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Recent advances in neuroimaging have permitted testing of
hypotheses regarding the neural bases of individual differences,
but this burgeoning literature has been characterized by inconsistent
results. To test the hypothesis that differences in task demands
could contribute to between-study variability in brain-behavior
relationships, we had participants perform 2 tasks that varied in
the extent of cognitive involvement. We examined connectivity
between brain regions during a low-demand vigilance task and
a higher-demand digit--symbol visual search task using Granger
causality analysis (GCA). Our results showed 1) Significant differ-
ences in numbers of frontoparietal connections between low- and
high-demand tasks 2) that GCA can detect activity changes that
correspond with task-demand changes, and 3) faster participants
showed more vigilance-related activity than slower participants,
but less visual-search activity. These results suggest that relatively
low-demand cognitive performance depends on spontaneous bi-
directionally fluctuating network activity, whereas high-demand
performance depends on a limited, unidirectional network. The
nature of brain-behavior relationships may vary depending on the
extent of cognitive demand. High-demand network activity may
reflect the extent to which individuals require top-down executive
guidance of behavior for successful task performance. Low-demand
network activity may reflect task- and performance monitoring that
minimizes executive requirements for guidance of behavior.
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Introduction

One aim of cognitive neuroscience has been to identify those

aspects of neurophysiology that underlie the consistent in-

dividual differences in performance that have long been observed

in experimental psychology. Spearman’s (1904) observation that

some individuals consistently perform better than others across

a broad range of tasks has spawned generations of research

investigating the hypothesis that a limited set of resources

govern cognitive performance (Spearman 1904; Kahneman 1973;

Norman and Bobrow 1975; Vernon 1983; Baddeley 1986; Just and

Carpenter 1992).

One such resource, processing speed, may emerge from

individual differences in the efficiency with which cognitive

operations can be performed. Cognitive efficiency theories

suggest that when these operations can be performed quickly,

resource allocation can be minimized and performance maxi-

mized. Efficiency theorists have hypothesized that oft-observed

correlations between reaction time (RT) and intelligence

measures reflect individual differences in ‘‘neural efficiency’’

which, they argue, permit some individuals to overcome

cognitive capacity limits more than others (e.g., Jensen 1982,

1998; Vernon 1983). The advent of modern neuroimaging

techniques has made it possible to test such hypotheses by

permitting more direct observation of brain-behavior relation-

ships than was possible in the past.

Neuroimaging studies in healthy adults support efficiency

explanations of individual differences. Results from electroen-

cephalography (EEG) studies have shown differences in ampli-

tude and coherence measures between individuals that

correspond to their performance differences (e.g., Gevins and

Smith 2000; Grabner et al. 2003; Reiterer et al. 2005). In one

study, for instance,Gevins and Smith (2000) requiredhigh-ability

and low-ability (as measured by WAIS-R performance) partic-

ipants to perform an n-back working memory (WM) task during

EEG recording. The important result was that high-ability

participants showed less prefrontal cortex (PFC) and more

parietal activity than their low-ability counterparts.

In other EEG studies, reduced ‘‘event-related desynchroniza-

tions’’ (ERDs) in alpha frequencies (8--12 Hz), coupled with

reduced ‘‘event-related synchronizations’’ (ERSs) in theta fre-

quencies (4--8 Hz), in higher as compared to lower performing

individuals have been observed (e.g., Grabner et al. 2003; Babiloni

et al. 2009; Del Percio et al. 2009). An ERD is said to occur when

the power of some frequency or band of frequencies decreases

in response to a stimulus event, whereas an ERS is said to occur

when the power of a frequency band increases. ERD in the alpha

band, coupled with ERS in the theta band have been interpreted

as an index of mental effort (Nunez et al. 2001) . Thus, these

results suggest reduced mental effort in higher performers

compared to lower performers.

Finally, EEG results suggesting reduced neural activity in

experts and professional athletes, compared with novices and

amateur athletes, suggest support for efficiency explanations

of individual differences. In one study, for instance, Babiloni

et al. (2009) observed reduced ERDs in the scalp potentials of

gymnasts, compared with nongymnasts, while they viewed films

of gymnastic performances and judged the artistic and athletic

level of the performer. Similar results have been observed when

expert performers were compared with nonexperts during

actual athletic performance (Del Percio et al. 2009).

Results from positron emission tomography (PET) and

functional magnetic resonance imaging (fMRI) studies also

show reduced activation in faster than in slower individuals

(e.g., Haier et al. 1988, 1992; Larson et al. 1995; Kosslyn et al.

1996; Rypma and D’Esposito 1999; Rypma et al. 2002, 2005). In

one study for instance, Haier et al. (1992) had 8 participants

perform a spatial reasoning task, Raven progressive matrices

� The Authors 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits

unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



(RPM). Next, they recorded participants’ glucose metabolic

rate (GMR; measured by PET) during performance of a complex

visual manipulation task (‘‘tetris’’) both before and after

extensive practice. In addition to observing GMR reduction

after learning, they observed that higher RPM scores were

associated with greater GMR reduction demonstrating that

greater visuospatial capacity was associated with less task-

related neural activity. Similar neural activity reductions have

been observed for faster, compared with slower, participants

on mental imagery tasks (Kosslyn et al. 1996) and WM tasks

(e.g., Rypma et al. 1999, 2002, 2006). These results suggest

a specific model of neural efficiency in which the integrity of

structural connections between task--critical brain regions is

reflected in PET and fMRI activation. Specifically, they suggest

that more direct connections between task--critical brain

regions may correspond to decreases in task-related neural

activity and improvements in performance (cf. Vernon 1983;

Cerella 1991; Rypma and D’Esposito 1999, 2000; Rypma et al.

2006; see also Neubauer and Fink 2009).

Despite the explanatory power of the neural efficiency

hypothesis and suggestive data, neuroimaging findings have not

been replicated consistently across studies. Specifically, some

studies have shown between-subject performance differences

in which greater task-dependent activation was observed in

higher than in lower performing individuals (e.g., Larson et al.

1995; Gray et al. 2003; Newman et al. 2003) and suggest that

neural activity increases with task-related cognitive capacity.

Mixed results in ERD measurements have been observed as

well. For instance, unlike the Grabner et al. (2003) results

reviewed above, Klimesch (1997, 1999) has observed greater

ERD for higher than lower performing participants (see

Jausovec N and Jausovec K 2005, for a review).

Similar discrepant results have been reported in PET and fMRI

studies. Gray et al. (2003), for instance, performed a study

similar to Haier et al.’s (1992) (see above) in which, prior to

fMRI scanning, participants performed the RPM task. During

scanning, participants performed a complex WM task in which

they viewed single letters that appeared sequentially. They were

required to respond each time they observed the appearance of

a letter that had also occurred 3 trials earlier. The difficulty of

the task was varied by the occasional occurrence of ‘‘lure’’ trials

in which a letter presented on a current trial had also appeared

2, 4, or 5 trials previously. Unlike the results of Haier et al.

(1992) described above, they observed, on the lure trials,

greater neural activity within PFC, in participants with higher,

compared with those with lower RPM performance (see also

Brand and Deary 1982; Callicott et al. 2000 see Toffanin et al.

2007, for further review), suggesting that greater visuospatial

WM capacity was associated with greater task-related PFC

neural activity.

Divergent patterns of activation--performance relations across

neuroimaging studies may occur for a number of reasons. In the

studies reviewed above, different tasks were employed in the

different studies. One possibility suggested by the discrepant

results in the Gray et al. (2003) and Haier et al. (1992) studies is

that the nature of activation--performance relations may be task

dependent. It may be that the n-back task used by Gray et al.

(2003) and the tetris task used by Haier et al. (1992) emphasize

different cognitive mechanisms. Other studies have also shown

divergent results (e.g., Tower of London; Newman et al. 2003;

Sternberg-type WM; Rypma et al. 1999; backward digit span;

Larson et al. 1995). Indeed, even subtle variations in task

parameters have been shown to influence activation--perfor-

mance relations in both EEG and fMRI studies (Johnson et al.

1997; Rypma, 2006).

The between-study variation in brain-behavior relationships

that have been observed in prior studies suggests that these

relationships could vary on the basis of task demand. Looking

across a broad range of studies (Bressler 1995; Corbetta et al.

1995; Larson et al. 1995; Petersen et al. 1998; Poldrack et al. 1998;

Smith and Jonides 1999; Rypma et al. 2002; Newman et al. 2003;

Maccotta and Buckner 2004; Landau et al. 2007; Bressler et al.

2008), 3 observations can be made about the variation in brain-

behavior relationships. The first observation is that these studies

have been consistent in identifying a frontoparietal network in

which neural activity varies on the basis of individual partic-

ipants’ performance, repeated performance of a single task,

or repeated stimulus exposure. These results are important

because they suggest that performance might vary between

individuals on the basis of interactive functions of relatively

distant brain regions whose communication depends on the

integrity of large-scale networks. Bressler (1995, 1996) and

Bressler et al. (2008), for example, have pioneered the concept

of large scale--distributed processing in functionally localized

brain regions. Using local field potentials from up to 15 cortical

sites in 1 hemisphere of functioning adult rhesus monkeys,

Bressler et al. (1993) found task-related multiregional synchroni-

zation over the entire frequency range examined. In subsequent

studies, using local field potential data from extracellular record-

ings, they demonstrated synchrony on physically distant but

functionally related regions during task performance. Thus, itmay

be that the efficiency of coordinating such complex systems,

involving the integration of multiple distributed areas differs

between individuals, and is reflected in interactions between

frontal and parietal regions (Bressler 1995; Brovelli et al. 2004,

2008).

The second observation is that results have been in-

consistent with respect to the direction of brain-behavior

relationships. That is to say, some studies have shown

activation increases with increases in performance, whereas

others have shown activation decreases with increases in

performance. Resolving these discrepancies would have

important implications for, for instance, how we ascribe

cognitive functions to brain regions and whether optimal

performance depends on the amount of activation that

accompanies task performance (e.g., Klimesch 1997, 1999;

Gray et al. 2003) or the speed and efficiency of activation and

communication between brain regions (e.g., Vernon 1983;

Haier et al. 1992; Grabner et al. 2003; Neubauer et al. 2004;

Rypma et al. 2006). The third observation about brain-

behavior studies is that different tasks ranging from simple

digit span to RPM, with differing cognitive requirements

eliciting different levels of performance, have been employed

across these studies. Therefore, it has been difficult to

ascertain the contribution of task demands to the variance

observed across studies.

In the present study, we sought to examine relationships

between neural activity and performance in this frontoparietal

network, in a single group of participants, using tasks that

varied in the extent of cognitive demand. We employed GCA to

develop a network-based model and to investigate effective

connectivity relationships between brain regions, how they

varied with task demand, and how they varied with individual

differences in participants’ performance.
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Previous studies of functional cerebral connectivity have

relied on methods that identify sets of brain regions with

correlated signal-change patterns (e.g., ICA and PCA; McKeown

et al. 1998; Biswal and Ulmer 1999; Allen et al. 2005). These

studies have yielded robust delineation of functional connectiv-

ity between brain regions by locating discrete temporal

structures (e.g., Biswal et al. 1995; Hyde and Biswal 1998;

Gusnard et al. 2001; Greicius et al. 2003; Fox et al. 2005). GCA

adds important information to that derived from these methods

by assessing time-lagged relationships between functionally

connected regions, permitting inferences about the directional

influences of effective connections. In the present study, we

used GCA to gain clues regarding the role of effective

connectivity in performance differences between individuals.

Brain-behavior relationships have been investigated in the

context of fMRI activity (e.g., Rypma and D’Esposito 1999;

Rypma et al. 2002, 2006; Grabner et al. 2003; Gray et al. 2003;

Beschoner et al. 2008; Perfetti et al. 2009; Rypma and

Prabhakaran 2009). How relationships between neural connec-

tivity and behavior vary based on task demands, however, has not

yet been systematically investigated.

In this study, a single group of participants performed 2

kinds of tasks during fMRI scanning. The first task was

a vigilance task in which participants passively viewed a

fixation point and were periodically signaled to press a button.

The second task was a digit--symbol substitution task (DSST) in

which, on each trial, participants viewed a code table

containing digit--symbol pairs, and a single digit--symbol probe

that appeared simultaneously below the key (Fig. 1). If the

probe pair matched one of those in the table, participants

pressed a right-thumb button; otherwise they pressed a left-

thumb button. A generation of research on DSST performance

indicates that it is maximally sensitive to individual perfor-

mance differences, that it requires a circumscribed set of

cognitive mechanisms (including visual search, pattern match-

ing, and response selection), and that it is minimally sensitive

to individual strategy differences (Erber 1976; Grant et al

1978; Beres and Baron 1981; Wechsler 1981; Joy et al. 2000).

Thus, the vigilance task was used to evoke neural activity on

the basis of minimal cognitive demand, requiring vigilant

attention to stimulus presentation and a simple response.

The DSST was used to evoke neural activity that was more

cognitively demanding, involving not only attention and

simple button-press requirements, but also visual-search and

choice-response requirements. Directional influences that

were evoked during task performance were assessed using

GCA performed on time series data from PFC and parietal

regions where neural activity is known to vary between

individuals and where DSST-related neural activity has been

observed before (Rypma et al. 2006).

Materials and Methods

Participants
Twelve participants (ages 18--27, 7 males and 5 females) were recruited

from the Rutgers University and New Jersey Medical School campuses.

Participants were excluded if they had any medical, neurological, or

psychiatric illness, or if they were taking any type of prescription

medication. Participants were screened for depression using the Beck

Depression Inventory, which is a 21-item screener for depressive

symptoms (BDI; Beck and Steer 1987). Individuals scoring above 14

(i.e., mild depression) were excluded because of the potential for

depression to influence brain activity. The study was approved by the

University of Medicine and Dentistry of New Jersey and Rutgers

University Institutional Review Boards.

Behavioral Tasks
Participants were brought into the behavioral laboratory, signed

consent and given a standard battery of tests and questionnaires, and

were trained on the computerized DSST by one of the authors (D.A.E.).

Participants were then brought to the neuroimaging laboratory. Prior to

scanning, they were given brief practice with each of 2 tasks they were

to perform during scanning.

Vigilance Task

Each subject performed a task in which he or she stared at a central

white fixation cross for 18-s intervals after which the cross changed

briefly (500 ms) to a circular checkerboard that flickered at 8 Hz for

500 ms, cueing participants to make a bilateral button press. Twenty

such events occurred during the 320-s scan (160 images). All scanning

parameters were identical to those used for the DSST.

Digit--Symbol Substitution Test

Following performance of the vigilance task, participants performed

a task modeled after the DSST from the Wechsler Adult Intelligence

Scale (1981). On each fMRI scanning trial, a code table containing digit--

symbol pairs and a single digit--symbol probe appeared simultaneously

(Fig. 1) for 3.5 s. If the probe pair matched one of those in the table,

participants pressed a right-thumb button; otherwise, they pressed

a left-thumb button. There were a total of 260 trials in 5 scanning runs

(ca., 52 trials per run); the trials for each run were randomly intermixed

(jittered) with 23 4-s rest periods. On half the trials, the probe pair

matched one of the digit--symbol pairs in the code table, on the other

half, the probe pair did not match one of the pairs in the code table. RT

was measured as the time from the onset of the stimulus (i.e., code

table and probe-pair presentation) to the time that the subject made

a response. Participants were required to respond within the 3.5 s that

the stimuli appeared on the screen. To discourage WM-based strategies,

the digit--symbol pairings in the code table changed randomly from trial

to trial. We used an event-related design that allowed us to examine

blood-oxygenation-level-dependent (BOLD) signal changes separately

during each trial event.

MRI Technique
Imaging was performed on a 3-T head-only Allegra scanner (Siemens

Medical Systems, Ehrlangen, Germany) equipped with a fast gradient

system for echoplanar imaging. A standard radiofrequency head coil

was used with foam padding to comfortably restrict head motion. High-

resolution T1-weighted sagittal images were collected. A gradient echo,

echoplanar sequence (repetition time [TR] = 2000 ms, echo time [TE] =
30 ms, DSST = 150 vol, Vigilance = 180 vol) was used to acquire data

sensitive to the BOLD signal. Resolution was 3.5 3 3.5 mm in-plane and

4 mm between planes (thus 32 axial slices were acquired). Eighteen

seconds of gradient and radiofrequency pulses preceded the actual data

acquisition to allow tissue to reach steady state magnetization.

Figure 1. Trial sequence of the modified DSST. On each trial, a code table appeared
in the middle of the screen while a probe digit--symbol pair appeared below it. These
stimuli stayed on the screen for 3.5 s followed by variable intertrial intervals (0.5, 4.5,
8.5, or 12.5 s).
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Image Analysis

FMRI data were analyzed using AFNI software (Cox 1996). Participant-

level task-related effects were identified using conventional linear

deconvolution. A regressor was constructed by convolving a hemody-

namic response model (a gamma-variate function; Cohen 1997,

parameters b = 8.6, c = 0.547) with each trial onset in a task-reference

function. The t-value matrix for each subject was resampled to a 2-mm

isovoxel resolution and then spatially normalized to Talairach space

(Talairach and Tornoux 1988). Each participant’s 3D structural image

(coregistered to the functional data) was transformed, via a 12-

parameter affine transformation, to fit it to a Talairach template (i.e.,

the Colin-brain template), and then the t-value matrix was transformed

to Talairach space based on structural image transformation parameters.

Regressors for motion correction estimates and linear, quadratic, and

cubic trends for each run were included in the baseline regression

model. Any subjects with greater than 3 mm of motion were not

considered for further analysis. No subjects met this criterion for

exclusion (see Supplementary Table 1). For each participant, the

preprocessed BOLD data per voxel were then regressed on the resulting

model to obtain model scaling parameter estimates (i.e., task-related

percent signal-change estimates) and corresponding t-values.

To plot mapwise activation at the group level, the data for individual

participants were corrected for slice-timing offset, motion corrected, and

then spatially filtered with a Gaussian kernel (full-width at half-maximum

= 8 mm). For each run, data then were scaled by the mean for that run

(i.e., 100 3 yt/My) in each voxel so that the deconvolution parameter

estimates would be expressed in terms of percent signal change.

GCA was performed using code written in MATLAB. Data analyses

were performed on the time series from 12 regions of interest (ROIs).

These ROIs were drawn on individual subjects’ anatomical images to

include Brodmann’s areas (BAs) where DSST activation was observed.

ROIs were drawn on each subject’s T1 axial slices by one of the authors

(D.A.E.) using software from the VoxBo statistical package. These

regions included middle and superior frontal gyri, corresponding to BAs

9 and 46, ventral PFC ROIs including inferior frontal gyri corresponding

to BAs 44, 45, and 47, and superior parietal gyrus corresponding to BAs

39 and 40, in each hemisphere, according to the Talairach and Tournoux

(1988) and Duvernoy (1999) atlases. For individual participants, time

series from all voxels within an ROI were averaged to create a single

time series for each ROI.

Each time series was detrended to remove any systematic variation in

the data sets that could result from machine system noise leading to

linear, cubic, or quadratic drift. To minimize the effect of physiological

noise sources like respiration rate and heart rate (so called nuisance

covariates), a low-pass filter (with a cutoff frequency of 0.10 Hz) was

used. Granger causality between 2 regions can be defined as the extent

to which the data from 1 region at 1 point in time significantly

improves the prediction of another region’s data at a later point in time

(Goebel et al. 2003).

Bivariate Granger analyses were performed using F-statistics to test

whether lagged data from a time series (variable) y improved the

prediction of a later value in a time series (variable) x to a degree that

was statistically significant over that provided by lagged x alone. If not,

then ‘‘y did not influence x.’’ The model assumed a model order (i.e., lag

length) p = 5 TRs, and estimated a residual for the following unrestricted

equation by ordinary least squares (OLS):
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(where T is the total number of time points, p is the model order) was

greater than tabular significance values, then the null hypothesis (y

does not influence x) was rejected (Greene 2008).

Thus, a time series from each ROI was fit using a full autoregressive

model. Briefly, in an autoregressive process the time-series data sets

assume that the current time point is functionally related to its N

previous time points. For this study a fifth order autoregressive process

was used for each of the 8 ROIs.

Five time points (10 s) in the y time series were sequentially assessed

for their effect in the prediction of a point immediately preceding them

in the x time series as the difference in error terms between the full

and reduced models. Thus, for each such assessment, the time point in

the x time series served as the dependent variable whereas the time

points in the y time series served as independent variables.

Ten-second model orders were adopted to account for delay that

may arise due to differences between time series in the hemodynamic

response. Although 10 s is orders of magnitude larger than neuronal

delays, the fMRI signal represents a convolution of the neuronal signal

with the vascular response function. A number of methods have been

proposed to estimate the appropriate model order, including Bayesian

and Akaike information criterion methods that permit selection

between models on the basis of the extent to which variance can be

explained with the fewest parameters. Application of these methods to

determine a model-order parameter for GCA of fMRI data depends on

the assumption that a single model fits the data across all voxels

involved in the analysis. FMRI signal, however, is comprised of several

noise components that arise from respiration, cardiac pulsatility, and

machine noise, differentially affect different voxels, and impose

influences upon the signal arising from neural activity. Therefore

different model orders may be obtained for different voxels, as

calculated by information criterion methods. Based on these consid-

erations, we sought to determine an optimal model order based on

known properties of the hemodynamic response function.

We determined an optimal autoregressive order based on prior

estimates of onset-delay and phase-delay variances of the vascular

response function, observed to be around 10--12 s by a number of

different investigators (Lee et al. 1995; Boynton et al. 1996; Saad et al.

2003). Thus, our 5-TR model order was relatively conservative in the

context of the hemodynamic filter.

Submodel fits were then carried out for each time series data set

compared with the other time series data sets. The significance level for

each of them was tabulated for group analysis. For each bivariate model,

the F value for each individual subject was calculated, resulting in an

interregional matrix consisting of M*(M – 1)/2 values (where M is the

number of matrix elements) that were then z-transformed. An average

z-score map was obtained for each task and converted to significance

values. We used a false discovery rate procedure to correct for multiple

comparisons at a q value of 0.05 (Benjamini and Yekutieli 2001).

This bivariate procedure was performed on all possible ROI pairs such

that Granger influences were computed in both directions for all ROI

pairs (Brovelli et al. 2004). Unidirectional influences between each ROI

pair were calculated for 2 different significance levels. Influences were

considered significant for Ps < 0.05, and they were considered trends

when 0.05 < P < 0.10. Influences were considered ‘‘unidirectional’’ if the

influence of 1 region of the pair was significant. They were considered

‘‘bidirectional’’ when the influences of both pairs were significant.

Results

Behavioral Performance

One participant’s data were lost due to equipment failure.

Behavioral analyses (using the SAS statistical package, SAS

Institute, Cary, NC) of the vigilance data indicated uniformly high

accuracy with minimal interindividual variability (M = 98.8%,
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standard deviation [SD] = 0.001). RTs were fast, also with minimal

interindividual variability (M = 507.5 ms, SD = 41.0). Analysis of

DSST data also indicated uniformly high accuracy with minimal

interindividual variability (M = 95.8%, SD = 0.01) that was not

significantly different from vigilance task accuracy. DSST RTs

were significantly slower than button-press RT (M = 1641.5 ms,

SD = 238.8), t(10) = 16.45, P < 0.005, and showed greater

variability.

DSST Activation

Figure 2 shows the average t-values (thresholded at t > 2.00,

P < 0.05 uncorrected). The results of this analysis indicated

task-related signal-change in the previously identified target

regions, including dorsolateral PFC (BA 9 and BA 46),

ventrolateral (BA 44, BA 45, and BA 47) PFC, and inferior

parietal cortex (BA 39 and BA 40).

FMRI Connectivity: between-Task Differences

Analysis of DSST fMRI data (filtered for temporal drift and high-

frequency noise to minimize nuisance-covariate effects) using

a modified (to account for serially correlated error terms;

Worsley andFriston1995) general linearmodel indicated activity

in several cortical regions including the 12 ROIs across the 2

hemispheres, dorsal PFC (DPFC; Brodmann Area 9; BA 9),

a relatively more posterior and inferior regions of PFC (BA 46),

ventral PFC (BAs 44, 45, and 47), and parietal cortex (BA 40).

Anatomical ROIswere drawnon these regions andGCAmethods

were used to assess influences between them. GC between 2

regions can be defined as the extent to which the data from

one region at one point in time improves the prediction of

another region’s data at a later point in time (Goebel et al. 2003).

GCA was used to evaluate causal influences between ROIs by

measuring the extent to which activation changes in one region

affected (i.e., reliably preceded) those in other regions at later

points in time. Thus, it permitted characterization of the strength

and direction of influence between discrete brain regions

(Goebel et al. 2003).

Figure 3 shows the GCA results for the vigilance task (A) and

for the DSST (B). For the results of both tasks, the results were

arranged in a circular fashion with rostral information repre-

sented on the left side of each circle, relatively ventral and

posterior regions are illustrated in the middle portions so that

the caudal-most ROIs are on the right side of the circle. Arrows

indicate significant influences; black dashed-line arrows repre-

sent influences with Ps < 0.05; thinner gray arrows represent

influences with Ps < 0.10.

The results illustrated in Figure 3 show 2 differences between

the vigilance task and the DSST. First it can be observed that,

overall, there were more significant influences between ROIs

for the vigilance task than for the DSST. This difference was

significant t (10) = 14.96, P < 0.0005. Second, it can be observed

that there were more bidirectional influences between ROIs for

the vigilance task than for the DSST. This difference is illustrated

in Figure 4 which shows mean numbers of unidirectional and

bidirectional influences for both task types. It can be seen in

Figure 4 that unidirectional influences are equivalent between

the 2 tasks but that there are more bidirectional influences for

the vigilance task than for the DSST. The interaction of Task-

type (vigilance vs. DSST) and Influence type (unidirectional vs.

bidirectional) was significant, F (1, 10) = 11.4, P < 0.007. Posthoc
t-tests indicated significant differences between tasks for

bidirectional but not for unidirectional influences.

FMRI Connectivity: between-Subject Differences

To test relationships between the nature of directional

influences in each ROI and performance, wemade 2 calculations

for each subject and each task within each ROI. First, we

calculated the number of regions that exerted influences upon

each ROI (i.e., the number of ‘‘input influences’’) and second, we

calculated the number of regions that each ROI had influences

upon (i.e., the number of ‘‘output influences’’; Brovelli et al.

2004). To examine how brain-behavior relationships during

DSST activity differ from vigilance activity, we first calculated, for

each ROI in each subject, differences in the numbers of

influences for the vigilance task and theDSST. These calculations

were performed separately for input and output influences. It is

worth noting that, in correlation-based analyses, these types of

connections are considered to be identical. GCA however

permits separate assessment of both input influences from other

regions and output influences to other regions for each ROI.

Miniscule intersubject variability in vigilance RT performance

obviated meaningful analysis with these behavioral data. Thus,

we performed a series of linear regressions, with Bonferroni

correction (Holm 1979), on individual participants’ DSST RT,

and differences between tasks in the numbers of input and

output influences. This approach is similar to that performed by

Brovelli et al. (2004).

Figure 2. Average t-values (thresholded from cyan to blue and red to yellow, respectively, at �2.00$ t $ 2.00, P\ 0.05 uncorrected), spatially normalized to Talairach space
via affine transformation to the Colin-brain template. The mean t-values are shown on surface models created from the Colin template. These results show task-related signal
change in the previously identified target regions, including dorsolateral PFC (BA 9 and BA 46), ventrolateral (BA 44, BA 45, and BA 47) PFC, and inferior parietal cortex (BA 39
and BA 40).
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There were no input influences to any ROIs that were

significantly different between the 2 tasks after Bonferroni

correction. The linear regression of DSST RT and task differ-

ences in numbers of output influences from BA 9 to inferior

PFC and parietal regions in the right hemisphere was significant

(slope = –0.78; r2 = 0.61; t = –3.8; P < 0.004) and accounted

for fully 61% of the variance (see Supplementary Table 2). Thus,

inter-task differences in numbers of output influences

depended on individual participants’ RTs. Faster participants

showed greater numbers of output influences during vigilance-

task performance than during DSST performance whereas

slower participants showed the opposite pattern Specifically,

numbers of BA 9 output influences were negatively correlated

with individual participants’ DSST RT (slope = –0.78; r2 = 0.49;

t = –3.3; P < 0.01) in the vigilance task, but positively correlated

with their DSST RT (slope = 0.62; r2 = 0.31; t = 2.4; P < 0.04; Fig. 5)
in the DSST.

Discussion

In this study, we tested the hypothesis that the nature of

activation--performance relations varies with the extent of

cognitive involvement required by the task. We compared

effective connectivity differences between brain regions where

neural activity was elicited in 2 simple tasks that varied in the

extent of cognitive demand. We used an analysis method that

permitted unambiguous assignment of the direction of connec-

tivity, GCA. Participants were faster when they were cued

periodically to press a button than when they were required to

determine the presence or absence of a probe digit--symbol pair

among a string of such pairs. There was greater effective

connectivity in the vigilance task compared with the DSST.

Analyses of directional connectivity indicated that there were

significantly more bidirectional influences in the vigilance task

than in the DSST. Unidirectional influences were, however,

equivalent between the 2 tasks. Finally, analysis of individual

differences in Granger causal influences indicated that individuals

with faster DSST RTs showed reduced dorsal PFC influence

extending to ventral PFC andposterior parietal regions than slower

individuals during DSST performance. These same faster individ-

uals, however, showed increased dorsal PFC influence compared

with slower individuals during vigilance task performance.

Vigilance-Related Activity

The present results clearly suggest an association between

activation--performance relations and task demand. When task

demand was low, requiring participants only to maintain

vigilance for a signal to press a button, processing-speed ability

Figure 4. Mean numbers of unidirectional and bidirectional influences for both task
types across ROIs. Unidirectional influences are illustrated in solid open bars and
labeled with single arrows. Bidirectional influences are illustrated as filled bars and
labeled with 2 arrows.

Figure 3. Results of the GCAs for the vigilance task (A) and for the DSST task (B).
For both tasks, the results are arranged in a circular fashion with rostral information
represented on the left side of each circle, relatively ventral and posterior regions are
illustrated in the middle portions so that the caudal-most ROIs are on the right side of
the circle. Arrows indicate significant influences; thicker black and dashed arrows
represent influences with P \ 0.05; thinner gray arrows represent influences with
0.05\ P\ 0.10.
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(as measured by DSST) was negatively associated with neural

connectivity. This increased vigilance-related connectivity

mainly resulted from increases in bidirectional connectivity

between brain regions. Such activity may reflect in part vigilance

operations of participants awaiting the response signal. Passive

vigilance has been known to elicit increased activity in previous

studies, compared with that elicited during task performance

(e.g., Fransson 2006). Increased bidirectional connectivity might

suggest an increased equilibrium in signal transmission between

brain regions during vigilance compared with DSST perfor-

mance. Increased bidirectional fluctuation during sustained

vigilance has important implications for speculation regarding

the mechanisms that could give rise to interregional connectiv-

ity when cognitive mechanisms are relatively minimally en-

gaged. To support such activity, brief neural pulses may fluctuate

in synchrony between functionally related regions. Such

spontaneous fluctuation has been observed in low-frequency

ranges during other tasks that minimally involve cognition (e.g.,

Cordes et al. 2001; Goldman et al. 2002).

A number of mechanisms have been hypothesized that could

give rise to such phenomena. For instance, Zonta et al. (2003)

have suggested that glutamate-mediated Ca2
+
fluctuation in

astrocytes could mediate arteriole dilation. Ca2
+
transient pulses

in astrocyte end feet (part of the astrocyte that makes contact

with the arteriole) also cause cerebrovascular contraction

(Mulligan and McVicar 2004). Thus, the balance between these

opposing cellular signaling mechanisms may govern vigilant

rest-related activity. Ca2
+
channel inhibition led to disruption of

this signaling. A shift in the balance between cell signaling

mechanisms could mediate a modal shift from vigilant rest to

active task performance. Indeed, other similar mechanisms,

including nitric oxide synthase have also been shown to disrupt

low-frequency fluctuations (Biswal and Hudetz 1996).

DSST-Related Activity

In contrast to vigilance-related connectivity, when task demand

was relatively high, requiring participants to not only maintain

vigilance but also to search an array for the presence of a digit--

symbol target, connectivity was 1) reduced relative to the lower

demand vigilance task and 2) dominated by more unidirectional

than bidirectional activity, as measured by GCA. The relative

reduction in bidirectional connections during DSST suggests

that task-related activity reflects disengagement of equilibrium

mechanisms that dominate low-demand task activity and

engagement of mechanisms that involve more directed activity

between brain regions. This directed activity may reflect the

goal-oriented executive control that dorsal PFC regions exert

upon more ventral and more posterior brain regions that are

involved in the execution of the visual search, target-detection,

and response-selection processes required by the DSST. The

relationship we observed between connections that extended

from dorsal PFC to other brain regions replicates earlier results

from our laboratory (Rypma et al. 2006; Motes MA, Rypma B,

unpublished data) and suggests support for the hypothesis that

individuals vary in the extent to which cognitive processes can

be implemented automatically. It may be that some individuals

implement the cognitive operations necessary for successful task

performance (mediated by ventral PFC and parietal brain regions)

automatically, with minimal reliance on PFC regions involved in

executive operations (e.g., dorsolateral PFC; Jung and Haier 2007;

Prabhakaran and Rypma 2007). Other individuals may implement

these operations in amore controlled fashion. In these individuals,

PFC mediation may serve to guide more ventral and posterior

brain regions in the service of successful task performance.

Task-Dependent Variation in Brain-Behavior
Relationships

Relationships between neural activity and behavioral state have

been observed in studies comparing waking, sleeping, and

anesthesis in animals and humans. When humans are minimally

engaged in cognitive activity (i.e., during ‘‘resting state’’), neuro-

imaging signal exhibits higher amplitude and interregional

correlation depending upon whether individuals are anesthe-

tized or not (Kiviniemi et al. 2005), whether they are asleep or

awake (Fukunaga et al. 2006; Horovitz et al. 2008;), or whether

they have their eyes open or closed (e.g., Yang et al. 2007;

Bianciardi et al. 2009). Although the origin of these state-related

signal changes are not yet completely understood (e.g., Birn et al.

2006), these findings have important implications for a complete

theory of functional neural circuitry at rest, during task-related

activity, and the interaction of resting and active functional

circuitry. For instance, some studies indicate that distinct

networks of activity during spontaneous and evoked activity

interact such that increases in spontaneous network activity

result in reduced activity evokedby sensory stimulation (Sachdev

et al. 2004;Hasenstaubet al. 2007). Suchresults suggest adynamic

balancing mechanism in which resting neural activity levels

mediate the responsiveness of networks to stimulation. The

differences observed in DSST-related Granger connectivity,

compared with vigilance-related connectivity, suggest that such

balancing mechanisms play an important role in determining

levels of activation observed during task performance.

Participant-Dependent Variation in Functional
Connectivity

In the present results, task-dependent connectivity changes

differed between individuals. Specifically, within dorsal PFC,

faster participants (as measured by DSST) showed more
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Figure 5. Scatterplot showing relationships between DSST RT and unidirectional
output PFC influences (determined by GCA) from BA 9 for the vigilance (filled squares)
and DSST (open triangles) tasks.
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vigilance-related connectivity than slower participants, but

faster participants showed less DSST-related connectivity than

slower participants. The results suggest that the balancing

mechanisms that mediate differences in low- versus high-

demand PFC connectivity are intimately related to individual

differences in cognitive efficiency (as measured by DSST).

The finding of participant-dependent connectivity differences

has implications for both cognitive and neural explanations of

individual differences. At a cognitive level, one possibility is that

dorsal PFC regions subserve the simultaneous monitoring of

task-demand information and performance accuracy in the

service of task learning. This region has been implicated in

performance monitoring (e.g., Sharp et al. 2004). Such task- and

performance-monitoring may aid in the development of more

efficient, or ‘‘automatic’’ task-performance. Those individuals

without such extra-task processing capability may rely on less

efficient ‘‘controlled’’ processing (cf. Schneider and Shiffrin

1977), mediated by right-hemisphere regions of dorsal PFC.

Consistent with our findings, frontal activity declines have been

observed with skill improvements that reflect development of

task automaticity (Petersen et al. 1998).

At a neural level, participant-dependent connectivity changes

may reflect individual differences in the integrity of large-scale

networks composed of computational nodes comprised of

physically distant but functionally related brain regions that

must coordinate and integrate functions (e.g., Bressler and Kelso

2001). Findings of activation synchrony across relatively distal

brain regions support this notion. It may be that white-matter

integrity affects neural transmission efficiency between these

brain regions which in turn, affects performance (e.g., Jensen

1982; Vernon 1983; Rypma and D’Esposito 1999; Grabner et al.

2003; Rypma and Prabhakaran 2009). Precise explication of the

mechanisms that govern differences in white-matter integrity

has only begun to emerge as measures that distinguish these

mechanisms in pathological and aging populations have been

developed (e.g., Song et al. 2003; Nair et al. 2005; Bennett et al.

2009). Studies utilizing these measurement methods indicate

that such mechanisms could take several forms including

changes in axon number, size, and myelination extent. More

research is certainly required before any precise inferences

could be made about the nature of the white-matter differences

that distinguish between relatively good and poor performers on

cognitive tasks.

Granger Causality and Neural Connectivity

Other multivariate statistical methods including ICA and PCA

have been used to decompose fMRI data into independent

components on the basis of distinct sets of linear parameters. The

‘‘images,’’ or time-series data sets, derived from these analyses

represent functional connectivity maps that have been impor-

tant for understanding connectivity relations between regions

(e.g., McKeown et al. 1998; Biswal and Ulmer 1999).

GCA improves upon these methods because Granger re-

gressionexplicitly accounts for interregional temporal variability

that has been demonstrated in previous reports (Lee et al. 1995;

Buckner et al. 1996; Miezin et al. 2000), whereas ICA and PCA

assume that the exact sequence of information flow cannot be

obtained from the data. Thus, Granger correlation adds to

information obtained from ICA and PCA about functionally

connected brain regions by explicitly accounting for interre-

gional temporal variability.

The use of temporal variability in BOLD signal to make

inferences about regional connectivity could be considered

hazardous if it were known that interregional differences in

hemodynamic delays varied systematically between regions. On

one hand, explicit tests of such systematicity in humans have

yielded null results (e.g., Miezin et al. 2000). These results

suggest that the Granger correlations we observed here reflect

systematic functional relationships between brain regions that

emerge on the basis of task-related neural activity. On the other

hand, some studies with rodents suggest that further de-

velopment of connectivity analysis methods are required to

minimize the influence of region-specific hemodynamic

activity differences on estimates of neural connectivity (e.g.,

David et al., 2008). It is clear that more research is required to

completely understand how relationships between interre-

gional BOLD signal differences affect estimates of cortical

influences, but current evidence suggests the bona fides of the

Granger relationships that we have observed here (see also

Kayser et al. 2009). The results of the present study, task- and

subject-related differences in the extent to which PFC activity

drives activity in other PFC and posterior brain regions,

provides important clues regarding individual differences in

cortical function and how they influence performance.

Supplementary Material

Supplementary material can be found at: http://www.cercor

.oxfordjournals.org/.
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