distribution of LRT
values calculated from a large number of datasets simulated under the null hypothesis.
Alternatively, a less time-consuming possibility is to use the p-values from the standard χ2

distribution, but with some modification, as Dominicus et al. [2005] recommend for
continuous twin data. The simulation experiments described in the Supplementary Materials
suggest that, for case-control family data, using half the standard p-value works well (i.e.,
results in actual rejection levels approximately equal to the nominal levels) for comparing
AE versus ACE, but that using the standard p-value (unhalved) works well for comparing
CE versus ACE or E versus either AE or CE. The experiments also suggest that, for case-
control family datasets as small as in the Austrian study, LRTs (and AIC) have limited
power to detect the presence of both a2 and c2 if they are only small or moderate. This result
is unsurprising given that Kuhnert and Do [2003] found power to be similarly limited in
analogous experiments with sizeable twin datasets.

5 AUSTRIAN CASE-CONTROL FAMILY STUDY
We used our method to analyze the actual data from the Austrian study [Hudson et al.,
2003]. 64 affected probands with a current DSM-IV [APA, 1994] diagnosis of MDD and 58
unaffected probands without a current or past MDD diagnosis were recruited at Innsbruck
University Clinics. Adult first-degree relatives of probands were eligible for the study.
Probands and relatives were interviewed using the Structured Clinical Interview for DSM-
IV [First et al., 1994].

Our analyses included a total of 122 probands (one per family) and 330 first-degree
relatives, all interviewed in person. Disease status was measured by a variable indicating
whether the subject had been diagnosed with lifetime MDD (i.e., had a diagnosis of MDD at
any point during their life up to the present time). Overall, 13.6% of the relatives have a
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lifetime diagnosis of MDD, but the estimate of overall prevalence from Equation (11) was
8.8%, with estimates of 6.0% for males and 11.3% for females from Equation (10).

We first performed preliminary analyses to investigate whether MDD aggregates in families
and whether the level of aggregation differs by type of relative pair (see Table I). The
overall familial aggregation odds ratio (OR) is significantly greater than 1 for both the 330
proband-relative pairs (OR = 2.7) and the 360 relative-relative pairs (OR = 5.5), indicating
that MDD does aggregate in families. Turning to the relative-type-specific ORs, the aunt/
uncle - niece/nephew OR is highly significant, which suggests that genetics account for at
least part of the familial aggregation of MDD if we assume that aunt/uncle - niece/nephew
pairs do not typically share family environments. Further, this OR is not smaller than the
parent - child and sibling - sibling ORs, which suggests that shared family environment
plays a very small role, if any, in the familial aggregation of MDD. Finally, note that the
spouse-spouse pairs do not contain enough information to estimate γmar when fitting the
ACE models.

We fitted ACE, AE, CE, and E variants of the ACE model to the data, with thresholds fixed
at values estimated from (12). The thresholds differed by sex only because a logistic
regression analysis of the relatives’ disease status revealed that the odds of having lifetime
MDD differs significantly by sex, but not by age, in our data. In addition, for model variants
that included C, γsib was fixed to one, γpar was either fixed to zero or estimated, and Cor(Cij,
Cij′) for all other types of relatives pairs was fixed to zero. Model fitting was performed in R
using a function written by the authors. The integrals in (6) were calculated using R’s
pmvnorm() function, which implements the algorithms proposed by Genz [1992], and
maximization of ln(L) was performed using R’s optim() function, which implements the
technique of Byrd et al. [1995]. For each model, the log-likelihood was unimodal, and the
maximum was easily found. Standard errors were calculated from a finite difference
approximation to the Hessian matrix at the maximum likelihood values, with the variance
components on a Fisher-transformed scale.

Table II presents the results from fitting the different variants of the ACE model. Comparing
the fit of the different variants reveals that the AE model is clearly the best-fitting model, as
one might expect from examination of the relative-type-specific ORs. (In contrast, the E
model is clearly the worst-fitting model, further supporting the finding that MDD aggregates
in families.) The AE model fits better than the CE model with a sibling - sibling and a parent
- child shared family environment, despite the fact that the latter model has one more
parameter than the AE model. The AE model fits slightly worse than either of the ACE
models, but the difference in −2 log(L) is only 0.3, which is far from significant according to
either a Monte Carlo LRT, the standard chi-square LRT, or the chi-square LRT with the p-
value halved. In the best-fitting AE model, a2 is estimated as approximately 0.52, and the
95% confidence interval for a2 is approximately [0.24, 0.72]. The length of this confidence
interval reflects the small size of the Austrian study.

In conclusion, our analysis suggests that the familial aggregation of adult MDD can be
explained almost completely by additive genetic effects, which account for approximately
one half the variance in the liability to MDD. These findings are consistent with the meta-
analysis performed by Sullivan et al. [2000], who found that previous studies of MDD
heritability suggest a range of 0.31 – 0.42, and with the recent results of Rabe-Hesketh et al.
[2008], who found that the AE model (with heritability estimated as 0.43) best fit a large
twin dataset on MDD.
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6 DISCUSSION
The simulation experiments and Austrian MDD application reveal that our approach to
fitting ACE models makes it possible to use case-control family data to obtain valid
estimates of the population (i.e., non-ascertained) ACE variance components, provided that
certain commonly-made assumptions hold. This advance will enhance investigators’ ability
to parse genetic and environmental effects on disease—a necessary step before proceeding
to molecular genetic studies—in several ways. First, using general family data instead of
twin data has several advantages [Pawitan et al., 2004]. For one, unless investigators have
easy access to twin registry data, case-control family data are much easier to obtain. In
addition, if families have more than two members, family data contain more relative pairs,
and thus more power to detect variance components, than twin data with the same number of
individuals. Further, using family data makes it possible to estimate effects than cannot be
estimated from standard twin data (e.g., parent-child shared family environmental effects).
Second, using case-control-sampled data instead of population-sampled data offers greater
power, especially for rarer diseases.

Of course, our approach is not without limitations. First, we choose to fit the models within
a structural equation rather than a mixed effects modeling framework. The former does
confer several advantages, namely easily interpretable parameters and straightforward
adjustment for case-control sampling, but the latter is easier to implement with standard
statistical software, makes it easier to incorporate covariates, and involves less computation
because only three- or four-dimensional integrals need to be calculated regardless of family
sizes [Rabe-Hesketh et al., 2008, p. 286]. Second, we choose to fix the threshold value(s)
during model fitting, which means that the standard errors for the variance component
estimates will not reflect the uncertainty surrounding the thresholds. Of course, sensitivity
analysis can be performed by refitting the model using different threshold values that define
a reasonable range of prevalences. Third, if the liabilities do not follow a multivariate
normal distribution, estimates of the ACE variance components can be more severely biased
when only certain types of families are ascertained [Glidden and Liang, 2002]. Reassuringly,
though, the assumption of normal liabilities is appropriate for a complex disease resulting
from the sum of many small genetic and environmental effects [Lange, 1978]. Fourth, our
approach will not perform well for very rare diseases because not enough cases will be
available to get reliable estimates of the variance components (or, in some cases, even the
prevalence). Fifth, the validity of estimates produced by our fitting approach relies on the
assumptions surrounding the case-control family sampling, which include case (control)
probands being representative of affected (unaffected) population members, sampled
relatives being representative of all relatives, and family size having no correlation with the
disease status of its members, as well as single ascertainment. Violations of these
assumptions can result in biased estimates of the ACE variance components, either via
biased estimates of prevalence [Javaras et al., 2009], which in turn result in biased estimates
of the variance components, or more directly (e.g., if affected relatives are less likely to be
sampled, estimates of a2 or c2 will be too small).

These limitations aside, our approach to fitting ACE models to case-control family data
performs very well when used with an actual dataset: the results from the Austrian example
agree with many previous studies investigating genetic and environmental effects on MDD.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table I

Unadjusted Familial Aggregation Odds Ratios (OR) for the Austrian MDD Data

Number of Pairs Familial Aggregation ORa

All Pairs

 Proband-Relative Pairs 330 2.7**

 Relative-Relative Pairs 360 5.1***

Sibling-Sibling Pairs

 Proband-Relative Pairs 144 2.5*

 Relative-Relative Pairs 166 7.1***,b

Parent-Child Pairs

 Proband-Relative Pairs 186 3.4*

 Relative-Relative Pairs 92 3.0

Spouse - Spouse Paris

 Proband-Relative Pairs 0 NAc

 Relative-Relative Pairs 30 NAc

Grandparent - Grandchild Pairs

 Proband-Relative Pairs 0 NAc

 Relative-Relative Pairs 3 NAc

Aunt/Uncle - Niece/Nephew Pairs

 Proband-Relative Pairs 0 NAc

 Relative-Relative Pairs 69 7.5**

*
Significant at 0.05;

**
Significant at 0.01;

***
Significant at 0.001

a
OR = Odds(MDD | Relative has MDD)/Odds(MDD | Relative does not have MDD)

b
Based on 332 ordered sibling-sibling pairs.

c
Cannot estimate OR due to small sample size or small number affected.
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Table II

Results from Fitting ACE Variants to the Austrian MDD Data

Model

Estimates

−2 ln(L)Cor(Cij, Cij′)a Variance Components

1: ACE γsib = 1b 240.8

γ ̂par = 0

2: ACE γsib = 1b 240.8

γpar = 0b

3: AE γsib =NA 241.1

γpar =NA c2 = 0b

4: CE γsib = 1b a2 = 0b 241.9

γ ̂par = 0.672

5: CE γsib = 1b a2 = 0b 246.3

γpar = 0b

6: E γsib =NA a2 = 0b 264.2

γpar =NA c2 = 0b

e2 = 1b

a
Shared family environmental correlation assumed to equal zero for all spouse-spouse, grandparent-grandchild, and aunt/uncle - niece/nephew

pairs.

b
Value fixed rather than estimated.
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