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The synchronous discharge of neuronal assemblies is thought to facilitate communication between areas within distributed networks in
the human brain. This oscillatory activity is especially interesting, given the pathological modulation of specific frequencies in diseases
affecting the motor system. Many studies investigating oscillatory activity have focused on same frequency, or linear, coupling between
areas of a network. In this study, our aim was to establish a functional architecture in the human motor system responsible for induced
responses as measured in normal subjects with magnetoencephalography. Specifically, we looked for evidence for additional nonlinear
(between-frequency) coupling among neuronal sources and, in particular, whether nonlinearities were found predominantly in connec-
tions within areas (intrinsic), between areas (extrinsic) or both. We modeled the event-related modulation of spectral responses during
a simple hand-grip using dynamic casual modeling. We compared models with and without nonlinear connections under conditions of
symmetric and asymmetric interhemispheric connectivity. Bayesian model comparison suggested that the task-dependent motor net-
work was asymmetric during right hand movements. Furthermore, it revealed very strong evidence for nonlinear coupling between
sources in this distributed network, but interactions among frequencies within a source appeared linear in nature. Our results provide
empirical evidence for nonlinear coupling among distributed neuronal sources in the motor system and that these play an important role

in modulating spectral responses under normal conditions.

Introduction

Oscillatory activity is a ubiquitous feature of neuronal dynamics.
It has been suggested that the synchronous discharge of neuronal
assemblies might provide a mechanism to couple distributed
processing over different neuronal populations (Singer and
Gray, 1995; Kahana et al., 1999; Rodriguez et al., 1999). The
central idea is that oscillations facilitate integration both
within functionally segregated brain areas and between areas
engaged by the same task. Many studies investigating oscilla-
tory activity have focused on linear coupling between nodes of
a network at the same frequency (Andrew and Pfurtscheller,
1996; Gerloff et al., 1998; Gross et al., 2001; Serrien et al.,
2005). More recently, evidence has emerged that suggests non-
linear coupling among different frequencies may play an
equally important role in interareal communication (Tallon-
Baudry and Bertrand, 1999; Varela et al., 2001; Breakspear,
2002; Jensen and Colgin, 2007; Chen et al., 2009). In this work,
we use magnetoencephalography (MEG) and a recently vali-
dated method (dynamic causal modeling for induced respons-
es; DCM for IR) (Chen et al.,, 2008) to characterize the
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modulation of frequency-dependent coupling among neuro-
nal sources during action execution.

Hand movements have been shown to modulate oscillatory
power at different frequencies, such as alpha event-related desyn-
chronization (ERD) and beta event-related synchronization
(ERS) in brain areas engaged by action execution; e.g., primary
motor cortex (M1), supplementary motor area (SMA) and pre-
motor areas (PM) (Pfurtscheller and Andrew, 1999). Movement-
related modulations in power have been seen consistently across
different spatial scales, from single unit recordings, through lo-
cal field potential recordings, to macroscopic measures such as
electroencephalogram (EEG) or magnetoencephalogram (MEG)
(Leocani et al., 1997; Crone et al., 1998a,b; Kilner et al., 2003).
Given that action execution induces changes in different frequen-
cies within connected brain regions, we wanted to model how
these oscillations are orchestrated during motor control. The na-
ture of this frequency-specific coupling is important, given that
excessive synchronization at distinct frequencies is seen in some
pathological conditions. For example, in Parkinson’s patients,
synchronization at 4~6 Hz between the contralateral primary
motor cortex and forearm muscles is thought to contribute to
resting tremors, while excessive synchrony at 10-35 Hz in basal
ganglia/subthalamic nucleus is associated with bradykinesia (for
review, see Brown, 2007). The motivation for the work reported
here was to establish a reference point for future clinical studies,
using normal subjects and a simple established paradigm. This
normative reference might help pinpoint where abnormal mod-
ulations of specific frequencies arise.

The aim of this study was to model modulations of frequency-
specific oscillations in the motor network induced by an established
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handgrip task (Ward et al., 2008). We mod-
eled these modulations in terms of coupling
between electromagnetic sources, where
power in one source causes changes in the
power expressed in others. Critically, we dis-
tinguished between within-frequency lin-
ear coupling and between-frequency
nonlinear coupling. Specifically, we asked
whether there is a difference in the relative
contribution of linear and nonlinear mech-
anisms between intrinsic and extrinsic cou-
pling. Our results suggest that extrinsic
connectivity is best characterized as nonlin-
ear coupling, whereas intrinsic connections
are best modeled with linear coupling.

Materials and Methods

Nine healthy, right-handed subjects (20~32
years of age, 5 female) were recruited. Written
consent was obtained from all subjects, in ac- ’
cordance with the Declaration of Helsinki. The ; 4
study was approved by the Joint Ethics Com- M)
mittee of the Institute of Neurology, University N
College London (UCL) and National Hospital
for Neurology and Neurosurgery, UCL Hospi-
tals National Health Service Foundation Trust, -
London.

Subjects were instructed to perform a visu-
ally cued ballistic isometric grip, using their
dominant hand with an intertrial interval of
7 * 2 5. Before scanning, subjects were asked to
grip the manipulandum to generate a maxi-
mum voluntary contraction (MVC). The tar-
get force was set at 45% of MVC. Subjects were trained to approximate
the target force with visual feedback before scanning. However, no visual
feedback was provided during scanning, to minimize activity in occipital
and parietal sources. Force output was recorded using a MEG-
compatible gripper and used to identify the movement onset (i.e., the
reaction time, from the onset of the visual cue until the onset of the
ballistic grip), the grip duration and force level.

MEG signals were measured continuously at 240 Hz during task per-
formance using a whole-head CTF Omega 275 MEG system. At the be-
ginning and end of each measurement, the positions of three anatomical
landmarks (bilateral preauricular points and nasion) were recorded to
exclude excessive head movement (thresholded at 1.5 cm and the mea-
sured maximal translation across subjects <1.3 cm; 2.68~12.68 mm).

The MEG data were preprocessed offline using SPM8 (SPM8, Well-
come Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/
spm/). The data were epoched from —500 to +1000 ms, where time 0
indicates movement onset. Poorly performed (reaction times of more
than one sec) and artifact contaminated (MEG amplitude >500 {T) trials
were excluded from further analysis; resulting in 8898 artifact-free ep-
ochs (88 98 90 98 94 96 90 93 95) with 642.66 = 54.92 ms mean reaction
time and 639.45 * 54.48 ms grip duration. The mean force level was 45 =
25% of subject-specific MVC. These artifact-free epochs were projected
from channel space to the sources using the generalized inverse of the
lead-field matrix for our chosen sources (see Model specification below).
The spectral density from 4 to 48 Hz at each source was computed over
peristimulus time using a time-frequency Morlet wavelet transform
(wavelet number: 7). The frequency ranges cover the theta (4—8 Hz),
alpha (8-15 Hz), beta (15-30 Hz), and gamma (>30 Hz) bands. The
absolute values of the resulting time-frequency responses were averaged
over trials and baseline-corrected by subtracting the frequency-specific
power of the first time-bin. For computational expediency, we reduced
the dimensionality of spectra into four principal frequency components
derived from a singular value decomposition of the spectra so that the
extracted frequency modes are subject-specific. This procedure accounts
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The connectivity architectures for all the models considered. The models in the four columns differ according to
whether the intrinsic or extrinsic connections are linear or nonlinear. The models in the different rows differ in the deployment of
interhemispheric connections between M1 and PM. The solid and dashed lines indicate nonlinear and linear connections respec-
tively. N, Nonlinear coupling; L, linear coupling; |, intrinsic connection; E, extrinsic connection.

for the huge interindividual variability of engaged frequencies in motor
system (Kilner et al., 2000; Omlor et al., 2007), particularly within the
alpha band (Pfurtscheller and Lopes da Silva, 1999). Those singular com-
ponents preserve >93% of the spectral variance in all subjects (range
93% ~97%) of which 68.97% (ranged 56.03% ~78.70%) of total energy
was contributed by the low-frequency components (=20 Hz). The re-
sulting spectral dynamics enter DCM as the observations that the model
is trying to explain.

DCM specification (sources and coupling). The source locations were
taken from the group results of a functional magnetic resonance imaging
(fMRI) study using the identical task, where five subjects performed 25
ballistic isometric hand grips to 45% of MVC. Imaging data were ana-
lyzed using SPM8 as described previously (Ward et al., 2008). The local-
izations were taken as the peak coordinate in Montreal Neurological
Institute (MNI) space within each significant cluster (voxels significant at
p < 0.05, corrected for multiple comparisons across the whole brain).
Peak increases in activity were seen in left primary motor cortex (M1),
bilateral premotor cortices (PM) and left supplementary motor area
(SMA). In addition, right M1 was included because of significant task-
related deactivation during hand grip secondary to transcallosal inter-
hemispheric inhibition (Ward et al., 2008). Using these five sources we
then specified 12 different connectivity models as shown in Figure 1.

This model space was constructed using three model attributes. First,
whether intrinsic (I) connections are linear (L) or nonlinear (N) and
second, whether extrinsic (E) connections are linear or nonlinear. This
results in four sorts of models. The third attribute was the lateraliza-
tion of cross-hemispheric coupling between PM and M1. We modeled
three levels of this lateralization: right PM to left M1 (r-), or left PM to
right M1 (I-) or both (b-). This gave a total of 12 models, as shown in
Figure 1. We use the designation r-ILEL to mean a right-lateralized
architecture, where intrinsic connections are linear and extrinsic con-
nections are linear.

Dynamic causal modeling for induced responses. Dynamic causal mod-
eling (DCM) entails the use of dynamic or state-space models to explain
observed time-series of data features (Friston et al., 2003; David et al.,
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Figure2. The observed (top) and predicted (bottom) spectral responses for a representative subject under the best mode (I-ILEN) from the Bayesian model comparison.

2006). Recently, we described a dynamic causal model for spectral re-
sponses as measured by EEG or MEG (Chen et al., 2008) and have used it
to assess nonlinear coupling among visual areas during face processing
(Chen et al., 2009). In brief, DCM for IR enables the user to model
event-related spectral responses, over a range of frequencies, as the re-
sponse of a distributed set of coupled electromagnetic sources to a spec-
tral perturbation. The model parameters encode the frequency response
of each source to exogenous input and the coupling among sources and
different frequencies. Bayesian inversion of these models allows one to
compare different models or hypotheses and enables inferences about
the parameters of the best model.

Inference on models: Bayesian model comparison. At a single subject
level, we compared the difference in log model evidence or marginal
likelihoods between models, i.e., log Bayes factor (Penny et al., 2004) to
identify the best among the models tested. To identify the model with the
most evidence at the group level we added the log-evidences from each
subject, under the assumption that each subject’s data are conditionally
independent of each other. To ensure differences in log-evidence were
consistent across subjects, the log-evidences for each model, over the
nine subjects, were entered into a repeated-measures ANOVA with three
within-subject factors (distance with two levels, nonlinearity with two
levels, and laterality with three levels— corresponding to the columns
and rows of Fig. 1, respectively).

Model parameters: Visualization of coupling matrices. To quantify the
coupling under the best model, for each intrinsic or extrinsic connection
the (frequency-to-frequency) matrices of subject-specific estimates were
smoothed (to account for intersubject variability in frequency-to-
frequency coupling using a Gaussian kernel with full-width half-
maximum of 8 Hz). These were then averaged by entering them into a
conventional SPM analysis to identify reliable frequency-specific con-
nectivity. We report the average coupling strengths in, and only in, non-
zero frequency bins (at p < 0.005 uncorrected).

Results

Time-frequency responses at source level

The estimated event-related spectral responses at the source level
of a representative subject are shown in Figure 2 (top), where the
alpha power decreases bilaterally in M1 from movement onset to

300 ms. This pattern was observed consistently across all subjects.
Transient beta power increases were seen in bilateral M1, SMA
and left PM (6 of 9 subjects), and enhanced gamma was seen in
SMA and PM bilaterally (8 of 9). We also observed transient
bilaterally M1 beta power decreases in some subjects (5 of 9).
Together, these time-frequency responses are in line with previ-
ous findings (Leocani et al., 1997; Crone et al., 1998a,b; Kilner et
al., 2004). The bottom in Figure 2 shows the predicted spectral
responses, at the source level, by the best (I-ILEN) model (see
Inference on models for details). Note that the spectra are
normalized individually with respect to their maximum. It is
clear that the model can explain the data very well. On average,
the 1-ILEN model explains 94.17% data variance (range
86.78~98.01%).

Inference on models: Nonlinear effect and motor networks

Figure 3 summarizes the results of our model comparison. It is
immediately obvious that the models which fit the data best are
those with nonlinear extrinsic coupling (Fig. 3A). Models with
one or more nonlinear connection were consistently better than
purely linear models in every subject (Fig. 3B) and an ILEN
model was the best in six of nine subjects. In addition, model
comparison also clearly shows strong evidence for model ILEN,
summed over the factors of lateralization and subjects (assuming
all subjects expressed the same unknown model; see Stephan et
al., 2009 and Fig. 3C). This is supplemental evidence that shows
we can differentiate the nonlinear intrinsic coupling from linear
coupling, when the extrinsic coupling is nonlinear. The 1-ILEN
model was the best model among those tested at the group level,
with a Bayes factor of 1857 (I-ILEN vs r-INEN; i.e., the best vs the
next best). Bayes factor measures the marginal likelihood ratio of
two models using their model evidence and usually a Bayes factor
of approximately 20 is considered as “strong” evidence in favor of
one model relative to another (Penny et al., 2004). It is important
to note that the most complex model (b-INEN) is not necessarily
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the best (only one subject had this model A Log-evidence
as the best). This is because the log-
evidence includes a penalty term for com-
plexity (see Friston et al., 2003 and Penny 25 1 r-ILEL
et al., 2004 for details). The repeated- s_’ 2 b-ILEL
measure ANOVA confirms our BMS result 5¢ 3 I-ILEL
.that( It:here is stlrSC)glﬁsevidencg (f)c())r6 ?ogilinear— 8 -3 4 r-INEL
ity (F(,7 = 15.355, p = 0.006), distance .
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of consistency over subjects. This mirrors q>,> 7 r-ILEN
the BMS conclusion that extrinsic con- o 8 b-ILEN
nectivity was nonlinear while intrinsic con- o At 9*  IILEN
nectivity was essentially linear. There was no - 10 rINEN
effect of laterality (levels: right, bilateral and
left lateralized models; F(; ;5,4 = 0.951, 4.5 11 b-INEN
p = 0.381) nor any interaction with the R P S S S S S S S 12 /-INEN
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In summary, in normal subjects we B . . c
found very strong evidence for nonlinear Linear Nonlinear Model label
cpupling between areas and linear interac- o ILEL INEL ILEN INEN
tions between areas. Note that our conclu- -

sion about intrinsic linear coupling is
based on the fact that there was no consis-
tent evidence for intrinsic nonlinear cou-
pling. This lack of evidence might suggest
that our data were simply insufficient to
reveal a small nonlinear contribution
within area; however, the clear evidence for
nonlinear effects in the extrinsic connec-
tions suggests that, at least quantitatively,
nonlinearities predominate in extrinsic, rel-
ative to intrinsic interactions. In addition,
there is evidence for an asymmetry of inter-
hemispheric interactions in the right hand
movement task we used; although this was
less consistent over subjects.
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Results of Bayesian model selection (BMS). A, Pooled log-evidences of the 12 DCMs tested. It can be seen that the best
modelis I-ILEN (log-evidence = —24,297) and the next best is b-ILEN (log-evidence = —25,880). B, Comparison of the average
log-evidences for the three purely linear (ILEL) models and the remaining nonlinear models; shown for each subject. The positive
slopes over all subjects indicate that the nonlinear coupling is essential as the nonlinear models are always better than the linear

ones. C, BMS on partitioned model space reveals that the ILEN model is the best model.

Coupling parameters

Statistical tests are repeated for each ele-

ment of the coupling parameter matrices from all subjects, under
the I-ILEN model. Each of these matrices represents the
frequency-to-frequency coupling associated with one connec-
tion. The corresponding SPMs of the T-statistic (thresholded at
p < 0.005 uncorrected) are shown for “excitatory” (positive; Fig.
4A) and “inhibitory” (negative; Fig. 4 B) effects respectively. As
seen in Figure 4, we found several instances of consistent nonlin-
ear interactions. A summary of these ¢ test results is provided in
Table 1. These seem to be more profound when the coupling is
negative. For instance, several consistent regions of negative cou-
pling are found far from the (within-frequency), leading diagonal
compared with the positive coupling SPMs. When considering
reciprocal connections, the frequencies entailed by nonlinear
coupling appear asymmetric. For example, in Figure 4 B (arrows),
the negative coupling from LPM to RM1 involves alpha-gamma
coupling, while the reciprocal RM1 to LPM connection shows
significant gamma-theta coupling. In the same vein, theta oscil-
lations in SMA suppress gamma oscillations in LM1 but, from
LM1 to SMA, the negative coupling was between gamma and
alpha. The more quantitative characterizations of the nonlinear
coupling identified by Bayesian model comparison speak to the
complicated nature of nonlinear interactions in the brain, even
when modeled as simply as with DCM for induced responses.

Note that the significance of the negative linear intrinsic coupling
in Figure 4B is due largely to prior constraints on the parameters.
We use these priors to ensure the system is dissipative (see Friston
et al., 2003 for discussion of this constraint). In other words, the
system will decay to a stable fixed point (equilibrium point) after
aperiod of time. Given that we know the rough time-constants of
induced electromagnetic responses, we can use this information
to place a prior expectation on the decay rates, following experi-
mental perturbation. This decay is implemented by intrinsic
(self) inhibition (cf. Friston et al., 2003).

Discussion

In this study, we provide empirical evidence for nonlinear cou-
pling among distributed neuronal sources in the motor system
and that these play an important role in modulating spectral
responses under normal conditions. Interestingly, we found no
evidence for nonlinear or between-frequency coupling intrinsic
to each source, suggesting that linear or driving mechanisms may
be a sufficient account of interactions among local neuronal pop-
ulations. In addition, we found evidence for an asymmetric in-
terhemispheric interaction involving right PM in our right-hand
movement task. A quantitative examination of the extrinsic or
long-range coupling parameters, showed some interesting asym-
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significance of the linear intrinsic coupling is largely due to prior constraints on the parameters (see Results for details).

20 40

Table 1. Summary of the SPM analysis of the coupling parameters

LM1 RM1

SMA

LPM

RPM

M1 theta-theta (+)
alpha/beta-beta (+)

RM1 beta-beta (+)
gamma-gamma (+)

SMA gamma-alpha (—) alpha-alpha (+)
gamma-alpha (—)
LPM theta-alpha (—) beta-alpha (+)
alpha-theta (—) gamma-beta (+)

beta-alpha (—) theta-alpha (—)

gamma-theta (—)

RPM gamma-gamma (+)
beta-alpha (—)

theta-theta (+)
theta-gamma (—)
alpha-alpha (—)
beta-beta (+)
gamma-gamma (+)

beta-gamma(+)
gamma-gamma (+)
theta-alpha (—)
alpha-gamma (—)

gamma-theta/alpha (—)

gamma-gamma (—)
alpha-theta (+)
alpha-beta (+)
gamma-gamma (+)
beta-gamma (—)

beta-theta (+)
alpha-alpha (—)

gamma-alpha (—)

alpha-alpha (+)
beta-beta (+)
gamma-gamma (+)
alpha-alpha (—)

alpha-alpha (+)
alpha-beta (—)
beta-gamma (—)
gamma-alpha (—)

gamma-beta (+)
gamma-theta (+)
theta-alpha (—)
alpha-gamma (—)
theta-alpha (+)
beta-beta (+)
gamma-gamma (+)
beta-gamma (—)
gamma-beta (—)
alpha-gamma (—)
beta-alpha (—)

+ denotes positive coupling and — denotes negative coupling.

metries in frequency space and that this coupling was predomi-
nantly negative or suppressive.

Intrinsic (local) linear and extrinsic (global) nonlinear effects
A recent pharmacological study in rat brains has shown that co-
application of kainic acid and carbachol to layer V in M1 can
reliably induce synchronous oscillatory activity in the beta fre-
quency band in layer II to VI (Yamawaki et al., 2008). These

results imply that interlaminar influences may be mediated by
driving or linear effects because they induce distributed oscilla-
tions at the same frequency. Furthermore, it has been shown that
in pathological conditions such as Parkinsonism, abnormal os-
cillatory synchronization of neuronal populations in cortex, sub-
thalamic nucleus and basal ganglia can lead to movement
impairment (Levy et al., 2002; Priori et al., 2004; Marceglia et al.,
2006; Brown, 2007). Our findings suggest that the local interac-
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tions may be predominantly linear under normal conditions.
Other studies have demonstrated nonlinear coupling in EEG/
MEG signals in a variety of tasks, systems and pathological con-
ditions (Breakspear, 2002; Kotini and Anninos, 2002; Chavez et
al., 2003) leading to suggestions that nonlinear coupling is an
important aspect of functional integration (Tallon-Baudry and
Bertrand, 1999; Varela et al., 2001; Jensen and Colgin, 2007; Chen
et al., 2009). We have shown that during the performance of a
simple motor task both linear and nonlinear coupling is likely to
be present. Specifically, our results demonstrate that local inter-
actions can be explained by linear coupling, but that coupling
between regions is nonlinear in nature.

In terms of cross-frequency coupling, bicoherence and nested
oscillations are other important expressions of nonlinear cou-
pling that may reflect key physiological mechanisms of functional
integration and dynamic coordination in the brain. Bicoherence
has been intensively used as an index of anesthesia (Hayashi et al.,
2008) while nested oscillations are observed largely during mem-
ory tasks, such as theta-gamma, theta-beta and theta-gamma,
theta-beta/gamma coupling (Lisman and Idiart, 1995) and dur-
ing sleep [infra-slow oscillations (ISOs): 0.02~0.2 —1 Hz] (Van-
hatalo et al., 2004) and even during the resting state:alpha-high
gamma frequencies. However, we are not aware of any applica-
tions within the central motor system using these methods. Our
results suggest that nonlinearities in coupling are expressed pre-
dominantly in extrinsic connections. This may reflect the fact
afferent inputs from other regions exert nonlinear effects on in-
trinsic dynamics. This nonlinearity may be at the level of postsyn-
aptic receptors (e.g., NMDA receptors that are preferentially
targeted by extrinsic backward connections in the brain); or at the
level of lumped time-constants governing intrinsic population
dynamics.

Asymmetry of interhemispheric connections

Asymmetry in the human brain architectures has been shown in
many studies, both functionally or anatomically (Rockland and
Pandya, 1979; Zeki and Shipp, 1988). In the motor system, hand-
edness and experience-dependent plasticity are thought to be the
main factors subtending these asymmetric properties (Karni et
al., 1995; Haaland et al., 2000; Kloppel et al., 2007). Moreover,
functional lateralization of motor control can be altered by
pathological or traumatic changes (Ward and Cohen, 2004). In
this study, we were able to quantify task-dependent frequency-
specific causal influences mediating the observed spectral re-
sponses and characterize functional asymmetry in terms of
long-range coupling. Bayesian model comparison suggested that
the left lateralized ILEN model was superior to the symmetric
homolog. Our left-lateralized model conforms to the left hemi-
sphere dominance, expressed for example in the asymmetric
engagement of premotor cortex during skilled movement in
right-handed adults (Pollok et al., 2006).

Asymmetry of hierarchical connections
In addition to hemispheric asymmetries, frequency-specific cou-
pling was distinct in forward and backward connections, espe-
cially between the SMA and premotor sources. Furthermore,
predominant positive and negative couplings are located in dif-
ferent frequency bands in most connections. For example, the
gamma rhythm in left M1 inhibits the alpha activity in SMA but
no consistent positive connection was found.

It is important to establish the normal pattern of the
frequency-specific interactions in the motor system because sev-
eral movement disorders show frequency-related abnormalities,

Chen et al. ® Nonlinear Motor Network

such as resting tremors (4~6 Hz) and bradykinesia (10—35 Hz)
(Brown, 2007). However, the details of the underlying mecha-
nisms remain largely unknown. Our study provides a qualitative
and quantitative characterization of frequency-specific effects
under normal conditions, which we hope will be useful when
studying induced responses in patients. To our knowledge, this is
the first study of frequency-specific coupling in the motor net-
work under normal conditions. Given that, in the motor system,
induced responses depend on the task and show substantial
between-subject variability (Kilner et al., 2000; Kristeva et al.,
2007; Omlor et al., 2007), we do not anticipate out results will
generalize to other movement-related networks. Rather, we con-
sider our study as a reference point for similar studies in patients
using the same paradigm.

The question of model specification

It is important to note that any DCM analysis is conditioned on
the models considered. For example, our conclusions are specific
to the particular sources that we chose to model the data. Specif-
ically, we mapped the observed MEG data into source space by
multiplying the generalized inverse lead field matrix given the
source locations (see Chen et al., 2008 for details). This general-
ized inverse of the lead-field is one of many inversion schemes
that can be used to project data from channel to source space
(Michel et al., 2004; Friston et al., 2008). The advantage of this
projection is that there is a unique solution for the data features,
given the prior specification of source locations. This approach
leads to a source spectrum, which is a reasonable summary of the
real neuronal sources generating the data. Therefore, if any
sources are omitted or misplaced, there might be a better model
of the data and possibly a different conclusion from model com-
parison. If one did not know where the spectral signals were
generated, the beam-former method could be one useful strategy
that allows one to localize the source positions and estimate spec-
tral features empirically (Sekihara et al., 2006). Once these loca-
tions have been established, the generalized inverse of the
associated lead-field matrix furnishes a near-optimum equiva-
lent current dipoles (ECD) summary of activity that avoids sup-
pression of local correlated activity. In this study, we adopted
fMRI results as our prior on source locations. This is based on the
fact that there is a congruity between fMRI activity and the cor-
responding MEG dipoles in sensorimotor cortex (Korvenoja et
al., 2006). The sensitivity of our conclusions to the particular
sources chosen may not be very severe for two reasons. First,
there is little localizing information in electromagnetic signals.
This means that if we had changed the source locations, the data
features would not change very much (this is because we pool
spectral estimates over all orientations and the orientation of the
implicit dipole is essentially free). Second, including more
sources would not affect the conclusions about effective connec-
tivity; in the sense that effective connectivity can be polysynaptic
and could be mediated by intervening (unmodeled) sources. The
only worry here is that choosing the wrong number of sources
leaves variance in the data-features unexplained (or wrongly at-
tributed). This is unlikely, given the high proportion of variance
explained by the sources we used.

In conclusion, we have established the prevalence of nonlinear
or between-frequency coupling among distributed components
of the motor system during a simple motor task. These extrinsic
nonlinear interactions appear to unfold in the context of local or
intrinsic linear coupling within each area. The associated task-
dependent motor network has asymmetric features, as reflected
in both the deployment of connections and the frequency speci-
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ficity of reciprocal connections. In a future paper, we will show
how this motor network is affected by healthy aging and by cor-
ticospinal system damage secondary to stroke.
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