° NAT/O

1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

" NIH Public Access
A 5 Author Manuscript

2 eSS

Published in final edited form as:
Clin Pharmacol Ther. 2010 January ; 87(1): 109-116. doi:10.1038/clpt.2009.226.

The Pharmacogenomics of Membrane Transporters Project:
Research at the interface of genomics and transporter
pharmacology

Deanna L. Kroetz, Sook Wah Yee, and Kathleen M. Giacomini
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco,
San Francisco, California, 94143

Keywords

Pharmacogenomics; Membrane Transporters; Solute Carrier; ATP-Binding Cassette;
Polymorphisms; Functional studies

Introduction

Since the cloning of the first membrane transporter, our understanding of the role of
transporters in clinical drug disposition and response has grown enormously. In parallel,
large scale genomewide variation studies and the emerging field of pharmacogenomics has
ushered in a new understanding of variation in drug response. At the crossroads of the fields
of pharmacogenomics and transporter biology is the NIH funded Pharmacogenomics of
Membrane Transporters (PMT) project, centered at the University of California, San
Francisco.

PMT is part of the NIH sponsored Pharmacogenetics Research Network (PGRN). Since its
inception nine years ago, PMT has made many important scientific contributions to both
pharmacogenomics and transporter biology and is poised to contribute even more with the
recent advances in technology and the plethora of information about human genetic
variation. In this manuscript, we describe the history and organizational structure of PMT
and importantly, its contributions to the fields of transporter biology and
pharmacogenomics. We discuss multiple collaborations that have been initiated by PMT
investigators and our database, dbPMT, which was recently released publicly and provides a
wealth of information for scientists in the fields of genomics, pharmacology and transporter
biology. Finally, we briefly discuss future directions of PMT, which are aimed at advancing
our understanding of the functional genomics of membrane transporters and the contribution
of genetic variation in transporters to adverse and therapeutic drug response.

|. History of the PMT Project

In response to an RFA issued by NIH in 1999, investigators at UCSF began planning for
submission of a proposal for a large center grant focused on pharmacogenomics of
membrane transporters. A multi-disciplinary team of investigators, led by K. Giacomini, .
Herskowitz and N. Freimer, was formed, which included pharmacologists, geneticists,
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computational biologists, statisticians and molecular biologists, individuals who before that
time had never collaborated in a scientific endeavor. During initial meetings, the team
decided that the goal of a large center such as PMT was to seed the scientific community
with new information about transporter genomics and pharmacogenomics to enable
hypothesis generation. In addition to genomic, functional genomic and genotype to
phenotype clinical studies, one large phenotype to genotype clinical study, the Genetics of
Response to Anti-depressants (GRAD), which focused on the SSRI anti-depressants, was
proposed. A password protected transporter database was proposed, which subsequently
developed into a public database, dbPMT. The first grant proposal was successful, and was
followed by a competitive renewal, funded in 2005, which extended PMT until 2010.
Studies funded by the competitive renewal, which are ongoing, have a major focus on
noncoding region variants. Clinical genotype to phenotype studies began in the second
round, translating laboratory discoveries to clinical studies of drug disposition and response.
Major discoveries of PMT along with a brief description of future directions are discussed
below.

ll. Multi-disciplinary Research Team and Organizational Structure of PMT

The success of PMT can be largely attributed to its multi-disciplinary research group and
organizational structure, which facilitates high throughput sequencing, medium throughput
functional genomics, and advances to clinical studies of drug disposition and response. The
organizational structure of PMT includes three multi-disciplinary research teams and three
research cores (see Figure 1). The functional genomics research team conducts mechanistic
studies to test the functional significance of sequence variants in 150 membrane transporters.
Selection of the 150 membrane transporters was based on the following criteria: (i) high
expression levels in the liver, kidney and/or intestine; (ii) evidence in the literature that the
transporter interacts with drugs in vitro; and (iii) if available, evidence from studies in
knockout mice or humans that the transporter plays a role in vivo in pharmacokinetics or
pharmacodynamics. The computational genomics research team interacts with the functional
genomics team in the analysis of genomic information. The clinical studies research team
conducts clinical studies including mechanistic genotype driven clinical studies, which
translate discoveries made by the functional genomics team. Three cores support the
research teams. The genomics core performs sequencing and genotyping. The biostatistics
core supports data analysis and study design for the research teams. The bioinformatics core
constructs and maintains both the password protected and the publicly available database,
dbPMT. This core deposits PMT generated data into other relevant national databases (e.g.,
PharmGKB, dbSNP, dbGAP, GEO Datasets and SRA). Each team and core is led by a
director, who serves on the PMT Steering Committee, which makes decisions about overall
directions of the project. PMT is led by a principal and co-principal investigator and now
includes a project director. This organizational structure and the active participation of the
research team and core directors greatly facilitate the rapid implementation of new
technologies and methodologies to address important problems in transporter
pharmacogenomics.

lll. Major Research Findings

The focus of PMT is on transporters that play a role (or are suspected to play a role) in drug
disposition and response. Of the 350 transporters in the Solute Carrier superfamily (SLC)
and the 48 transporters in the ATP Binding Cassette (ABC) superfamily, PMT focuses on
about 150. PMT has contributed new information about genetic variants in transporters,
functional activity of variant transporters, and clinical relationships between variant
transporters and drug disposition and response. Our scientific approach is depicted in Figure
2. Below we highlight our major findings.

Clin Pharmacol Ther. Author manuscript; available in PMC 2011 January 1.
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SNP Discovery

PMT has identified sequence variants in 129 membrane transporter genes in the SLC and
ABC superfamilies from DNA samples gathered from various sources. Most recently, DNA
has come from 272 ethnically diverse individuals (68 African American, 68 European
Americans, 68 Mexican Americans and 68 Chinese Americans) from the SOPHIE cohort, a
group of individuals who have donated DNA samples and agreed to be called back for future
clinical pharmacogenetic studies. PMT sequencing efforts have resulted in the discovery of
over 3100 SNPs, from which many novel and functionally important variants have been
identified. SNPs discovered by PMT are having an increasing impact on genetic and
pharmacogenetic studies. For example, 697 SNPs discovered by PMT are available on the
Illumina 1M Duo Beadchip.. These PMT SNPs have important implications to informing
current genomewide association studies.

Functional Genomics

Table 1 describes the major discoveries from our functional analysis in cellular studies, in
genotype to phenotype clinical studies and in large collaborative studies. Collectively, 220
coding region variants (nonsynonymous variants and indels) have been characterized in
cellular assays, of which approximately 15% to 20% exhibited significantly reduced
function compared to the reference allele [1-6]. In general, we observed that variants with
reduced function are rarer than variants that retain function [7] and that multiple less
common variants in a single transporter may have reduced function [8]. For example, rare
variants (< 1 % minor allele frequency) in OCTN1 (D165G and R282X), OAT3 (R149S,
Q239X and 1260R), MATE1 (G64D and VV480M) and CNT1 (S546P) showed greater
reduction in the uptake of their substrates compared to more common variants in the same
genes [1,6,9,10]. We also observed that some variants in OAT3 (1305F), OCT2 (R400C and
K432Q) and OCTN2 (Y449D) altered the substrate/inhibitor specificity and/or kinetics of
the transporter [4,6,11]. In addition, we recently examined the function of genetic variants in
the proximal promoter region (defined as —250 to +50 bp from the transcription start site) of
various membrane transporters in luciferase reporter assays [12—15]. Unlike coding region
variants, we observed that none of the 116 promoter variants tested produced a total loss of
function suggesting that promoter variants may modulate but not abolish function [13-15].
In more detailed analysis of promoter region variants in several transporters, we showed that
the mechanisms for altered function of promoter variants in CNT2 (rs2413775) and MATE1
(rs2252281) involved disruption or creation of a transcription factor binding site [13,14] and
were associated with expression levels of the transporter in tissue samples, including
lymphoblastoid cell lines and liver and kidney samples [4,14,15] (Figure 2, scenario 4). Our
studies suggest that promoter region variants associated with altered function may be
common and that the context of a promoter region (and a coding region) variant in terms of
its haplotype may modulate function.

Computational Genomics

Computational analysis of ABC transporters has provided hypotheses for domain
interactions in the transporters, which can then be verified experimentally [16]. Despite the
challenges in membrane protein crystallization, PMT investigators and collaborators in the
NIGMS funded Center for Structure of Membrane Proteins (led by R. Stroud) have
successfully used medium-throughput approaches for the rapid expression and solubilization
of SLC transporters, which can then be crystallized [17]. In addition, we have performed a
large computational analysis of the Solute Carrier Superfamily to identify a number of
potential transporters in the human genome, which are candidate transporters for drug
disposition and response (unpublished data).
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Genotype to Phenotype Clinical Studies

Ultimately, the goal of our genomic and functional genomic studies is to generate testable
hypotheses about the effects of variants on clinical drug disposition and response. To date,
PMT functional genomics studies have led to many clinical studies, some that have been
completed and are published and others that are ongoing. These studies, in general, make
use of SOPHIE subjects who have indicated a willingness to be called back for
pharmacokinetic and pharmacodynamic studies. One of the unique aspects of research in the
genetics of drug response as opposed to the genetics of disease risk is that the effect of a
genetic variant can be directly tested in genotype to phenotype studies. That is, individuals
with particular variants can be given a drug to directly test a hypothesis that a genetic
variant(s) may produce a change in pharmacokinetics or pharmacodynamics (Figure 2,
scenario 1 [8,18]). These rich studies are important proof of concept translational studies,
which link functional genetic variants discovered in the laboratory to clinical drug response.
Several PMT led genotype to phenotype studies have focused on genetic variants in the
organic cation transporters OCT1 and OCT2, on response and disposition to the anti-diabetic
drug, metformin [8,18,19]. We have also determined the role of genetic variants in
transporters in variation in renal drug clearance (Table 1) [19,20].

V. PMT Collaborative Studies

CALGB

GAP-J

In parallel to our genotype to phenotype clinical studies, PMT is involved in many
collaborative studies, which have a focus on membrane transporters or for which
transporters may be important determinants of drug efficacy and adverse effects. Below we
briefly describe two major collaborations.

The large, well-phenotyped patient populations in National Cancer Institute supported
cooperative clinical trial group Cancer and Leukemia Group B (CALGB) and other
cooperative trial groups provide a rich resource for testing the clinical effects of membrane
transporter variants. Clinical studies in cancer are particularly of interest to PMT since
membrane transporters play a significant role in resistance to anticancer treatment. PMT
investigators have been involved in the design and implementation of pharmacogenomic
correlative studies to multiple treatment trials in breast, colon and prostate cancer. Both
candidate gene and genomewide approaches are planned for the identification of genetic
factors that influence tumor response and adverse events in these populations (Figure 2,
scenario 2 and 3). In all studies, both direct hypothesis testing and exploratory hypothesis
generating objectives are included, thus maximizing the use of the large amount of clinical
and drug response data collected in such trials. The efforts of PMT and other PGRN
investigators in CALGB serve as a model for the establishment of similar correlative studies
in other cooperative groups.

The Global Alliance in Pharmacogenomics, Japan (GAP-J) is an existing alliance
(http://www.nigms.nih.gov/InitiativessPGRN/GAP/) between the PGRN and the Center for
Genomic Medicine (CGM) of the Riken, Yokohama Institute in Japan (see
http://www.src.riken.jp/english/ for description of CGM). This international alliance brings
together scientists in multiple research disciplines to conduct research in
pharmacogenomics. In particular, the research focuses on genomewide association studies
(GWAS) to identify genetic predictors of therapeutic and adverse reactions to medicines.
Fourteen GWAS studies are currently ongoing as part of GAP-J. PMT investigators have
been involved in the inception and leadership of GAP-J and are active investigators in GAP-
J. Several of the collaborative CALGB studies and the GRAD study have been accepted for
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GAP-J GWAS, and it is anticipated that GAP-J studies will make enormous contributions to
the field of pharmacogenomics and its translation to personalized medicines.

Initially created as a password protected intranet for PMT investigators, doPMT has
expanded to include a public site. Created by the Bioinformatics Core of PMT, dbPMT
allows investigators to retrieve information about (i) the expression levels of membrane
transporters in different tissues and cell lines, (ii) genetic variants of membrane transporters,
including the nature of the variant (e.g., coding, noncoding), its position, identification
number (rs#), and its frequency in four major ethnic groups, (iii) haplotypes of transporters
in four ethnic groups, and (iv) function of genetic variants of membrane transporters. The
database can be accessed at the following url: http://pharmacogenetics.ucsf.edu. This public
site is user friendly and highly relevant to investigators in membrane transporter research
and also to scientists with interests in identifying variants associated with risk for disease or
drug response.

Directions

Throughout its nine year history, PMT has been a leader in the field of pharmacogenomics
of membrane transporters. It is anticipated that in the future, PMT will continue to pioneer
new directions in genetic variation in membrane transporters and its implications to clinical
drug response. In particular, PMT is planning to (a) develop a robust framework for
computational predictions of the effects of coding region variants on transporter function
and drug response; (b) to obtain a new understanding about variants in UTRS, introns and in
intergenic regions surrounding membrane transporters; (c) to harness computation to
identify new regulatory proteins and response elements in transporter genes; and (d) to
continue our clinical studies in three major directions. First, PMT has been highly successful
in genotype to phenotype clinical studies using SOPHIE and testing the clinical effects of
transporter variants identified in PMT discovery studies. These studies will continue, but
will focus on the effects of noncoding region variants, haplotypes, and will go beyond single
variants in a membrane transporter to include the effects of multiple variants. An emphasis
on the effects of genetic variants on drug-drug interactions is anticipated. PMT will also
continue its major collaborative studies with CALGB and GAP-J. Other collaborations are
likely to ensue from ongoing PMT discoveries. Finally, PMT studies have led to an
understanding of the contribution of genetic variants in membrane transporters to the
response and disposition of the important anti-diabetic drug, metformin [8,18]. These studies
will be expanded and GWAS and other strategies will be used in identifying genetic variants
that associate with response to metformin.
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Abbreviations

PMT Pharmacogenetics of Membrane Transporters
OCT organic cation transporter

OAT organic anion transporter

ABC ATP-Binding Cassette
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OATP organic anion transporter polypeptide
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Overview of the Pharmacogenomics of Membrane Transporters (PMT) project and doPMT.
(a) Organizational structure of PMT. (b) Screen views of dbPMT showing a typical detailed
PMT experiment report—in this instance, from a sequencing experiment of the organic-

anion transporter gene, SLC22A8 (OAT3). The middle section shows the details of the

experiment, including interrogated genomic range and genotype information on detected
variants. The bottom panel shows the putative secondary structure of SLC22A8 (OAT3) and

positions of the nonsynonymous variants (red circles) and synonymous variants (green

Clin Pharmacol Ther. Author manuscript; available in PMC 2011 January 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Kroetz et al.

Page 9
circles). The transmembrane topology diagram was rendered using TOPO2 transmembrane

display software (http://www.sacs.ucsf.edu/TOPO2/topo2.html). SLC, solute carrier
superfamily.
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Scenario 1: Genolype 1o phenctype study

©.g. Pharmacodynamic ,

33553
reference et e
i

* * * "’\ e.g. Pharmacokinetic
2 variant .
uptake in transfected
' * * cell lines _
AARAA NG S 'S,
+ —> | luciferase assay -
SOPHIE cohort 5 l-«- | —a i —
41:222:?::: .?é;légs slc dABC’. AGGGCaA — v With toxicity Without toxicity
an T W e e e e
Bay Area membrane transporters knockout mouse/
tail-vein injection
Sequencing
Functional studies
Figure 2.

An overview of the scientific approaches used by PMT in SNP discovery and functional
studies. The PMT SNP discovery studies involve resequencing of coding and noncoding
regions of membrane transporter genes in healthy volunteers in four major ethnic groups
(the SOPHIE cohort). Various in vitro and in vivo assays are used to characterize coding and
noncoding region variants in transporters. In order to validate functional findings and to
translate them from bench to clinic, one or more of the following scenarios are applicable.
(i) Hypothesis-driven clinical studies to evaluate the role of functionally important genetic
variants in drug disposition and response in the SOPHIE cohort (figure from scenario 1
reprinted from ref. 8). (ii) and (iii) Collaborative clinical studies involving PGRN
investigators, CALGB, and GAP-J, with a focus on the role of genetic variants in
transporters in drug response and toxicity. (iv) Association of functional SNPs with
expression levels of transporters in liver and kidney samples. ABC, ATP-binding cassette;
CALGB, Cancer and Leukemia Group B; GAP-J, Global Alliance in Pharmacogenomics,
Japan; PGRN, Pharmacogenetics Research Network; PMT, Pharmacogenomics of
Membrane Transporters project; SLC, solute carrier superfamily; SNP, single-nucleotide
polymorphism; SOPHIE, Study of Pharmacogenetics in Ethnically Diverse Populations.
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