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BACKGROUND: To estimate the incidence of aneuploidy in relation to patients’ characteristics, the type of hormonal stimulation and their
response to induction of multiple follicular growth, 4163 first polar bodies (PBls) were analyzed.

METHODS: Five hundred and forty four infertile couples underwent 706 assisted conception cycles (640 with poor prognosis indications
and 66 controls) in which chromosomal analysis of PBI for the chromosomes 13, 15, 16, 18, 21 and 22 was performed. Results were eval-
uated in a multivariate analysis.

RESULTS: The proportion of normal oocytes was directly correlated (P < 0.01) with (i) the number of mature oocytes and (ji) the estab-
lishment of a clinical pregnancy; and inversely correlated (P < 0.01) with (i) female age, (ii) causes of female infertility (endometriosis, abor-
tions, ovulatory factor), (iii) poor prognosis indications (female age, number of previous cycles, multiple poor prognosis indications), (iv)
number of FSH units per oocyte and (v) number of FSH units per metaphase Il oocyte. There was a weak significance of frequency (P <
0.05) between type of abnormality (originated by chromatid predivision, chromosome non-disjunction or combined mechanisms in the
same oocyte) and groups of the studied variables, rather than to a specific abnormality or a specific chromosome.

CONCLUSIONS: The type of infertility had a significant effect on errors derived from the first meiotic division, whose incidence was sig-
nificantly higher in the presence of endometriosis or of an ovulatory factor, and in women that experienced repeated abortions. Each aneu-
ploidy event was found to be dependent not on a specific variable, but on groups of variables. In addition, the tendency of chromosomal

abnormalities to occur simultaneously implies that the deriving aneuploidies can be of any type.
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Introduction

Embryo viability is dependent upon many factors, the chromosomal
status being one of the most prominent in determining the fate of a
conceptus. It has been estimated that up to 30% of human zygotes
are aneuploid, this figure being more than double in women with a
mean age of 38 years (Kuliev et al., 2005). This high incidence of
meiotic errors determines severe clinical consequences with approxi-
mately one-third of miscarriages being chromosomally abnormal in
origin (Hassold et al., 1996). Studies on male and female gametes
have demonstrated that oogenesis is more error-prone compared
with spermatogenesis (Gianaroli et al., 2005) and this is possibly a
result of the prolonged arrest at the dictyotene stage in a process
that begins during fetal life and becomes complete only after ovulation.
It has been proposed that the check point regulating the transition

from metaphase | to anaphase | is more permissive in oogenesis
than in spermatogenesis, for which reason whereas spermatogenesis
is blocked when an error occurs in alignhment, oogenesis continues
yielding aneuploid gametes (Hassold and Hunt, 2001).

Data from clinical pregnancies have documented that the impor-
tance of meiosis | versus meiosis Il errors varies depending on the
different chromosomes, although maternal meiosis | errors highly pre-
dominate in the majority of trisomies (Hassold et al., 2007). This could
be attributed to the already mentioned peculiar timing and modality of
female meiosis, in which the first meiotic division involves homologous
chromosome segregation rather than sister chromatids as in meiosis |l
(Hassold and Hunt, 2001).

Important information on oocyte aneuploidy has been provided by
the preconceptional testing of polar bodies (PBs) in which fluor-
escence in situ hybridization (FISH) has confirmed that 70% of
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chromosomal abnormalities occur in meiosis | as reflected by an aneu-
ploid first polar body (PBI) (Verlinsky et al., 1999; Kuliev et al., 2003,
2005). These findings supported the validity of proposing the analysis
of PBI to predict the chromosomal status of the oocyte, and to use
the derived information as an additional tool for oocyte selection. Situ-
ations in which restrictions are imposed on the number of oocytes to
be inseminated could benefit from applying this strategy (Munné et al.,
2000; Magli et al., 2006; Vialard et al., 2006). On the other hand, the
contribution of errors derived from the second meiotic division cannot
be disregarded, as a sizeable proportion of aneuploidy occurring in the
second PB is expressed at the chromosomal level (Kuliev et al., 2003).
It has also been described that errors in the first meiotic division can
be compensated by sequential errors in the second meiotic division,
generating euploid zygotes (Kuliev and Verlinsky, 2004; Fragouli
et al., 2006). Nevertheless, this sort of aneuploidy rescue mechanism
seems to predispose to a high frequency of mitotic malsegregation
yielding chromosomally abnormal embryos that should not be con-
sidered for transfer (Kuliev and Verlinsky, 2004).

The more recent introduction of comparative genomic hybridization
(CGH) on PB analysis has started to provide data on all chromosomes
and the forthcoming increase in the number of reported cases is
expected to clarify the actual incidence of aneuploidy in human
oocytes from stimulated cycles (Gutierrez-Mateo et al., 2004; Fragouli
et al., 2006; Fishel et al., 2010).

The present study reports the results derived from the FISH analysis
of more than 4000 PBIs with the aim of getting all the available infor-
mation on the chromosomal status of IVF generated oocytes. Special
attention was focused on estimating the incidence of aneuploidy in
relation to patients’ characteristics, the type of hormonal stimulation
and their response to induction of multiple follicular growth. The
study included patients with a poor prognosis indication, and was
extended to a control group represented by young couples at their
first or second IVF attempt with no history of clinical abortions.

Materials and Methods

Patients

Between March 2004 and January 2009, 544 infertile couples underwent
706 assisted conception cycles in which chromosomal analysis of PBI
was performed.

Patients’ inclusion criteria were maternal age >38 years (418 cycles,
mean age 41.0 + 2.3 years, mean number of previous cycles 2.0 + 2.1),
repeated IVF failures (202 cycles, mean female age 34.2 + 2.5 vyears,
mean number of previous cycles 4.0 + |.2) and recurrent abortions (20
cycles, mean female age 33.9 + 2.4 years, mean number of previous abor-
tions 3.4 + 0.5). These indications are defined as poor prognosis and are
those predisposing the patient to a higher risk of generating aneuploid
embryos (Gianaroli et al., 2003). No poor prognosis indications were
present in the remaining 66 cycles (mean female age 34.3 + 2.4 years,
0.7 £ 0.4 previous cycles, no previous abortions), which represented
the control group.

Controlled ovarian stimulation was performed as previously described
(Ferraretti et al., 1996, 2004; Fasolino et al., 2007). Oocyte retrieval
was performed transvaginally via ultrasonography at 34—36 h after HCG
administration and oocytes were cultured in HTF medium (SAGE, Coop-
erSurgical Inc., Pasadena, CA, USA) supplemented with HSA (Human
Serum Albumin, SAGE), in a 5% CO, humidified gas atmosphere at 37°C.

PB biopsy

Approximately | h after retrieval, oocytes were denuded by hyaluronidase
treatment (40 [lU/ml, SAGE) and assessed for morphology and nuclear
maturation. The removal of PBI was performed on metaphase Il (Mll)
oocytes, which were manipulated individually in HEPES-buffered medium
supplemented with 10% HSA in 0.1 M sucrose, under pre-equilibrated
mineral oil (Magli et al., 2006). The opening of a 20—25 um slit in the
zona pellucida was achieved mechanically by passing a glass microneedle
through the perivitelline space tangentially to the oocyte, and repeatedly
rubbing the microneedle against the holding pipette. A polished glass
pipette (12 wm inner diameter) was introduced into the perivitelline
space and the PB was removed. The oocyte was then washed and incu-
bated until the time of insemination in Cleavage medium (SAGE) with
10% HSA.

Fluorescence in situ hybridization

After biopsy, the collected PBs were transferred to water using a glass
capillar, fixed with methanol and acetic acid (proportion 3:1) on a glass
slide and dehydrated in methanol. For the chromosomal analysis, multico-
lor FISH was used for the simultaneous testing of chromosomes 13, 15,
16, 18, 21 and 22 (Multivision PB Panel, Vysis Inc., Downers Grove, IL,
USA; CEP |5 alpha satellite, Spectrum Orange, Vysis). The probe
mixture was hybridized to the fixed PBs for 2 h. The slides were then
counterstained in antifade solution (Antifade II, Vysis) and observed
under a fluorescence microscope (Olympus BX4l, Olympus, Tokio,
Japan) equipped with a Ludl filter wheel with the following filter sets:
dual band pass filters (Red/Green and Aqua/Blue) and single band pass
filters (Red, Green, Yellow, Aqua). Images were captured at x 600 magni-
fication using a CCD PVCAM camera associated with image analysis soft-
ware (Vysis Quips).

The interpretation of the results was based on the consideration that
PBI is the mirror image of the oocyte, and that it normally consists of
two chromatids. For this reason, the detection of double-dotted signals
(one dot per chromatid) classified the oocyte as normal. Although the
presence of a doublet signal is clear when using locus-specific probes,
for centromeric probes fluorescence can be concentrated in a large
signal or in a doublet with very close signals. Alternatively, the presence
or lack of two additional fluorescent dots indicated that the oocyte lost
or gained a chromosome, respectively, whereas the presence or
absence of a single-dot signal identified an oocyte with a loss or gain,
respectively, of a chromatid. In the last case, the meiotic error was
caused by premature separation of sister chromatids (Angell, 1991).

The concomitant occurrence of numerical abnormalities involving three
or more chromosomes, or the combination of chromatids and chromo-
some errors was defined as complex abnormality.

Oocyte insemination, control of oocyte
fertilization and embryo development

Insemination was performed by ICSI on the basis of FISH results by intro-
ducing the injection needle through the breach already opened in the zona
pellucida (Magli et al., 2006). Whenever possible, only chromosomally
normal oocytes were inseminated and up to a maximum of three per
patient as established by the national law on IVF (Benagiano and Gianaroli,
2004), whereas the remaining chromosomally normal oocytes were
cryopreserved.

Fertilization check was performed at 16 h post insemination by evaluat-
ing the presence and morphology of pronuclei and second PB (Gianaroli
et al., 2007). Normally fertilized oocytes were cultured individually in
fresh Cleavage medium (SAGE) supplemented with 10% HSA and
scored daily at regular time intervals every 24 h. Number and morphology
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of nuclei and blastomeres (presence of vacuoles, multinucleation, cyto-
plasmic darkness or inclusions, uneven size of blastomeres), and the per-
centage of fragmentation were recorded. On the basis of these
observations embryos were graded as | —4, grade | embryos representing
those with normal morphology and development according to the time of
observation (Magli et al., 2007).

Embryo transfer and pregnancy outcome

Embryo transfer was normally performed on Day 3, except in those cases
where the three fertilized oocytes grew normally. In this case, embryos
were cultured to the blastocyst stage with the aim of favoring their
natural selection in culture, to avoid the transfer of non-viable embryos
that were classified as those that arrested in culture for at least 48 h
with clear signs of degeneration.

Clinical pregnancies were defined by the presence at ultrasonography of
a gestational sac with fetal heartbeat. The implantation rate was expressed
as the ratio between number of gestational sacs with fetal heartbeat and
total number of embryos transferred. The delivery rate was calculated
per transfer, per cycle and per patient.

FISH on oocytes

A total of 104 oocytes which had been donated for research by consenting
patients were directly tested for the chromosomes 13, 15, 16, 18, 2| and
22. Concomitantly, the same analysis was performed on the correspond-
ing PBI (Fig. 1). For oocyte fixation, oocytes were incubated for 5— [0 min
in hypotonic solution (1% sodium citrate) and then fixed with
methanol-acetic acid in a proportion 3:1. FISH was performed according
to the protocol described above. The study was discussed and approved
by our Institutional Review Board.

Statistical analysis

To compare numerical variables in the two groups, data were analyzed in a
bivariate analysis by Fisher's exact test and y* analysis applying the Yates’
correction, 2 x 2 contingency tables.

A multivariate regression analysis corrected for semiquantitative data was
performed to investigate the determinants of aneuploidy, expressed as the
proportion of euploid oocytes over the number of diagnosed oocytes.

The weight of each different indication to FISH analysis on PBs (FISH—
PB) and cause of infertility were estimated by calculation of X variables
marginal contribution. Relationships were evaluated for significance using
inferential analysis of the regression coefficients of the equation that
define relationships.

The multivariate regression analysis among the studied variables and the
data of anomalies deriving from chromatid predivison, mixed predivision,
chromosomal predivision and aneuploidy of each single chromosome
were analyzed by means of stepwise regression analysis. In this way, signifi-
cances of subgroups were assessed based on the assumption that corre-
lations were regarded as a group and the seven subgroups deriving from
it (anomalies of chromatid predivision, mixed predivision, chromosomal
predivision and aneuploidies of chromosomes 13, 16, 18, 21 and 22.
Chromosome |5 was excluded from the analysis because it was only
tested in 2684 oocytes).

To understand whether aneuploidy within the same oocyte is randomly
or not randomly generated, the goodness of fit test was applied
(Camussi et al., 1995).

Variables were selected at a level risk lower than 5%.

Results

To estimate the efficiency of PBI testing by FISH and the reliability of
PBI results as predictive of the corresponding oocyte’s chromosomal
status, 104 oocytes and their corresponding PB| were fixed and ana-
lyzed for the chromosomes 13, 15, 16, 18, 21 and 22. A result was
obtained for 99 oocytes, of which 95 gave a result that was compatible
with that obtained in the corresponding PBI (96%). Of the remaining
four oocytes that had been diagnosed as abnormal by PBI analysis,
three were apparently normal (3%) and one had a different abnorm-
ality (complex abnormality instead of hypohaploidy). For the purpose
of this study, the non-concordance of the data from PBls and the cor-
responding oocytes were considered to be negligible and the FISH
results of PBls were taken as representative of the chromosomal

status of the MIl oocytes.

Figure | FISH analysis with the probes specific for chromosomes 13 (red), |5 (orange), 16 (aqua), 18 (pink), 21 (green) and 22 (yellow). (A) In the
first polar body, there are two dots for each signal with the exception of chromosome |6 for which three signals are observed. (B) The corresponding
oocyte was analyzed for the same chromosomes. As expected, as the first polar body is the mirror image of the chromosome status of MIl ococytes,
only one signal for chromosome 16 is detected in the oocytes, whereas two dots are present for the other tested chromosomes. Both images: x 600

magnification.
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The clinical outcome of the cycles included in the study is described
in Table I. A total of 4163 oocytes were biopsied and a diagnosis was
obtained in 3816 (92%). In all, 51% (n = 1931) of the oocytes were
euploid for the six tested chromosomes, a chromatid error occurred
in 36% of them (n= 1386; 13% with a missing chromatid and 23%
with an extra chromatid), a chromosome error occurred in 9% of
the oocytes (n=358), with the remaining 4% being of complex
origin (n = 141). The overall data regarding the chromosomal status
of PBIs in the different patients’ categories are detailed in Table II.
No differences were detected in the distribution of chromatid or
chromosome errors in studied groups.

After ICSI (Table ), normal fertilization occurred in 79.5% of the
746 inseminated oocytes which originated 1325 embryos (96%).
Embryo transfer was performed in 615 cycles yielding 150 clinical preg-
nancies (24% per transferred cycle) with an implantation rate of 14.4%.

In the group of patients with advanced maternal age, the proportion
of euploid oocytes was lower when compared with the controls (49
versus 57%, P < 0.005), and this resulted, in combination with a
reduced number of biopsied mature oocytes (5.5 versus 7.2 in the
controls, P=0.00001) in a decreased percentage of transferred
cycles (83 versus 96%, P < 0.025). The clinical pregnancy rate was

significantly lower when calculated per transfer (19.5 versus 43%,
P < 0.001), per oocyte retrieval (16 versus 41%, P < 0.001) and per
patient (22 versus 41.5%, P < 0.005). The implantation rate followed
the same trend (1 1.5 versus 23.3%, P < 0.001), whereas the incidence
of abortions was higher in the older age group (32%) compared with
the controls (15%, P = 0.047).

Regarding patients with more than three IVF cycles, significant
differences with the control group were detected in the proportion
of mature (6.3 + 2.5 versus 7.2 + 2.3, P = 0.009) and chromosomally
normal oocytes (51 versus 57%, P < 0.05), as well as in the clinical
pregnancy rate when calculated per transfer (27 versus 43%, P <
0.05) and per oocyte retrieval (25 versus 41%, P < 0.025).

As shown in Fig. 2, the distribution of chromosomal abnormalities
was age dependent, with the highest proportion detected in patients
aged >43 years (56%). A significant increase in the proportion of
aneuploid oocytes started at 40 years with an incidence of 52
versus 48% at younger ages (P < 0.01).

To evaluate the variables that could be associated with the pro-
portion of euploid oocytes calculated over the number of diagnosed
oocytes, the following dependent variables (x) were analyzed in a
multivariate regression analysis: female age, type of stimulation (use

Table I Overall results for clinical outcome of cycles in which chromosomal analysis of the PB| was performed.

Age > 38 years >3 IVF cycles >3 abortions Controls: no indications Total
Cycles 418 202 20 66 706
Patients 314 150 I5 65 544
Age (Mean + SD) 41.0+23 34+.2+25 339 +24 343+24 382 + 4.1
Previous cycles (Mean + SD) 2.0+ 2.1 40+ 1.2 07+ 1.0 0.7+ 0.4 22+20
Collected oocytes 2984 1690 162 601 5437
Biopsied oocytes (Mean + SD) 2291 (5.5 +2.7)* 1274 (6.3 + 2.5)° 121 (6.1 +2.3)° 477 (7.2 + 2.3)™ 4163 (5.9 +2.6)
Diagnosed oocytes 2093 (91) 1185 (93) 109 (90) 429 (90) 3816 (92)
FISH normal oocytes 1018 (49)¢ 604 (51)° 63 (58) 246 (57)% 1931 (51)
Inseminated oocytes (ICSI) 960 533 54 199 1746
Fertilized oocytes 758 (79) 422 (79) 46 (85) 162 (81) 1388 (79.5)
Generated embryos 726 (96) 403 (95) 45 (98) 151 (93) 1325 (96)
Transferred cycles 348 (83)f 185 (92) 19 (95) 63 (96)' 615 (87)
Transferred embryos (Mean + SD) 1.94+0.7 19407 20+ 0.6 2.1 +£08 1.94+0.7
Clinical pregnancies (% per transfer) 68 50 5(26) 27 150
(% per cycle) (% per patient) (19.5)% (27)‘h (25) (43)?'“ (24)

(16)' (25) (33) 41" 1)

(22) (33) (33) (41.5)« (28)
Spontaneous miscarriages 22* (32) 4 (8) 0 4 (15) 30 (20)
Ectopic pregnancies | | 0 2 4
Implantation rate 76/663 (11.5)™ 57/348 (16.4) 6/39 (15.4) 31/133 (23.3)™ 17071183 (14.4)

Note: Values are number (percentage) unless otherwise noted. P-values are for comparisons between values with the same superscript letter.

*2 after prenatal diagnosis, normal karyotype.
P =0.00001.

°P = 0.009.

P =0.049.

d<p < 0.005.

"P < 0.05.

fip < 0.025.

8mp < 0.001.

'P=0.047.
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Table Il Chromosomal status of PBls in the different categories of patient.

Age > 38 years

>3 IVF cycles

>3 abortions No indications Total
Diagnosed oocytes 2093 1185 109 429 3816
FISH normal oocytes 1018 (49)° 604 (51)° 63 (58) 246 (57)® 1931 (51)
FISH abnormal oocytes 1075 (51)° 581 (49)¢ 46 (42) 183 (43) 1885 (49)
Missing chromatids 281 (13) 160 (13) 7 (6) 40 (9) 488 (13)
One chromatid 239 144 7 37 427
Two chromatids 42 16 0 3 6l
Extra chromatids 494 (23) 273 (23) 29 (27) 102 (24) 898 (23)
One chromatid 415 228 24 86 753
Two chromatids 79 45 5 16 145
Missing chromosomes 64 (3) 22 (2) 3(2.5) 13 (3) 102 (2.5)
One chromosome 47 18 3 3 71
Two chromosomes 17 4 0 10 31
Extra chromosome 140 (7) 91 (8) 3(2.5) 22 (5) 256 (6.5)
One chromosome 121 79 | 18 219
Two chromosomes 19 12 2 4 37
Complex abnormalities 96 (5) 35(3) 4 (4) 6(2) 141 (4)
%P < 0.005.
bdp < 0.05.

FISH: fluorescence in situ hybridization.
Note: Values are number (percentage) unless otherwise noted.

Aneuploidy %

<35

36-37

38-39

40-42 243 years

Figure 2 Incidence of aneuploidy in 3816 FISH diagnosed oocytes, in relation to maternal age. The distribution of chromosomal abnormalities was

age dependent with a significant increase in the proportion of aneuploid oocytes starting at 40 years (incidence of 52% in the age of 40—42 years, and
of 56% at older ages versus 48% at younger ages; P < 0.01). P < 0.001, °P < 0.01.

of GnRH agonist or antagonist), use of clomiphene citrate, cause of
infertility, indication to PGD, number of retrieved oocytes, number
of mature oocytes, units of FSH per oocyte, units of FSH per
mature oocyte and establishment of a clinical pregnancy.

As reported in Table lll, there was a direct and significant corre-
lation between the proportion of normal oocytes and (i) the
number of mature oocytes and (i) the establishment of a clinical preg-
nancy. An inverse and significant correlation was found between the
proportion of normal oocytes and (i) female age, (i) causes of

female infertility (endometriosis, abortions, ovulatory factor), (iii) indi-
cations to FISH—PB (female age, number of previous cycles, multiple
indications to FISH—PB), (iv) number of FSH units per oocyte and
(v) number of FSH units per MIl oocyte. No significant correlation
was found between the proportion of normal oocytes and (i) the
type of stimulating cycle (agonist or antagonist), (i) the use of clomi-
phene, (iii) the presence of male infertility, tubal infertility or idiopathic
infertility, (iv) the absence of indications to FISH—PB and (v) the
number of collected oocytes.



Table I11 Relationships between the proportion of normal oocytes calculated over the number of diagnosed oocytes and the following variables: female age, type
of stimulation (GnRH agonist or antagonist), use of clomiphene (yes or no), causes of infertility (male, endometriosis, idiopathic, tubal, ovarian, recurrent
abortions), indication to FISH-PB (female age, abortions, previous failed cycles, no indication, multiple indications), number of collected oocytes, number of
collected MIl oocytes, number of FSH international units per oocyte, number of FSH international units per Mll oocyte, clinical pregnancy.

Relationship

Level of intersection with the

Y ordinate axis

Regression
coefficients

Significance of each
regression coefficients of
dependent variables

Determining p’
factors (t)

Normal oocytes/diagnosed oocytes

female age

type of stimulation (agonist or antagonist)

clomiphene (yes/no)

causes of infertility (male, endometriosis, idiopathic, tubal,
ovarian, abortions)

indication to FISH—PB (female age, abortions, previous
cycles, no indication, multiple indications)

-number of collected oocytes

number of collected Ml oocytes

FSH units/oocyte

FSH units/MIl oocyte

clinical pregnancy

Clinical pregnancy

Independent variable
(predictor)

Normal oocytes/ —9115
diagnosed oocytes

Dependent variables

Female age

Type of stimulation (agonist/antagonist)
Clomiphene (yes/no)

Cause of infertility: male

Cause of infertility: endometriosis
Cause of infertility: idiopathic

Cause of infertility: tubal

Cause of infertility: ovarian

Cause of infertility: abortions

Indication to FISH—PB: female age
Indication to FISH—PB: abortions
Indication to FISH—PB: number of previous cycles
No indication to FISH-PB

Multiple indications to FISH—PB
Number of collected oocytes

Number of collected MIl oocytes
Number of FSH units/oocyte

Number of FSH units/Mll oocyte

6.445

9.667

89.001 <0.0l
1.244 NS
0.112 NS
0.112 NS

10.117 <0.01
2.117 NS
1.238 NS
9.118 <0.01
8.118 <0.0l
[1.320 <0.0l
8.115 <0.01
5.091 <0.05
0.114 NS
12.338 <0.01
0.002 NS
[1.167 <0.0l
9.118 <0.01
9.113 <0.0l

NS, not significant; FISH—PB, chromosomal analysis of PB by FISH; IU, international Units; MIl oocyte, metaphase Il oocyte.

s334000 uewny uj Apiojdnaue unoipadg
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The correlation between the studied variables and the type of
chromosome anomalies (type of mechanism generating aneuploidy
and type of chromosome involved) was analyzed by means of stepwise
regression analysis (Table IV). According to these data, there was a
weak significance of frequency (P <<0.05, but lost at P<<0.0l)
between type of abnormality (originated by chromatid predivision,
chromosome non-disjunction or combined mechanisms in the same
oocyte) and groups of the studied variables, rather than to a specific
abnormality or a specific chromosome. The same was true for the fre-
quency of aneuploidy specifically occurring for each chromosome. In
addition, the goodness of fit test indicated that aneuploidies were
not randomly distributed within the same oocyte.

Discussion

Preconception genetic diagnosis is the earliest form of preimplantation
diagnosis and is generally performed by removing the first and second
PB in order to have the whole view of the meiotic process in the
oocyte (Verlinsky et al., 1990; Verlinsky et al., 1997; Kuliev et dl.,
2003, 2005). This strategy could not be adopted in the present
study owing to the legal restrictions in ltaly, according to which no
more than three embryos could be generated, with any type of
embryo (or zygote) selection being prohibited (Benagiano and
Gianaroli, 2004).

Regardless of this limitation, the analysis of PBI has been routinely
used as an additional tool to guide the selection of the three oocytes
to be inseminated, in combination with their morphological assess-
ment (Magli et al., 2006; Gianaroli et al., 2007). As presented in
Table |, the rates of fertilization, embryo development and implan-
tation were within the normal range, suggesting that PBI biopsy is
not detrimental for oocyte development. If this technique has the
final result of improving the oocyte selection, a clinical advantage
should be the expected. Actually, data from a prospective randomized
study indicated that the selection of euploid oocytes is associated with
a reduced abortion rate (Ferraretti et al., 2006).

As expected, the incidence of aneuploidy tended to vary in the
different categories of patients. When compared with a control
group, patients of advanced maternal age presented the highest
level of aneuploidy in oocytes, followed by couples with repeated
IVF failures, showing significantly higher values. According to these
results, a tendency to chromosomal errors seemed to be related
to some conditions of infertility, whereas the figure of 43% aneu-
ploidy in the oocytes from the control group could represent the
background level of aneuploidy for the six studied chromosomes in
human oocytes derived from stimulated cycles. It is important to
keep in mind that numerical chromosomal abnormalities are
detected at considerable levels even in embryos generated from
natural cycles (36% according to Verpoest et al., 2008), suggesting
that the frequent occurrence of aneuploidy could be typical of the
human species.

At this point, it was logical to inquire whether the type of infertility,
the type of stimulation and the quality of patients’ response to gon-
adotrophins could have an effect on the resumption of oocyte
meiosis. In agreement with a previous study (Fasolino et al., 2007),
the type of stimulation did not correlate with aneuploidy, but the
type of infertility had a significant effect on meiotic errors, whose inci-
dence was significantly higher in the presence of endometriosis or of

an ovulatory factor, and in women that experienced repeated abor-
tions (Table Ill). The hypothesis that oocyte quality might be ham-
pered in women with endometriosis is not new, but no general
consensus has been reached on this point (Garcia-Velasco and Arici,
1999). In a recent work based on an experimental model, the effect
of endometriosis on oocyte quality was demonstrated to be at the
level of the cytoskeleton (Mansour et al., 2010). The authors
suggested that endometriosis negatively affects the meiotic spindle
and the chromosomes, and this is in agreement with the findings
from this study pointing to a link between endometriosis and the for-
mation of aneuploid gametes.

The strong negative correlation between the presence of an ovula-
tory factor and the proportion of aneuploid oocytes suggest that these
ovaries undergo a sort of biological ageing process. Surprisingly, the
results coming from the chromosomal analysis of preimplantation
embryos do not seem to confirm these findings (VWeghofer et dl.,
2007). It could be postulated that even though the hormonal environ-
ment in the ovaries of these patients could predispose to meiotic
errors, the high rates of mosaicism characteristic of preimplantation
embryos could disguise the oocyte chromosomal status.

Finally, the predisposition in women with a history of previous abor-
tions to generate aneuploid oocytes could result from a sort of biologi-
cal ageing, a condition for which the hypothesis of the ‘limited oocyte
pool’ was formulated (Warburton, 1989; Kline et al., 2000). According
to this theory, the age effect might be related to the relative scarcity of
oocytes at optimal stages of maturation. This conclusion was based on
the observation that women with a trisomic pregnancy entered meno-
pause about | year earlier than did those in the control group. As a
result, a high incidence of aneuploid oocytes in patients with recurrent
miscarriages was found in this study (Table lll) and this is also in agree-
ment with the report of high rates of aneuploidy in embryos from
young patients with previous aneuploid conceptions (Munné et al.,
2004).

The type of response to hormonal stimulation was strictly related to
aneuploidy as expressed by the number of mature oocytes and, more
precisely, by the number of FSH IU that were necessary to generate an
oocytes (Table Ill). More importantly, a significant inverse correlation
was also present between incidence of aneuploidy and clinical preg-
nancy rate. These data suggest that the retrieval of mature oocytes
in response to a limited amount of gonadotrophins is associated
with a lower risk of aneuploidy, implying that the quality of response
to the hormonal stimulation reflects how the recruited follicles
could support oocyte growth and maturation, with the consequent
generation of more or less competent oocytes (Fragouli et dl.,
2009). On the other hand, some data indicate that in cases of very
aggressive stimulations, the frequency of aneuploidy in oocytes can
be very high even in young patients (Sher et al., 2007), suggesting
that results can be distorted when the experimental conditions are
too far from the physiological levels. These considerations contributed
to the motivation to return to milder ovarian stimulation, that was
proven to be associated with a reduced frequency of embryo aneu-
ploidy (Baart et al., 2007).

According to the data reported in this study, premature chromatid
separation was by far the most frequent cause of PBI abnormality.
This is in agreement with other studies on PBs by preconception
genetic diagnosis (Kuliev and Verlinsky, 2004; Kuliev et al., 2005;
Vialard et al., 2006) and CGH (Gutierrez-Mateo et al., 2004), but it



Table IV Stepwise regression analysis of the studied variables in regard of independent variable (Normal oocytes/diagnosed oocytes [predictor],[Y]):

p’ =P<0.0l.
Subgroups Number of Number highly significant (P < 0.01) Number of significant relationships  Not significant relationships in
anomalies relationships in regard of Y (P<0.05) in regard of Y regard of Y
Chromatid predivision errors 1386 0 5 12
|-Female age |-Clomiphene yes/no
2-Causes of female infertility, 2-Stimulation type
endometriosis 3-Cause of infertility, male
3-Indication to FISH—PB, multiple 4-Cause of infertility, idiopathic
indications 5-Cause of infertility, female, tubal
4-FSH IU/oocyte 6-Cause of female infertility, ovarian
5-FSH 1U/MIl oocyte 7-Indication to FISH—PB, abortions
8-Indication to FISH—PB, number of
cycles
9-Indication to FISH—PB, no indication
10-Number of collected oocytes
I I-Number of Mll oocyte
|2-Clinical pregnancy
Combined chromatid and 141 0 0 17

chromosome errors

|-Clomiphene yes/no

2-Female age

3-Stimulation type

4-Cause of infertility, male

5-Cause of infertility, female,
endometriosis

6-Cause of infertility, idiopathic

7-Causes of e infertility, female, tubal

8-Causes of infertility, female, ovarian

9-Indication to FISH—PB, female age

| 0-Indication to FISH—PB, abortions

| | -Indication to FISH-PB, number of
cycles

|2-Indication to FISH—PB, no indication

| 3-Indication to FISH—PB, multiple
indications

I4-Number of collected oocytes

I5-FSH IU/oocyte

[6-FSH IU/MIl oocyte

| 7-Clinical pregnancy

Continued
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Table IV Continued

Subgroups

Chromosome non-disjunctions

Chromosome |3

Number of
anomalies

409

Number highly significant (P < 0.01)
relationships in regard of Y

Number of significant relationships
(P<0.05) in regard of Y

|-Female age

2-Causes of infertility, female,
endometriosis

3-Indication to FISH—PB, female age

|-Female age

2-Causes of infertility, female,
endometriosis

3-Indication to FISH—PB, female age

Not significant relationships in
regard of Y

|-Clomiphene yes/no

2-Stimulation type

3-Cause of infertility, male

4-Cause of infertility, idiopathic

5-Cause of infertility, female, tubal

6-Cause of infertility, female, ovarian

7-Indication to FISH—PB, abortions

8-Indication to FISH—PB, number of
cycles

9-Indication to FISH—PB, no indication

| 0-Indication to FISH—PB, multiple
indications

I'1-Number of collected oocytes

12-FSH [U/oocyte

I3-FSH IU/MIl oocyte

| 4-Clinical pregnancy

14

|-Clomiphene yes/no

2-Stimulation type

3-Cause of infertility, male

4-Cause of infertility, idiopathic

5-Cause of infertility, female, tubal

6-Cause of infertility, female, ovarian

7-Indication to FISH—PB, abortions

8-Indication to FISH—PB, number of
cycles

9-Indication to FISH—PB, no indication

| 0-Indication to FISH—PB, multiple
indications

I I-Number of collected oocytes

12-FSH 1U/oocyte

I3-FSH [U/MIl oocyte

|4-Clinical pregnancy
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Chromosome |6

Chromosome 18

Chromosome 21

520

377

835

|-Female age

2-Cause of infertility, female,
endometriosis

3-Indication to FISH—PB, female age

4-FSH IU/MIl oocyte

|-Female age

2-Cause of infertility, female,
endometriosis

3-Indication to FISH—PB, female age

|-Clomiphene yes/no

2-Stimulation type

3-Cause of infertility, male

4-Cause of infertility, idiopathic

5-Cause of infertility, female, tubal

6-Cause of infertility, female, ovarian

7-Indication to FISH—PB, abortions

8-Indication to FISH—PB, number of
cycles

9-Indication to FISH—PB, no indication

| 0-Indication to FISH—PB, multiple
indications

I 1-Number of collected oocytes

[2-FSH IU/oocyte

I 3-Clinical pregnancy

14

|-Clomiphene yes/no

2-Stimulation type

3-Cause of infertility, male

4-Cause of infertility, idiopathic

5-Cause of infertility, female, tubal

6-Cause of infertility, female, ovarian

7-Indication to FISH—-PB, abortions

8-Indication to FISH—PB, number of
cycles

9-Indication to FISH—-PB, no indication

| 0-Indication to FISH—PB, multiple
indications

I I-Number of collected oocytes

12-FSH IU/oocyte

[3-FSH [U/MIl oocyte

|4-Clinical pregnancy

12

Continued
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Table IV Continued

Subgroups

Number of
anomalies

Number highly significant (P < 0.01)
relationships in regard of Y

Number of significant relationships
(P <0.05) in regard of Y

Not significant relationships in
regard of Y

Chromosome 22

537

|-Female age

2-Cause of infertility, female,
endometriosis

3-Indication to FISH—PB, female age

4-FSH 1U/oocyte

5-FSH IU/MIl oocyte

|-Female age

2-Cause of infertility, female,
endometriosis

3-Indication to FISH—PB, female age

4-FSH 1U/MIl oocyte

|-Clomiphene yes/no

2-Stimulation type

3-Cause of infertility, male

4-Cause of infertility, idiopathic

5-Cause of infertility, female tubal

6-Cause of infertility, female ovarian

7-Indication to FISH—PB, abortions

8-Indication to FISH—PB, multiple cycles

9-Indication to FISH—PB, no indication

| 0-Indication to FISH—PB, multiple
indications

I'I-Number of collected oocytes

|2-Clinical pregnancy

I3

|-Clomiphene yes/no

2-Stimulation type

3-Cause of infertility, male

4-Cause of infertility, idiopathic

5-Cause of infertility, female tubal

6-Cause of infertility, female ovarian

7-Indication to FISH—PB, abortions

8-Indication to FISH—PB, number of
cycles

9-Indication to FISH—PB, no indication

| 0-Indication to FISH—PB, multiple
indications

I I-Number of collected oocytes

12-FSH [U/oocyte

I 3-Clinical pregnancy

FISH—PB, chromosomal analysis of polar body by fluorescence in situ hybridization; IU, international Units; MIl oocyte, metaphase Il oocyte.
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is in contrast with the data derived from direct oocyte conventional
analysis and from DNA polymorphism (Rosenbusch, 2006). A possible
explanation of this inconsistency could reside in the fact that prema-
ture chromatid separation seems to be especially related to smaller
chromosomes, including chromosomes 13, 15, 16, 18, 21 and 22 (Fra-
gouli et al., 2006). The reliability of FISH diagnosis on PBI can also be
questioned, with the possibility that the error rate on a single cell
could jeopardize the conclusions. Nevertheless, the concordance
between oocytes and corresponding PBI was found to be 96%, and
this is in agreement with the figure reported by Weier et al. (2005)
who found a 92% concordance by using FISH and Spectral Imaging
Analysis on 25 oocytes and their PBI. Such a small error rate
cannot dramatically affect the results and the consequent conclusions.

Studies using CGH for the analysis of PBs have demonstrated that
aneuploidies affect all chromosomes, but those equal or smaller
than chromosome |3 are more frequently involved in aneuploid
events (Fragouli et al., 2010). As represented in Table |V, the search
for preferential susceptibility of single chromosome aneuploidy in
relation to different variables demonstrated that the effects of
chromosome aberrations were more linked to a generalized oocyte
meiotic abnormality rather than to a specific abnormality.

The significance of the associations between the studied variables
(patients’ characteristics) regarded the typology of the variable
(chromosome or chromatid error) and number of the significant vari-
ables in the different groups of chromosomal abnormalities, which
occurred repeatedly in the different studied categories. In addition, a
highly significant correlation was shown between number of chromo-
somal abnormalities and number of significant correlations. On the
basis of two considerations, it can be concluded that the correlation
with the studied variables does not depend on the type, but on the
frequency of a chromosomal alteration. In other words, the mechan-
isms generating aneuploidy and the aneuploidy frequency of a single
chromosome does not depend on a specific variable (age, for
example), but on groups of variables. Therefore, no specific type of
aneuploidy is associated with any of the female infertility indications,
such as age, endometriosis or an ovarian factor, suggesting that chro-
mosomal errors seem to be linked to a generalized oocyte disorgan-
ization rather than to a single/specific oocyte alteration. These
considerations might help to explain the contradictory results
derived from the FISH analysis of preimplantation embryos when a
bivariate analysis is performed.

It was also seen that chromosomal abnormalities tended to be com-
bined and occur simultaneously, suggesting that if the mechanisms
entering the meiotic process are malfunctioning, deriving aneuploidies
can be of any type. Furthermore, as demonstrated by the goodness of
fit test, aneuploidies were not randomly distributed within the same
oocyte, suggesting that aneuploidies are probably caused by a dysfunc-
tion of the meiotic spindle rather than by the shape and features of the
chromosomes. The physiological implications of this condition are
unknown but other studies in sperm cells and in preimplantation
embryos have reported that chromosomes have a defined, non-
random localization within the nucleus, suggesting that the organiz-
ation of the genome could be functionally important (Foster et dl.,
2005; Mudrak et al., 2005; Diblik et al., 2007).

In conclusion, despite the high frequency and clinical relevance of
aneuploidy in humans, surprisingly little is known about factors that
modulate the risk of meiotic non-disjunction, the only factor

incontrovertibly linked to human aneuploidy being represented by
increasing maternal age. The mechanisms underlying the predisposi-
tion to aneuploidy still need to be elucidated, but biological, and not
chronological, ageing are probably involved (Hassold and Hunt,
2001). There is increasing evidence supporting the fact that each aneu-
ploidy event is dependent not on a specific variable, but on groups of
variables. In addition, the tendency of chromosomal abnormalities to
occur simultaneously implies that the deriving aneuploidies can be of
any type. More comprehensive information will certainly result from
the analysis of the complete chromosomal set in oocytes and
embryos (Geraedts et al., 2010).

The findings of the present study confirm that in many cases a poor
prognosis condition is associated with chromosome abnormalities,
which contributes an additional hurdle to the complex issue of
female infertility.
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