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Abstract

Cardiovascular disease (CVD) is becoming the number one cause of death worldwide.
Atherosclerotic plaque rupture and progression are closely related to most severe cardiovascular
syndromes such as heart attack and stroke. Mechanisms governing plaque rupture and progression
are not well understood. A computational procedure based on three-dimensional meshless
generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data
was introduced to quantify patient-specific carotid atherosclerotic plaque growth functions and
simulate plaque progression. Participating patients were scanned three times (T1, T2, and T3, at
intervals of about 18 months) to obtain plaque progression data. Vessel wall thickness (WT)
changes were used as the measure for plaque progression. Since there was insufficient data with
the current technology to quantify individual plague component growth, the whole plaque was
assumed to be uniform, homogeneous, isotropic, linear, and nearly incompressible. The linear
elastic model was used. The 3D plaque model was discretized and solved using a meshless
generalized finite difference (GFD) method. Four growth functions with different combinations of
wall thickness, stress, and neighboring point terms were introduced to predict future plaque
growth based on previous time point data. Starting from the T2 plaque geometry, plaque
progression was simulated by solving the solid model and adjusting wall thickness using plaque
growth functions iteratively until T3 is reached. Numerically simulated plaque progression agreed
very well with the target T3 plaque geometry with errors ranging from 11.56%, 6.39%, 8.24%, to
4.45%, given by the four growth functions. We believe this is the first time 3D plaque progression
simulation based on multi-year patient-tracking data was reported. Serial MRI-based progression
simulation adds time dimension to plaque vulnerability assessment and will improve prediction
accuracy for potential plaque rupture risk.
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1 Introduction

Cardiovascular disease (CVD) is becoming the number one cause of death world-wide.
There has been considerable effort investigating mechanisms governing atherosclerotic
plaque progression and rupture [Friedman, Bargeron, Deters, Hutchins and Mark (1987);
Friedman and Giddens (2005); Giddens, Zarins, Glagov, S. (1993); Ku, Giddens, Zarins and
Glagov (1985); Gibson et al. (1993); Scotti et al. (2005); Yang, Tang, Atluri et al. (2008);
Yuan, Mitsumori, Beach, and Maravilla (2001)]. A large number of the fatal clinical events
are caused by rupture of a vulnerable atherosclerotic plaque [Fuster (1998); Fuster et al.
(1990); Naghavi et al. (2003a, 2003b)]. Many victims of the disease who are apparently
healthy die suddenly without prior symptoms. While major advancements in the treatment of
CVD continue, progress has been very limited in early detection and treatment of at-risk
individuals. Computational models and methods based on real patient data to simulate
plaque progression and predict possible future rupture are lacking in the literature.

Most efforts for plaque progression research were focused on fluid dynamics side since it
has been well accepted that atherosclerosis initiation and progression correlate positively
with low and oscillating flow wall shear stresses. However, this “low and oscillating shear
stress hypothesis” cannot explain why moderate and advanced plaques continue to grow
under elevated flow shear stress conditions [Tang et al. (2005)]. Our recent results using
serial MRI patient-tracking data and computational models indicated that 18 out of 21
patients studied showed significant negative correlation between plaque progression
measured by wall thickness increase and plaque wall (structure) stress [Tang et al. (2008)].
Two-dimensional meshless generalized finite difference (GFD) computational models were
developed using patient-specific plaque progression data to simulate plaque growth and
predict future plaque rupture risk [Yang, Tang, Atluri et al. (2008)].

In this paper, we extend our previous 2D meshless GFD models to three-dimensional carotid
plaque models with bifurcation. A computational procedure based on 3D meshless
generalized finite difference method and serial MRI data was introduced to quantify patient-
specific carotid atherosclerotic plague growth functions and simulate plaque progression. 3D
models are much closer to real physical plaques compared to 2D models, leading to more
accurate and reliable predictions for plaque growth and mechanical stress conditions. By
using plaque progression simulation, plaque vulnerability assessment and clinical decisions
can be based on multi-time MRI scans and simulated “virtual” plaque progression. With
validation, our procedure can be implemented in clinical applications. Simulated future
plaque morphologies with stress/strain distributions can be displayed to physicians and
patients and will lead to considerable improvement in prediction accuracy for potential
plaque rupture risk and possible prevention of fatal cardiovascular events.

Because of the complexity of plaque geometry and structure, meshless GFD method has the
advantage that it is meshless, thus avoids frequent re-mesh process that finite element
methods require. Computational modeling for engineering applications with meshless
methods have made considerable advances in recent years [Atluri (2004, 2005); Atluri,
Yagawa, and Cruse (1995); Bathe (1996, 2002); Ling, Atluri (2006); Ahrem, Beckert and
Wendland (2006); Shu, Ding, and Yeo (2005); Wu, Shen, Tao (2007)]. A series of meshless
local Petrov-Galerkin (MLPG) methods were introduced to solved 3-dimensional elasto-
static and dynamical problems [Han and Atluti (2004a, 2004b, 2007); Han, Liu, Rajendran,
Atluri (2006)] and nonlinear problems with large deformation and rotations [Han, Rajendran
and Atluri (2004)]. A “mixed” approach was introduced to improve the MLPG method
using finite volume method [Atluri, Han and Rajendran (2004)] and finite difference method
[Atluri, Liu, and Han, (2006a, 2006b); Hu, Young, Fan (2008)]. Sladek et al. applied the
MLPG method to models of intelligent material systems where the mechanical property of
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the material being studied changes over time, and models of 3D anisotropic functionally
graded solids [Sladek, Sladek, Solek, and Atluri, (2008); Sladek, Sladek, Tan, and Atluri,
(2008)]. Li and Atluri further developed the MLPG mixed collocation method for material
orientation and topology optimization [Li and Atluri, (2008)]. Cai and Zhu introduced a
local meshless Shepard and least square interpolation method based on local weak form [Cai
and Zhu, 2008]. A new meshless interpolation scheme for MLPG method was developed by
Ma [Ma (2008)]. Young et al. developed hypersingular meshless method for solving 3D
potential problems with arbitrary domain [Young et al. (2009)]. A finite volume meshless
local Petrov-Galerkin method for topology optimization design of the continuum structures
was introduced by Zheng et al. (2009). Analysis of structure with material interfaces was
performed by Masuda and Noguchi [Masuda, Noguchi (2006)]. Perko and Sarler studied
weight function shape parameter optimization in meshless methods for non-uniform grids
[Perko and Sarler (2007)]. A meshless local natural neighbour interpolation method was
applied to structural dynamic analysis by Liu et al. [Liu, Chen, Li, and Cen, 2008].
Remeshing and refining with moving finite elements were investigated by Wacher and
Givoli [Wacher, Givoli (2006)]. Numerical methods were also developed to solve problems
with free and moving boundaries [Zohouri, Pirooz, and Esmaeily (2005); Mai-Duy and
Tran-Cong, (2004)]. Zhang et al. developed high-fidelity tetrahedral mesh generation
techniques for models based on medical imaging data with fluid-structure interactions
[Zhang et al., (2009)]. Regularized meshless method for irregular domain problems was
investigated by Song and Chen [Song and Chen, (2009)]. Sellountos, Sequeira and Polyzos
performed elastic transient analysis with MLPG(LBIE) method and local RBFs [Sellountos,
Sequeira and Polyzos, (2009)], Lucas et al. proposed an automated approach for mesh
adaptation to enhance accuracy of algorithms [Lucas, van Zuijlen and Bijl, (2009)]. A
boundary element formulation for incremental nonlinear elastic deformation of compressible
solids was proposed by Colli, Gei and Bigoni [Colli, Gei and Bigoni, (2009)]. GFD methods
have been used in many engineering applications and in our previous papers where irregular
geometries and free-moving boundaries are involved [Kleiber (1998); Liszka and Orkisz
(1980); Tang, Chen, Yang, Kobayashi and Ku (2002); Tang, Yang, Kobayashi and Ku
(2001)]. One advantage of using GFD is that generalized finite difference schemes can be
derived for user-selected irregular grid points which can be freely adjusted to accommodate
plaque deformation and growth. The MGFD method introduced in this paper uses grid
points from the local support of each nodal point so that theoretical MLPG framework can
be applied [Atluri (2004)].

2 Data Acquisition, Models and Methods

Due to the complexity of the problem, we start from a linear 3D structure model for a human
carotid plaque with bifurcation in this paper to get some insight for further full 3D fluid-
structure interaction investigations. Patient-specific plaque progression data was acquired by
magnetic resonance imaging (MRI) at multiple time points (scan interval set at about 18
months). Corresponding slices were matched using carotid bifurcation as the registration
point. 3D plaque bifurcation models were constructed and solved by meshless GFD method
to obtain the stress distributions in the plaque. The meshless GFD results were validated by
ADINA (ADINA R & D, Watertown, MA), a commercial finite element software package
that we have used to solve the plaque models in the past 12 years. Vessel wall thickness
(WT) was used to measure plaque progression. 100 points on the lumen and their
corresponding points on the out boundary for each matched slice (total matched slices: 8)
were selected to define the inner and out boundaries of the plaque which will be adjusted in
numerical simulations using plaque growth functions. Pointwise plaque growth functions
were determined based on three time point stress and vessel wall thickness data on the
selected points from 8 matched sliced. The growth functions were then used to simulate
plaque progression starting from Time 2 plague morphology. The simulated Time 3 plaque

Comput Model Eng Sci. Author manuscript; available in PMC 2011 January 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Yang etal. Page 4

morphology was compared with actual Time 3 plaque geometry to validate our modeling
method. Details are given below.

2.1 In vivo Serial MRI Data Acquisition

Serial MRI data from one patient was provided by the University of Washington (UW)
group using protocols approved by the University of Washington Institutional Review Board
with informed consent obtained. Scan time intervals were about 18 months, subject to
scheduling variations. MRI scans were conducted on a GE SIGNA 1.5-T whole body
scanner using an established protocol outlined in the papers by Yuan and Kerwin et al.
[Kerwin, Hooker, Spilker, Vicini, Ferguson, Hatsukami, and Yuan (2003); Yuan and Kerwin
(2004)]. Upon completion of a review, an extensive report was generated and segmented
contour lines for different plaque components for each slice were sent to Tang’s group for
model construction and further computational mechanical analysis. Details of the model
construction process can be found from [Yang et al. (2007); Tang et al. (2008)]. Figure 1
gives the re-constructed 3D geometries of the plaque at three time points showing plaque
progression. Figure 2 gives segmented contour plots of the plaque at three time points. 5
selected slices. These slices were used for model construction. The matched 8 slices were
used to determine plaque growth functions. Plaque geometry at Time 3 was also used to
validate simulated plaque progression.

2.2 The 3D Structure Model and Boundary Conditions

Since there was insufficient data to quantify individual plague component growth, the
plaque was treated as a uniform material, which was assumed to be linear, isotropic,
incompressible and homogeneous. The governing equations and corresponding initial and
boundary conditions are given below [Fung (1993;1994)]:

PUi =0, i, j=1,2,3;sumover j, (1)
gi=(u; j+u;)/2, 1, j=1,2,3, (2)
Tij* Pjlout wan=0, )

oij - njir=Piu(Dlr, (4)
Uij=0=U0, (5)

Mi,r|z=o=ili0, (6)

u3|=0=us3p, )
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us =y, (8)

where p is vessel material density, (uy, up, ug) is the displacement vector corresponding to
X,, and z directions, with z being the axial (longitudinal) direction. o is stress tensor, ¢ is
strain tensor, Pj, is the specified lumen pressure, I is vessel inner boundary, usg(t), us (t)
are the pre-stretch functions for the z-displacement at the two ends of the tube, f, j stands for
derivative of f with respect to the jth variable. For the 3D linear model, the strain-stress
relationship is:

011 011
(o) (og5)
T3 |_p.| 93
o8V (oY)
023 023
031 031 9)
A+2G A A 0 0 O
A A+2G A 0 0 O
D= A A A+2G 0 0 O
B 0 0 0 G 0 0
0 0 0 0 G O
0 0 0 0 0 G (10)
where
_E 1= Eu
2(14+)" " (141 = 2p)° (11)

E is the Young’s Modulus, x is the Poisson ratio which was set to 0.495 in this paper.
Substitute (9)—(10) into (1), we have the displacement equations:

Puy Puy . uy 0 u 02”3
—L=(1+2G G +G
P~ )(9x% BT 3 0n H )((9 % dnx (12)
il Puy  Pur P Puy P u
P —(/l+2G) 2 +G( 22 2)+(ﬁ +G)(2 Fr— >),
Ox X1X2  0X2X3 (13)
Ozuz w3, 0%us  0%us Pu 02”2
— (142G - +(A+G .
A+ )(’)x2 ((’)x% (9x2 A )(f')x X3 (9)62)63 (14)

The boundary conditions are:
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(9141 auz 8u3 (914] auz 6u1 6143 -
2G) — 22T, ey, Y o=
[(A+ G)ﬁxl +/l(6x2+(9x3 )] n1+G(8x2+6x1) n2+G(ﬁx3+6x1) n3=ty, 15
am (9142 (9142 3u1 au3 3142 aug -
bl e A 2G)—= it Tt TN e Y o a=
G(ax2+ax1) ni+[(A+ G)8x2 +/l(6x1 +ax3 )] n2+G(8x3+f)x2) ni3=ty, 16
Ouy Ous Juy Ous Ous Oouy Ouy -
G(—+7=) - m+G(=—=+ =) - M42G) =+ A+ )] - m3=13,
(ax3+6x1) ni+ (6x3+6x2) nmy+[(A+ )6x3+ (6x1+6x2)] n3=t3 an

where (ny, Ny, n3) is the normal direction of the vessel surface. In our model, the inner
boundary (lumen surface) is with (f;, T, t3) = (Pinn1, Pinn2, Pinn3), Pin is the specified inner
pressure. The outer boundary was set as a free boundary, with (i, t, f3) = 0.

2.3 The Meshless Generalized Finite Difference Method (GFDM)

Meshless generalized finite difference (GFD) methods have been used in many engineering
applications where irregular geometries and free-moving boundaries are involved [Kleiber
(1998); Liszka and Orkisz (1980)]. The advantage of GFD method is that generalized finite
difference schemes can be derived using arbitrarily distributed points (see Fig. 4). With
GFD, we will be able to use denser nodal point distributions where plaque has higher stress/
strain concentration or critical morphological features. We will also be able to adjust, move,
add or drop nodal points as needed. This leads to the desired flexibility in handling the
complex geometry and plaque growth where not only the geometry changes, the total plaque
area (volume if 3D) also changes.

The GFD concept and derivation of the generalized finite difference schemes are explained
by the following example. Fig. 3(a) gives the carotid plaque with distributed nodal points.
Fig. 3(b) gives 4 leader-nodes (Pi) with their neighbor nodes (Zj). One leader node was a
boundary node. The other 3 were inner nodes. The neighbor nodes were selected using a
sphere support with radius: R = s*max (dx, dy, dz). The support size control data s = 3.0 was
determined numerically to reach best agreement with solutions obtained by ADINA. Fig.
3(c) shows a simplified 2D plot of a leader node with its neighboring points, illustrating the
derivation process of GFD scheme.

For inner nodes, we use 2"d order GFD scheme. For boundary nodes, we use 15t order GFD
scheme. For each leader node Pi with Ni neighbor nodes Zj, j =1, ..., Nj (see Fig. 3(c)), the
2"d order Taylor expansion of f (x, y, z) at P; is given by:
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aw,02f|
2 Oxz

62 02f|
3 ox; N
2

+dxjdyjl9 1x2|

en
x’; Pi
Zf |
X143 Pi
+0(dxj +dyj +dzj),

Pi

+dyjdzja o
+a’x,dz,a

(18)

where the subscript j = 1... Ni is the subscript for the neighbor nodes Zj of Pi. f is uq, up, us
in displacement formula, f; = f (Zj). Dropping the last term, we have:

L
f2
/3
dudyr  dyidzi dxdz || opy fi=fo
- : I I o S | = :
dxy, dyy, dzy @ —* :2%\, Lodxydyy,  dyydzy,  dxydzy, ';33 Jyi = I
12
J23
Ja (19)

Pi

o5,
15

e
|5

NE3

dx1 dyl le

where fj = f (Z)), fr=1 A - J= (.,ﬂ £, GFD schemes for all the first and second order

xp 0x; "

derivatives are determined from (19) using function values at the Ni neighbor nodes and
least-square approximation techniques.

The first-order Taylor expansion is given by:

. of of of
i=fntdxj—| +dy;—| +dz;—| +o(dx;+dy;+dz;).
Ji=1w xj(?xl |m yj(?xz'm Z/8x3 |Pi o(dxj+dy;+dz) 201

The first order GFD schemes can be obtained similarly from the following system:
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dx| dy1 dzy f,l fi _fPi
: : : | S2 | = :
dei dei dei f’3 Pi fNi -/ Pi (21)
2" order center difference scheme was used for the time derivative term:

62 n+l _ 2Ny n—1

A At ¥ +o(Ar%)

o A2 (22)

Substituting all the GFD schemes and (22) into (12)—(14), we obtained the final linear
system for the displacement function:

s

Ku=f. (23)

The vector = (uq, Uy, U3)T is the displacement solution at time step (n + 1).

2.4 3D Re-Construction, Shrink-Stretch Process, and GFD Method Validation

Under the in vivo condition, the artery is axially stretched and pressurized, thus axial and
circumferential shrinking was needed a priori to generate the starting plaque geometry for
the computational model. The shrinkage in axial direction was 9% so that the vessel would
regain its in vivo length with a 10% axial stretch. Circumferential shrinkage for lumen and
outer wall was determined so that: 1) total mass volume was conserved; 2) plaque geometry
after 10% axial stretch and pressurization had the best match with the original in vivo
geometry. Steady pressure condition Pin = 100 mm Hg was used in the model. The Young’s
modulus was set to E = 3.6e + 6 = 360 KPa based on our experimental data [Kobayashi,
Tsunoda, Fukuzawa, Morikawa, Tang, Ku (2003); Tang et al. (2008); Tang, Yang, Zheng,
Woodard, Saffitz, Petruccelli, Sicard and Yuan (2005)] and current literature [Fung (1993);
Humphrey (2002)]. Fig. 4 compares the contours obtained from the GFD model with MRI
contours. While some variation can be observed due to the stretch and pressurization, the net
wall thickness errors (averaged over all 1200 data points) were less than 2%.

A commercial finite element software package ADINA (ADINA R & D, Inc., Watertown,
MA) was used to validate our GFD model. ADINA has been validated by hundreds of
realistic engineering and real life applications and is well accepted in the industry and
research communities [Bathe (1996); Bathe (2002)]. We have been using ADINA in the past
12 years to construct and solve 2D/3D artery models which were validated by experimental
measurements [Tang et al. (2005, 2008)]. Finite element ADINA models were constructed
for all three time points T1, T2 and T3 following the same procedures using in [Tang et al.
(2005)]. Comparisons of results from the two models are given in Section 3.

2.5 Vessel Wall Thickness Definition and Quantification of Plaque Growth Functions

Plague GFD models were constructed based on in vivo MRI data at Time 1 (T1), Time 2
(T2) and Time 3 (T3) and solved to get 3D plaque geometry (which matched in vivo MRI
geometry with errors less than 2%) and stress/strain data. Slices from the three scans (T1, T2
and T3) were matched using the carotid bifurcation as the registration point (see Fig. 2). In
this paper, vessel wall thickness (WT) was selected as the measure for plaque progression.
For each matched slice, 100 evenly-spaced points from the lumen were selected and a
piecewise equal-step method was introduced to calculate wall thickness (Fig. 5). Each slice
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was divided into several segments according to its geometry (4 for this plaque sample). For
each segment, equal step is used for inner and outer boundaries respectively to choose equal
number of nodal points. The corresponding points on the inner and out boundaries are paired
and the distance between the paired points are defined as vessel wall thickness at the given
lumen point (Fig. 5). This method is sufficient for the cases covered in this paper.

Using the plaque geometry and stress data at T1 and T2, four plague growth functions (GF1,
..., GF4) were introduced to predict “next time step” plaque geometry:

d
GF1G, J=ao(j+a ()X i Jybar() % | (i) -,
L' (24)

(25)

(26)

GFA(, j)=ao())
+ai(j)
X [, (@,
Dtax(j)
X [,
=1, p+az(j) X f;,@0
+1, D+aa(j)

ar, .

X ELz(Z,
At
+as(j)
X op,(,
D+as())

do
X —| (i, ) At
dt |T3 (27)

where ax(j) are coefficients of the growth functions to be determined using T3 data, f can be
displacement variables or wall thickness, ¢ is the maximum principal stress at the nodal

point, %L (i, =282 " \which could also be calculated using numerical steps in the
simulation, At = time step in simulation, j = 1, 2, ... 8 is the slice number, i is the index for
the points on each slice. GF1 uses wall thickness at one nodal point x; only. GF2 added
neighboring points xj—; and X; + 1 to GF1. GF3 included both WT and stress. GF4 added
neighboring points xj—; and X; + 1 to GF3.

Nodal positions of the selected 1200 nodal point pairs (100 per lumen including CCA, ECA
and ICA) on plaque inner and outer boundaries obtained from the GFD model at T3 were
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used to determined the coefficients ai(j) in GF1-GF4. Least square approximations were
used to reach the best fit. RZ values of the fitting results are given in Table 1.

2.6 Plaque Progression Simulation

d
fz‘z_ (k+1)(i’ .j):ao(.j)+al (j)X[W*sz_ k(i’ j)+(1—W)_fT2(i, ])]+('12(])’kd_{| (l» j)'Atk]’

3 Results

Starting from the plaque geometry at T2 and using the plaque growth functions determined
in 2.5, the following procedure was used to simulate plaque progression and try to reach best
agreement with plaque geometry at T3 obtained from GFD model (called the target T3
geometry from here on):

Step 1. Start from the original in vivo MRI geometry at T2, use proper shrinkage to get
the zero-pressure numerical starting geometry;

Step 2. Discretize the geometry using the meshless GFD method, solve the model to get
plaque geometry and stress/strain distributions under specified pressure conditions;

Step 3. Set

Jra_o( D=1 (0 ) (28)

sz_ 1(i’ j):frz(i’ j)"‘(fm(i’ - frz(iv N/m, (29)

Step 4. We use m time steps to go from T2 to T3. For K =1, ..., m—1, do the following
(use GF1 as an example, GF2-GF4 are similar)

Step 4-1:
(30)

.. g L ()~ f . i.j) . .
where % G, P b b 8 A=y — =512, fis the x and y coordinates of

nodal points of inner and outer boundaries for each slice.

Step 4-2. Adjust internal nodal points as needed;
Step 4-3. Solve the plague model using the updated plague geometry;
Step 4-4. Repeat Steps 4-1 to 4-3 till numerical time reaches T3.

The neighboring points and stress terms in GF2—-GF4 were handled in similar ways. The w-
value in the simulation formula was determined numerically to have the best matching with
plague T3 geometry. Results obtained from the simulation code are presented in next
section.

One patient data with three time point MRI scans was used to construct the GFD models and
demonstrate the simulation process. Results from GFD models were compared with that
from ADINA models for model and method validation. Simulation errors from the four
selected growth functions were compared. Details are given below.
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3.1 3D Meshless GFD Methods Provided Good Agreement with ADINA Solutions

Figure 6 compares plaque maximum principal stress (Stress-P1) obtained from both GFD
and ADINA models on slice S8 and on a bifurcation cut surface. GFD results agreed well
with ADINA results (error < 3%).

3.2 Plaque Progression Simulation Using Growth Function GF1

Four growth functions were used to simulate plaque progression from T2 to T3 following
the procedure described in 3.3. Fig. 7 gives the overlapping contour plots of the simulated
resultsatt=T2 + (T3 — T2)/4, T2 + (T3 — T2)/2, T2 + 3*(T3 — T2)/4, and T3, showing
good agreement between simulated and actual plaque progression. Fig. 8 gives the 3D
stacked view of the simulated plague geometries at 4 time steps.

Fig. 9 shows 3D stack views of simulated plaque progression using GF2, GF3, and GF4. It
is clear that GF2 and GF4 (with neighboring points) provided better agreement with the
target T3 geometry, compared to GF1 and GF3, respectively. Similarly, GF3 and GF4 using
both wall thickness and stress data led to better match with target T3 geometry than that
given by GF1 and GF2.

To quantitatively compare the errors associated the four growth functions, we define the
absolute and relative errors as:

Absolute Error:ZISimulated WT(i) — TargetWT_ T3(i)|/1200, 31)

Relative Error=Absolute Error/ Average Wall Thick at73, (32)

Average Wall Thickness:ZWT_ T3(i)/1200, 33)

where 1200 = total number of nodal points selected from inner boundary, target WT_T3 is
the plaque wall thickness at T3 obtained from GFD model with axial stretch and pressure
applied to reach best match with MRI geometry. The errors for the simulated plaque
geometries using GF1-GF4 are given by Table 2. GF4 gave the best match with the target
T3 geometry, which is 4.45%, only about 1/3 of the error given by GF1.

4 Discussion

4.1 Mechanisms Governing Plague Progression and Computational Simulation

It is well-known that atherosclerotic plaque progression is a multi-faceted process involving
not only mechanical factors, but also plaque type, component size and location,
inflammation and lumen surface condition, biological processes including many different
cell activities, blood conditions such as cholesterol level, diabetes, changes caused by
medication, diet, life styles, exercise, emotions, etc. To reproduce the realistic plaque
progression process accurately, we need to know the real mechanisms governing the
progression and real-time information about all the factors involved in the process. To be
honest, little is known about real human plaque progression mechanisms based on patient-
tracking data. And it is absolutely impossible to have complete real-time patient-tracking
data for the duration of plaque progression to its maturity (up to 50 years). Investigations
and findings from all the channels, modalities and disciplines could be integrated together to
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obtain better and more thorough understanding of the complicated atherosclerotic
progression process. Our computational simulation approach takes the actual multi-year
plaque progression data to simulate future growth, based on the assumptions that the trend
that led to the current state would continue into the future. In other words, the governing
mechanisms (whether we know them or not) would remain the same: the contributing
factors would continue to contribute the same way as they did in the past, with the changes
taken into consideration by the terms included in the plaque growth function.

Our results indicated that the growth function with neighboring points and structural stress
included provided better matching with the target geometry, with an error of 4.45%,
compared to an error of 11.56% given by a growth function without neighboring points and
structural stress terms. It is reasonable to expect that growth functions including flow shear
stress, blood chemical conditions, cholesterol level and other related factors may lead to
better progression simulation results.

4.2 Significance of the Meshless GFD Method

Human atherosclerotic plaques have complex geometries. Mesh generation will take
considerable effort to build a finite element plaque model. Plaque progression simulation
requires that plaque geometry be adjusted for each numerical time step. One major
limitation of finite element models or other similar models which involve mesh generation is
that re-meshing of the structure domain is extremely time consuming and hard to be
automated. This makes mesh-based simulation code for progression simulation near
impossible. By using the meshless GFD method, we can adjust computational nodes in the
plague anyway we want to grow the plaque as the growth function dictates. And this can be
written into the computational code so that it is done automatically. The method and model
developed in this paper can be applied to many other biological and engineering processes
where the computational domain changes in the process being investigated.

4.3 Model limitations

Clearly the current model is very limited and serves as initial demonstrations of the GFD
method and the potential significant contributions from the progression simulation model.
The material model needs to be extended to 3D nonlinear models to reflect artery stiffening
behaviors. Plague components should be included in the model. Fluid-structure interactions
should be added. And the growth functions need to be adjusted to include fluid shear stress,
blood chemical conditions, and the proper terms that can represent the plaque growth trend.
Better understanding of the biological and mechanical factors will help us to better
formulate the growth function.

5 Conclusion

We believe that this is the first time that 3D human carotid atherosclerotic plaque
progression was simulated based on patient-specific plaque morphology and pointwise
plaque growth functions derived from multi-year MRI data. Our results indicated that our
proposed progression simulation process was able to accurately predict future plaque
morphology if the current progression trend was continued. The 3D meshless GFD method
worked well for the progression model. The predicted progression by the growth function
including neighboring points and structural stress terms was considerably more accurate
than that given by other growth functions. The current 3D structure model can be extended
to 3D model with fluid-structure interactions and more terms can be added to the growth
functions for better predictions. More case studies are needed to validate our findings.
Accurate plaque progression simulation adds the time dimension to plaque vulnerability
assessment strategies and should improve our predicting accuracies.
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(a) 3D View, Time 1 (b)3D View, Time 2 (c)3D View, Time 3

Figure 1.

Re-constructed 3D geometry of a carotid plaque based on in vivo serial MRI data. Three
time point data are shown. T1, T2 and T3 refer to time points from here on, unless otherwise
indicated. Scan interval: T1-T2, 642 days; T2-T3, 519 days. Red — lumen; Cyan-outer wall;
Yellow - necrotic core; Fresh red - hemorrhage in necrotic core); Purple - loose matrix; Dark
blue - calcification; Green - fibrous cap.
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Figure 2.

Segmented contour plots of a carotid plaque at three time points from a participating patient
obtained from multi-weighting MRI slices. Carotid bifurcation was used as the registration
point to match slices and 8 matched slices (S1-S8) were selected for this progression
simulation study. Red: necrotic lipid core; Black: calcification.
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(a) The Plaque with Distributed (b) 4 Selected Leader Nodes (P,-P;)  (c¢) 2D Plotof'a LeaderNode with Round
Nodal Points. with Neighboring Points. Supportand Neighboring Points.

Figure 3.

Schematic drawing of meshless GFD scheme derivation and nodal point distributions. (a)
The plaque with distributed nodal points; (b) 4 selected leader nodes with round support and
neighboring points; (c) 2D plot of a leader node with round support and neighboring points
(Zj) for easy viewing.
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(a) MRI Contours
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(b) Contours from 3D GFD Model
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(c) Comparison between MRI and GFD Contours

Figure 4.

Comparison of MRI contours and GFD results after the shrink-stretch process. (a) MRI
contour plots; (b) Contours from GFD model; (c) Comparison between MRI and GFD
contours. Black: MRI; Red: GFD.
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(a) Segments and Point (b) Segments and Point
Assignments on S1 (CCA) Assignments on S8

Figure 5.

Piecewise equal-step method for vessel wall thickness definition. (a) Segments and point
assignments on Slice 1; (b) Segments and point assignments on Slice 8. CCA = common
carotid artery. ECA = external carotid artery. ICA = internal carotid artery.
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(a) Stress-P; on S8, GFD Model (b) Stress-P; on S8, ADINA Model
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Figure 6.

GFD model validation: Comparison of plaque maximum principal stress (Stress-P1) from
GFD and ADINA models on Slice 8 and a bifurcation cut surface indicates that GFD Stress-
P1 solution has a good agreement with that from ADINA model (error < 3%).
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(a) Simulated Contour Plots at =T2+ 0.25*(T3-T2).
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a Simulated contour plots at 4 intermediate time steps compared with the target T3 plaque
% contours as T3. Blue: target contours (plaque geometry at T3 obtained from GFD model);
- Red: simulated plaque contours converging to the target contours).
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(a) GF2 Simulated Plaque Progression 3D Stack View.

t1=T2+ 0.25%(T3-T2).  ©2=T2+0.5%(T3-T2). t3=’[‘2+0.75*(T3—T2). t4=T3, Final Time.

(c) GF4 Simulated Plaque Progression 3D Stack View.

t1=T2+ 0.25%(T3-T2). 2=T2+ 0.5%(T3-T2). 3=T2+0.75%(T3-T2). t4=T3, Final Time.

Figure 8.
3D view of simulated plaque geometries converging to the target geometry.

Comput Model Eng Sci. Author manuscript; available in PMC 2011 January 1.

Page 24



duasnuely Joyiny vVd-HIN 1duosnuey JoyIny vd-HIN

duasnuely Joyiny vd-HIN

Yang et al.

Page 25

(a) GF2 Simulated Plaque Progression 3D Stack View.
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t1=T2+ 0.25*%(T3T2).  2=T2+ 0.5%(T3T2). t3=T2+ 0.75*%(T3T2). t4=T3, Final Time.

Figure 9.

3D stack view of simulated plaque progression geometries using three growth functions
GF2, GF3, and GF4 showing including neighboring points and stress terms led to better
match with target T3 geometry.
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Table 2

Growth function with neighboring points and stress terms provided much better agreement with the target T3
geometry.

Growth Function GF1 GF2 GF3 GF4

Average T3 WT (cm) | 0.15857 | 0.15857 | 0.15857 | 0.15857

Absolute Error (cm) | 0.01833 | 0.01014 | 0.01307 | 0.00706

Relative Error 11.56% 6.39% 8.24% 4.45%
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