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Summary
In this paper, we review current practices for establishing the resolution in single-particle
reconstructions. The classical Raleigh criterion for the resolution is not applicable in this case; and
the resolution is commonly defined by a consistency test, whereby the data set is randomly split in
half and the two resulting reconstructions are then compared. Such a procedure, however, may
introduce statistical dependence between the two half-sets, which leads to a too optimistic
resolution estimate. On the other hand, this overestimation is counteracted by the diminished
statistical properties of a mere half of the data set. The “true” resolution of the whole data set can
be estimated when the functional relationship between the data size and the resolution is known.
We are able to estimate this functional by taking into account the B-factor and the geometry of
data collection. Finally, the drawbacks of resolution estimation are entirely avoided by computing
the correlation of neighboring voxels in the Fourier domain.
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1. Introduction
The concept of resolution in optics is related to the minimal distance between two points in
the image at which they can be still be distinguished from one another. According to the
Rayleigh criterion, this happens when the central peak of the image of one point source falls
exactly on the first zero of the image of the second point source. However, depending on
experimental conditions (such as the signal-to-noise ratio) or a priori information regarding
the imaged object, this limiting distance could be further reduced (see, e.g., (Di Francia,
1955; Shahram and Milanfar, 2006)). For example, if the image of a single point (the point
spread function) is circularly symmetric and it is known that there are exactly two point
sources, then their image will no longer be rotationally symmetric, and the distance between
the point sources can be readily obtained by fitting. The definition of resolution is hence
rather subjective and specific to the imaging modality and the underlying assumptions. This
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concept of resolution cannot be applied to high-resolution electron microscopy at any rate,
since it does not lend itself to a suitable experiment (Frank, 2006).

In both crystallography and statistical optics, it is common to define resolution by the orders
of Fourier components available for the Fourier synthesis of the signal part of the image.
This so-called crystallographic resolution Rc and Raleigh's point-to-point resolution distance
d for an instrument (which is diffraction limited to Rc) are related by d=0.61/Rc. In electron
crystallography (Glaeser et al., 2007), the signal-related Fourier components of the image
are concentrated on the points of a regular lattice, the reciprocal lattice, while the noise-
related components form a continuous background. Thus, resolution can be determined by
the radius of the highest diffraction orders that stand out from the background; e.g., by
comparing the density of the peak with the mean density of the background surrounding the
peak.

In single-particle averaging or reconstruction, on the other hand, due to the absence of a
periodic order, there are no points of high concentration in the Fourier domain coming from
the signal component. Therefore, a different approach to defining and determining the
resolution is needed. Common practice today is to look for data consistency by splitting the
data set randomly in half and compare the two resulting averages (or 3D reconstructions).
The comparison is performed over rings (or shells, respectively) with increasing radius in
Fourier space using a suitable measure of reproducibility. An alternative approach, which is
gaining popularity, is to analyze the 3D density map reconstructed from the whole data set,
by computing the cross-correlation between neighboring voxels in the Fourier domain. The
two techniques can be related by a simple formula as we will show below.

The main factors limiting the theoretical resolution (which is beyond 0.1 Å for typical
electron wavelengths) in high-resolution electron microscopy are inelastic scattering,
specimen movement, and foremost imperfections of the electron lens (e.g., astigmatism,
aberrations, aperture function, etc.). An additional factor is the low signal-to-noise ratio in
the data, which is due to the low electron dose required to avoid radiation damage.
Furthermore, in single-particle reconstruction, alignment of particles introduces an
additional source of error.

In the next section, we describe the various approaches to resolution estimation known in the
literature, which can be classified into three main categories: the half-set comparison
methods, those that make multiple comparisons of the whole data set, and finally those that
analyze the reconstructed 3D density map reconstructed from the total set. In contrast to
methods for analyzing periodic structures, single-particle methods rely on the averaging
over numerous correctly-aligned images, for the purpose of eliminating noise and bringing
out common feature. Thus, the size of the data is an important determinant in achieving high
resolution. Section 3 addresses the functional relationship between the resolution and the
number of particles, which is inherent in the geometrical sampling in Fourier space. The
concept of B-factor is also used, which models some of the aforementioned resolution-
limiting factors. We believe our analysis is important in determining, among other relations,
how many particles are needed to achieve a certain resolution or what is the resolution
achievable for a given data size. In the last section, we provide conclusions and discussion.
It should be noted that in this paper that, unless otherwise stated, “averaging” refers to both
the usual averaging in 2D as well as the 3D reconstruction from projections.

2. Resolution estimation in single-particle reconstruction
In the development of single-particle techniques, measurement of resolution first surfaced in
the context of 2D averages (Frank, 1972, 1975; Frank et al., 1970; Frank et al., 1981; Kessel
et al., 1985; Saxton and Baumeister, 1982; Unser et al., 1987). The general principle is to
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find the limit, in Fourier space, out to which data are found to be consistent by some
quantitative measure of similarity. Subsequently, definitions and recipes for measurement
were readily generalized to the measurement of resolution in 3D reconstructions (Harauz
and van Heel, 1986; Penczek, 2002; Sousa and Grigorieff, 2007; Unser et al., 2005).
However, as we will see, the way in which the 3D reconstruction is synthesized from the
projection data offers a novel opportunity for resolution determination, by multiple
comparisons.

In the following, approaches to resolution measurement are initially introduced in the 2D
formulation. Unless stated otherwise, these are immediately applicable to the 3D case, as
well. We then proceed to discuss those methods that have no 2D equivalent since they are
tied to the unique relationship between 2D experimental data and 3D reconstruction.

Approaches to defining resolution in single-particle reconstruction can be grouped into three
main categories: one (Section 2.1) that is based on the comparison of two independent
averages in the Fourier domain, another one (Section 2.2) that is based on multiple
comparisons of all the images participating in the average, and finally, one category (Section
2.3) where solely the reconstructed 3D density map is analyzed (Sousa and Grigorieff,
2007). In the first group are the differential phase residual (Frank et al., 1981) and the
Fourier ring correlation (Saxton and Baumeister, 1982; van Heel et al., 1982); while the
spectral SNR (Unser et al., 1989; Unser et al., 1987) and the Q-factor (Kessel et al., 1985;
van Heel and J., 1980) are part of the second group. We note, however, that all the listed
criteria have in common that they ignore the falloff of the signal in Fourier space. That is, a
resolution of 1/20 Å-1 might be found by a consistency test, even when the signal power is
very low beyond 1/30 Å1. For example, in (van Heel and Stoffler-Meilicke, 1985) a
resolution of 1/17 Å-1 found by the Fourier ring correlation has only a minimal signal power
even beyond 1/25 Å-1. Thus, a resolution assessment ideally should be accompanied by an
assessment of the range and falloff of the power spectrum.

2.1 The half-set comparison method
In the cross-resolution criteria, the aim is the reproducibility of a density map obtained by
averaging, when based on two randomly drawn subsets of equal size. In order to avoid the
inclusion of material surrounding the molecule, as its inclusion might lead to overly
pessimistic estimate of the resolution, it is tempting to use a mask that narrowly defines the
region of the molecule. In such attempts, however, it is advised to use a “soft” mask with a
slow (e.g., a Gaussian) falloff at the edges, rather than a binary mask, since the latter
introduces artificial correlation.

Let F1(k) and F2(k) be, respectively, the discrete Fourier transforms of the two averages,
where k = (k1,k2) is the spatial frequency assuming all the values within the Nyquist range.
The Fourier transforms are then compared, and a measure of discrepancy is computed. The
discrepancy measure is in turn averaged (in the usual sense) over rings of width Δk and

radius . The result is then plotted as a function of the ring radius, giving rise
to a curve that characterizes the discrepancy between the two subset averages over the entire
spatial frequency domain. Finally, a resolution figure is derived from this curve. The most
popular discrepancy measures are the differential phase residual (Frank et al., 1981) and the
Fourier ring (or shell, if in 3D) correlation (Saxton and Baumeister, 1982; van Heel et al.,
1982).

In practice, special care must be taken to ensure statistical independence of the two half-sets.
Both the reference-based alignment (Frank, 1975) and the reference-free alignment (Penczek
et al., 1992) inevitably introduce statistical dependencies between the two half-set averages
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being compared and hence cause an overestimation of the resolution. This problem, which is
primarily caused by the fitting of the noise into intermediate averages (also referred to as
“over-fitting” in (Sousa and Grigorieff, 2007) during the alignment process, has been
extensively studied in (Grigorieff, 2000; Penczek, 2002; Yang et al., 2003). It was suggested
in (Grigorieff, 2000) to use two markedly different references at the outset, and to keep the
two randomly selected image subsets separated throughout the procedure. It appears that this
separation significantly reduces the resolution overestimation. On the other hand, it is
unclear how different the initial references of the two subsets can be chosen without
jeopardizing the performance of the projection alignment algorithm. Additional statistical
limitations of the half-set comparison methods are discussed in Section 2.1.3.

2.1.1 Differential phase residual—The differential phase residual (DPR) measures the
phase difference between the two Fourier transforms, weighted by the average Fourier
amplitude. If Δϕ(k) is the phase difference between the two Fourier transforms for each
discrete spatial frequency k, then the differential phase residual is defined as

(1)

The sums are computed over Fourier components falling within rings (or shells, in the 3D
case) defined by spatial frequency radii k±Δk; k = |k| and plotted as a function of k. In
principle, as in the case of the Fourier ring correlation to be introduced later, the entire curve
is needed to characterize the degree of consistency between the two averages. However, it is
convenient to use a single figure, k45, which is the spatial frequency for which Δϕ̄(k, Δk) =
45°. As a conceptual justification for the choice of this value, one can consider the effect of
superimposing two sine waves differing by Δϕ̄. If Δϕ̄ is less than 45°, the waves tend to
enforce each other, whereas for any Δϕ̄ > 45°, the maximum of the one wave already tends
to fall in the vicinity of the zero of the other, and destructive interference starts to occur.

A characteristic of the DPR is that it is defined in the Fourier domain over successive rings
(or shells) of radius k, rather than globally over the entire circle (or ball, if in 3D) of radius
k. Since |F1(k)| falls off rapidly as Δϕ, the figure k45 obtained with the global measure
would not be very meaningful: good agreement in the lower frequency range can make up
for the poor agreement in the higher frequency range and hence produce an over-optimistic
value for k45.

It was pointed out in (van Heel, 1987) that Eq. (1) is sensitive to the relative scaling of the
two Fourier transforms. Therefore, to circumvent this undesired property one can, for a
given frequency k, introduce an extra dimension s that multiplies |F1(k)|, let s vary, and
choose Δϕ̄(k, Δk) that attains the minimum (Frank, 2006). The DPR relates to the measure
often used in electron and X-ray crystallography to assess reproducibility and the
preservation of symmetry.

2.1.2 Fourier ring/shell correlation—Like the DPR, the Fourier ring correlation
(Saxton and Baumeister, 1982; van Heel et al., 1982) (or the Fourier shell correlation (FSC
(Harauz and van Heel, 1986); if in 3D) is also computed over successive rings/shells of
certain radius and width, but it directly compares the two Fourier transforms
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(2)

(The discussion in this paragraph applies to the FSC curve as well.) The FRC curve starts
with a value of near one at low spatial frequencies, which indicates perfect correlation, then
falls off more or less gradually, until it reaches region in which the curve becomes almost
flat but with oscillations. The resolution is then typically derived according to either one of
two criteria: (i) the measured FRC is compared with the standard deviation of the FRC for
the pure noise case: , where N[k, Δk] denotes the number of samples in the
Fourier ring with radius k and width Δk, or (ii) the measured FRC is compared with an
empirical threshold value (see Figure 1). Under this notation, advocates of the first criterion
have been using 2σ (van Heel and Stoffler-Meilicke, 1985), 3σ (Orlova et al., 1997), or 5σ
(Radermacher, 1988;Radermacher et al., 2001); whereas a FRC=0.5 (Bottcher et al., 1997)
is the most frequently used in the second criterion. It is argued in (Rosenthal and Henderson,
2003) that the threshold of 0.5 should be applied instead to the FRC between the best map
obtainable from whole data set and the ideal noise-free structure; doing so leads to the
FRC=0.143 criterion. When comparing the two criteria, the FRC= 3σ criterion tends to
provide a much better numerical resolution than that from the FRC=0.5 criterion. A
noteworthy comment on this matter can be found in the appendix section of (Malhotra et al.,
1998), which puts forth reasons for a fixed-value FRC threshold. In contrast, in (van Heel
and Schatz, 2005) it is argued strongly in favor of the criterion based on the σ.

DPR vs. FRC: The FRC is much more popular nowadays than the DPR. Experience has
generally shown that the FRC=3σ criterion gives consistently a more optimistic answer than
the DPR= 45°. This observation had been justified by a theoretical analysis in (Unser et al.,
1987). Further numerical results reported in (Radermacher, 1988) showed that an FRC= 2σ
cutoff is equivalent to SNR=0.2 and that the DPR= 45° cutoff is equivalent to SNR=1. Thus,
the FRC cutoff and even the DPR cutoff with its fivefold increased SNR seem quite
optimistic; on the other hand, for well-behaved data, the DPR curve is normally quite steep,
so that even a small increase in the FRC cutoff will often lead to a rapid increase in the
SNR.

It is also important to mention that a drawback of the FRC method (as already indicated by
other researchers; see e.g. (Unser et al., 2005), which is also the case for the DPR method, is
that both are invariant to isotropic filtering of the whole data set: the multiplication of the
numerator and the denominator in Eq. (1) and Eq. (2) by a non-vanishing filter leaves the
respective curves unchanged, which implies that the same resolution estimate is obtained
even after, for example, a low-pass Gaussian filtration is applied to the data. The reader is
also referred to (van Heel, 1987) for discussions on some arithmetic variants of these two
measures as alternative means of defining and assessing the resolution.

2.1.3 Statistical limitations of the half-set criteria—The resolution estimation
methods mentioned thus far (DPR and FRC) are all based on the comparison of two
“independent” averages in the Fourier domain. In addition to a potential statistical
dependence of the half-sets, which was discussed earlier, there are two other disadvantages
with this type of method; one is the statistical fluctuation coming from the splitting of data
set in half, and the other one is the systematic underestimation of the resolution, since the
total set has better statistics than either half-set. The first drawback can be ignored if the
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number of particles N is large. As for the second disadvantage, one can resort to some
numerical relationship between N and the estimated resolution, then perform an
extrapolation from multiple resolution tests with increasing number of particles, up to N, as
was done in (Morgan et al., 2000), in which the resolution dependence was assumed to be of
the form log(N). Later, in Section 3.2, we discuss a more precise equation that relates the
two quantities, based on both theoretical results and empirical observations.

2.2 Evaluation of the whole data set
In the second category, we point out the technique of the spectral signal-to-noise ratio,
which is applicable to both 2D (Unser et al., 1989; Unser et al., 1987) and 3D (Penczek,
2002; Unser et al., 2005) and the Q-factor (Kessel et al., 1985; van Heel and J., 1980), which
only makes sense in 2D.

2.2.1 Spectral signal-to-noise ratio—This resolution measure was first introduced in
(Unser et al., 1987) (see also (Unser et al., 1989)), and it was later extended to 3D forms in
(Penczek, 2002; Unser et al., 2005). It is based on a measurement of the SNR as a function
of the frequency and has better statistical performance than the DPR and the FRC, since here
the whole data set is used. It is remarked in (Unser et al., 1987) that the SSNR relates
directly to the Fourier-based resolution criteria commonly used in crystallography and to the
DPR and the FRC.

Considering first the 2D case: let  be the Fourier transform of the n-th projection (n=1,
…,N) at a pixel r(k) in a ring of radius k. There are nk pixels in this ring, so r = 1,…, nk.
Assuming the following additive noise model: , where  is the true but unknown
signal in the r-th pixel, and  is independent Gaussian noise in individual images, such that
the expectation of  is denoted by σr. The SSNR for the ring of radius k is then defined as

(3)

which is the ratio between the energy of the signal and that of the noise, scaled up by the
size of the data set, in the ring of radius k. (Note that the dependency on k of the right hand
side of Eq. (3) is implicit through the variable r.) An unbiased estimator of the SSNR in Eq.
(3) is given by S(k)−1, if S(k) > 1, where S(k) is the spectral variance ratio

(4)

and Fr is an estimator of the signal component  (also used in the numerator)
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(5)

(The estimator is 0 if S(k) ≤1; it does not take into account the so called B-factor, which is
addressed in Section 3.1.) Generally, the SSNR decreases with increasing spatial frequency,
and the resolution is taken to be where SSNR(k)=2. Consideration of a numerical model has
shown that this limit is roughly equivalent to DPR=45° (Unser et al., 1987). A desirable
feature of this resolution measure is that a confidence interval has also been assessed (Unser
et al., 1987). In relation to the FRC, it can be shown that

(6)

which is of the same kind of relation given earlier in (Frank and Al-Ali, 1975): the SNR
there is related to the cross-correlation function in the same manner; we note, however, that
the relationship of Eq. (6) is not mathematically exact but only approximate.

The concept of the SSNR for 3D reconstructions is defined as follows. Recall that in the 2D
case, the signal component  in Eq. (3) was estimated as the 2D average over the Fourier
transform of the whole data set; i.e., Fr in Eq. (5). The equivalent operation in 3D would be
that the signal component were estimated as the Fourier transform of a 3D reconstruction
from the whole data set. We can write explicitly the 3D reconstruction in terms of the data if
the Fourier nearest-neighbor interpolation reconstruction method is used (Penczek, 2002);
i.e., Fr becomes

(7)

where  is the Fourier transform of the n-th measured projection (n=1,…,N) and the

summation  covers only those Lr >0 measurements that pass through voxel r = r(k),
situated in the shell of radius k. Because of the unevenness of the distribution of the central
planes (a consequence of the geometrical sampling), the number of Fourier components in a
voxel, Lr, will be variable and specific to each voxel. (In 2D, the number of Fourier
components in all the pixels was simply N.) As for the noise component, recall that in 2D,
differences between the data and the 2D average Fr needed to be calculated; see Eq. (4). In
the 3D case, the noise component would be estimated by computing the differences (in the
Fourier domain) between the data and the reprojections of the 3D reconstruction along the
same directions as those in the data. (It is necessary to reproject the 3D reconstruction to
compute the differences, since the reconstruction is 3D in nature and the data are in 2D.)
Because of the choice of the reconstruction algorithm and by the virtue of the Fourier Slice
Theorem, the Fourier transform of a reprojection of the 3D volume is precisely the right
hand side of Eq. (7). Thus, the spectral variance ratio of Eq. (4) becomes
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(8)

which is, after subtracting of 1, an estimator of the 3D SSNR

(9)

assuming that the Fourier nearest-neighbor interpolation is used. For the derivations of an
estimator for an arbitrary reconstruction algorithm, see (Unser et al., 2005). The relationship
in Eq. (6) is also valid in 3D.

2.2.2 Q-factor—Used only for 2D resolution estimation, the Q-factor (Kessel et al., 1985;
van Heel and J., 1980) is simply the ratio between the length of the vector sum and the sum
of the length of each vector

(10)

where Fn(k) is the Fourier transform of a 2D image from the data, which is viewed as a
vector in the complex plane. Clearly, 0 ≤ Q ≤ 1. For pure noise, it can be shown that the
expected  (Einstein equation). The Q-factor is a reasonable indicator for the
presence of a signal component in a given Fourier coefficient as realized in N images. A
map of Q(k) readily shows weak signal at high spatial frequencies standing out from the
background and thus enables the ultimate limit of resolution recoverable (potential
resolution) to be established. A quantitative statement can be obtained by averaging this
measure over rings in the Fourier domain, and plotting the result, say Q′(k), as a function of
the radius k = |k|. The stipulation that Q′(k) should be at least  can be used as
resolution criterion. For some additional considerations regarding the statistics of the Q-
factor, see (Grigorieff, 1998).

A variant of the Q-factor is called the S-factor (Sass et al., 1989), which is related to the

structural content (or energy): . For pure noise, the
expected S(k) is 1/N[k, Δk]; hence, a resolution criterion can be that S(k)= 3/N[k, Δk].

2.3 Evaluation of 3D reconstruction: Fourier neighbor correlation
The third and last category comprises the so-called Fourier neighbor correlation (FNC)
(Sousa and Grigorieff, 2007), which computes the correlation between neighboring voxels in
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the Fourier domain. It is used for 3D reconstructions only; it can be related to the SSNR via
a simple formula; and, unlike the SSNR, availability of the projection data is not required.
The FNC is defined as

(11)

where, for a given voxel corresponding to frequency k, N(k) is a neighborhood of that voxel,
consisting of the six face-adjacent voxels and F(k) is the Fourier transform of the volume. It
can be shown (Sousa and Grigorieff, 2007) that

(12)

where FNCT(k, Δk) and FNCN(k, Δk) are the Fourier neighbor correlation of, respectively,
the noise-free structure and a pure-noise volume (additive noise model is assumed). From
Eq. (12), one can then derive the SSNR (and in turn the FSC via Eq. (6)), based solely on the
reconstructed structure, without the need of the data; see Figure 2. An example of the use of
the FNC for resolution assessment can be found in (Lau and Rubinstein, 2010).

2.4 Experimental evidence from resolved structures
There is now an emerging consensus that evidence for distinct structural features resolved is
the best, irrefutable criterion for actual resolution achieved in a single-particle
reconstruction. Examples for such indicators are the visibility of the major and minor groove
in A-form RNA helices (∼22 Å and 12 Å, respectively); the appearance of alpha-helices as
cylindrical rods (thickness ∼5-7 Å); the appearance of phosphorus atoms as bumps along an
RNA helix with expected distance (∼5 Å); or the ability to see individual strands of beta-
sheets (4.7 Å) (see (Chiu et al., 2005)). These indicators have been used by various authors
to fortify claims of resolution achieved, and they may be used to gauge the utility of data
analysis-based criteria of the kind reviewed here. Alternatively, when an atomic structure is
available for at least one of the components of the structure under investigation, then
comparison with a gallery of low-pass filtered versions will reveal which nominal resolution
figure most adequately describes the structural content (see an example in (Frank, 2006)).

3 Resolution vs. number of particles
The resolution criteria most extensively used are perhaps those based on half-set
comparison, and in particular the FSC=0.5 criterion. However, as already mentioned in
Sections 2.1 and 2.1.3, they come with two shortcomings with opposite effects: one is that it
is inherently based on the statistical properties of merely half the data set and thus leads to a
pessimistic estimate of the resolution; the other is that before being split in half, the entire
data set has been processed in the same way, thus sharing intermediate references in the
entire angular refinement process. The halves of the data set are, therefore, not statistically
independent, which makes the resolution estimate overly optimistic (see (Grigorieff, 2000)).

To “fully utilize” the entire data set, it has been proposed to estimate the “true” resolution of
the full data set by extrapolation from multiple resolution tests with increasing numbers of
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particles, up to the total number in the data set. Legitimate extrapolation could be done if
there were a known functional dependence between the resolution and the number of
particles. A logarithmic type of dependence was in fact observed in (LeBarron et al., 2008;
Liu et al., 2007; Morgan et al., 2000; Rosenthal and Henderson, 2003). In this section, we
attempt to look at a theoretical basis for such a relationship. The same type of relationship
was already discussed in (Henderson, 1995; Rosenthal and Henderson, 2003); however, we
use a simple geometric consideration in our derivations, as well as an important resolution
limiting factor, known as the B-factor.

3.1 B-factor approximation
In analogy with the temperature factor or the B-factor in X-ray crystallography, there is also
a Gaussian falloff in the Fourier transform of the images, which limits the resolution in
electron microscopy techniques. Specifically, resolution-limiting factors such as charging,
specimen instability, and posterior image processing procedures (e.g., alignment and
interpolation errors) can be all modeled together as a Gaussian envelope term that affects the
Fourier transform of the images in a multiplicative way

(13)

where B is referred to as the B-factor. Some authors (e.g. (Glaeser and Downing, 1992;
Thuman-Commike et al., 1999)) introduce the notion of the electron microscopy B-factor,
which is simply one-fourth of B. Equation (13) suggests a way to correct for the B-factor;

i.e., by multiplying Faffected(k) with . However, it should be noted that a
multiplicative envelope term is already taken into account in the theory of partial coherence,
in which the defocus spread term goes like exp (−ak2); while the spatial partial coherence
term goes like exp(−bk6 −ck4 −dk2), where a, b, c, and d are constants. However, in
practice, the effect of spatial partial coherence in modern FEG microscopes as used in
biological structure determination is relatively small, so the envelope term is usually quite
well approximated by a Gaussian envelope term.

Since the Fourier amplitude decay is dependent on instrument quality and performance, it is
not surprising that the values quoted for B in the cryo-EM literature cover a wide range: 110
Å2 (Miyazawa et al., 2003), 400 Å2 (Conway and Steven, 1999), 500 Å2 (Bottcher et al.,
1997), over 1,200 Å2 (Gabashvili et al., 2000), and even over 2,100 Å2 (Thuman-Commike
et al., 1999). These values are usually derived by comparing the radial profiles of power
spectra from electron micrographs with those obtained by low-angle X-ray solution
scattering. However, it was found in (Thuman-Commike et al., 1999) that the subtraction of
noise in the power spectrum results in substantially higher B values than without such a
correction-since at higher spatial frequencies, the Fourier amplitude originating from the
structure is usually overestimated due to the presence of the noise term. To avoid this
complication, it would seem beneficial to use the power spectrum of the density map (in
which noise is supposedly absent), rather than the power spectrum of the electron
micrographs, for comparison with the X-ray scattering profile.

According to the theory of partial coherence, the falloff term should actually include terms
of order higher than 2 (Frank, 1973). Hence, since the only reliable way to determine the
parameter B is by measuring low-angle X-ray scattering data anyway, it is more
straightforward to compare the actual Fourier amplitude of the cryo-EM map (after the usual
CTF correction) and the scattering amplitude (if available). A resulting empirical function is
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thus obtained and used, rather than a B of Gaussian falloff (see, e.g., (Gabashvili et al.,
2000)).

3.2 Relationship between the number of particles and resolution
We turn our attention to establishing a relationship between the resolution and the number of
particles. A theoretical estimate based on electron scattering is in fact already given in
(Henderson, 1995) and used in (Rosenthal and Henderson, 2003) on experimental data.
Following (Rosenthal and Henderson, 2003) (caption of Figure 11), the number of particles
required to achieve a resolution k can be estimated by

(14)

where Nasymm is the number of asymmetric units, 〈S〉2/〈N〉2 is the signal-to-noise ratio
of amplitudes, Ne is the electron dose, and σe is the elastic cross-section of electron. Note
that k in Eq. (14) is equivalent to d-1 in the original formulation.

As far as the dependency of Npart on k goes, one can deduce a similar type of functional
relationship, by just using the geometry of data collection and the B-factor. Recall that in
order to estimate the 3D SSNR (Eq. (9) and with uniform noise) the estimator for the true
signal  was Fr(k) and a B-factor was not considered. Taking into account the definition
of the B-factor (Eq. 13), the estimator becomes

(15)

Let us call  then Φ is a function of Npart and the radius k; this is because the
number of Fourier components, Lr, in a voxel depends on these two quantities. In fact, for a
fixed 3D angular distribution of the particle orientations, Lr is proportional to Npart; whereas
the number of voxels intersecting a great circle of radius k is proportional to k; hence, Φ is

proportional to , and Eq. (15) reads

(16)

where C is the constant of proportionality. Under the fixed-FSC criterion, let γ be the
threshold; then the SSNR is δ = 2γ/(1−γ) (see Eq. (6); e.g., when FSC=γ=0.5, SSNR=δ =2);
and therefore, setting SSNR(k)= δ in Eq. (16), we arrive at

Liao and Frank Page 11

Structure. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(17)

which is a similar type of functional with respect to k as that in Eq. (14). Formula (17) is
sensible in that more particles are needed when either the noise σ2 in the data increases, the
Fourier amplitudes of the structure  (in the absence of the B-factor) decreases, or the
prescribed SSNR δ increases. Since the B-factor captures the falloff of the Fourier
amplitude, for high frequency regime (which is of interest, when it comes to resolution
determination), the dominant term of the functional is the exponential term . This is also
the case in Eq. (14). Even though our formula does not provide a precise Npart for a specified
resolution k (since the constant C is unknown), it can nevertheless be used to estimate Npart
from multiple resolution tests. This is done for example to determine the resolution
achievable if the “whole” data were used (see earlier discussions in the beginning of Section
3). Examples of this type of strategy can be found in (LeBarron et al., 2008;Liu et al., 2007).

4 Conclusions and discussion
Common practices today for defining and measuring resolution in single-particle methods
check for “internal” consistency of the results directly or indirectly, rather than by the
Raleigh criterion, nor by analyzing diffraction spots as permitted in crystallography. The
criterion encountered most often for 3D reconstruction is perhaps the Fourier shell
correlation FSC=0.5, although it comes with two shortcomings with opposite effects: one is
that it is inherently based on the statistical properties of merely half the data set and thus
leads to a pessimistic estimate of the resolution; the other is that before being split in half,
the entire data set has been processed in the same way, sharing intermediate references in
the entire angular refinement process. The halves of the data set are, therefore, not
statistically independent, which makes the resolution estimate overly optimistic. The former
drawback can be overcome by extrapolating from multiple resolution tests with increasing
numbers of particles, up to the total number in the data set, using the functional dependence
between the resolution and the number of particles. Such dependency was already
established in (Henderson, 1995; Rosenthal and Henderson, 2003). However, based only on
the B-factor and the geometry of data collection, we could deduce a similar formula, which
from a practical point of view is equivalent to that given in (Henderson, 1995; Rosenthal and
Henderson, 2003). As for the latter disadvantage, the undesired effect can be reduced by
aligning the two half-sets separately. These two issues are not present in the more recent
resolution assessment strategy known as the Fourier neighbor correlation, which also proves
to be more resilient to noise-fitting, as compared to the FSC.

Highlights

Review of current practices for establishing the resolution in single-particle
reconstructions

Drawbacks of the methods of comparison between two half-sets

Functional relationship between the data size and the resolution revisited

Fourier neighbor correlation as a new way of establishing the resolution
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Figure 1.
Example of Fourier shell correlation curves, with resolution criterion FSC=0.5 indicated.
Reprinted from J. Mol. Biol., 382, J. Sengupta, J. Nilsson, R. Gursky, M. Kjeldgaard, P.
Nissen, J. Frank, Visualization of the eEF2-80S Ribosome Transition-State Complex by
Cryo-Electron Microscopy, 179-187, Copyright (2008), with permission from Elsevier.
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Figure 2.
Example of Fourier neighbor correlation curve and its derived FSC curve. Left panel shows
the FNC curve corresponding to an atomic model of the 50S large ribosomal subunit (Klein
et al., 2001) (PDB code 1JJ2). The density was rendered with a pixel size of 2.44 Å and
centered in a box of size 180 pixels along each side. Right panel displays the FNC-based
FSC curve (Pred. FSC) and the usual FSC curve, after refinement and reconstruction from
30,000 simulated noisy projections (SNR=0.01) of the subunit. The unbiased FSC was
produced by comparing the refined structure with the PDB model. The similarity between
the Pred. FSC and the unbiased FSC shows that the Pred. FSC does not suffer from noise
fitting as does the usual FSC. Reprinted from J. Struct. Biol., 157, D. Sousa, N. Grigorieff,
Ab initio resolution measurement for single particle structures, 201-210, Copyright (2007),
with permission from Elsevier.

Liao and Frank Page 18

Structure. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


