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Abstract
The computational identification from global data sets of stable and predictive patterns of gene
and protein relative expression reversals offers a simple, yet powerful approach to target therapies
for personalized medicine and to identify pathways that are disease-perturbed. We previously
utilized this approach to identify a molecular classifier with near 100% accuracy for differentiating
gastrointestinal stromal tumor (GIST) and leiomyosarcoma (LMS), two cancers that have very
similar histopathology, but require very different treatments. Differential Rank Conservation
(DIRAC) is a novel approach for studying gene ordering within pathways and is based on the
relative expression ranks of participating genes. DIRAC provides quantitative measures of how
pathway rankings differ both within and between phenotypes. DIRAC between pathways in a
selected phenotype contrasts the scenarios where either (i) pathways are ranked similarly in all
samples; or (ii) the ordering of pathway genes is highly varied. We examined gene expression
inGIST and LMS tumor profiles and identified pathways that appear to be tightly regulated based
on high conservation of gene ordering. The second form of DIRAC manifests as a change in
ranking (i.e., shuffling) between phenotypes for a selected pathway. These variably expressed
pathways serve as signatures for molecular classification, and the ability to accurately classify
microarray samples provided strong validation for the pathway-level expression differences
identified by DIRAC.

I. Introduction
The realization of malignant phenotypes in many diseases – notably cancer [1,2] – as
intrinsically pathway-based in origin motivates the interrogation of high-throughput
expression data for studying biologically meaningful pathways. Existing pathway-based
expression analysis tools commonly investigate informative patterns of up- or down-
regulation of grouped genes in different disease states. For example, the gene set enrichment
analysis (GSEA) platform identifies pathways that are significantly enriched for over- or
under-expressed genes [3,4]. Other methods employ a single statistic to represent the
collective activity of a pathway (e.g., mean or median gene expression) [5,6]. Perturbed
levels of pathway activity (i.e., collective up- or down-regulation) are then examined to
identify those pathways most differentially expressed between phenotypes. These
frameworks have been applied to diverse cancer systems and serve as a robust source of
biological discovery [5,7].

Cellular regulation of a pathway can also be characterized in the context of the relative
expression ranking of the participating genes (referred to herein as ordering). It is possible
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that neither the individual pathway genes nor the pathway as a whole will display any
notable over- or under-expression in response to environmental or disease-related stimuli.
Compared to measuring only increases or decreases in expression, regulation of ordering is
reflected entirely in the relative levels of expression for genes within a pathway.

The specific ordering of pathway genes is described by the corresponding ranks of
expression levels (i.e., most expressed to least expressed), and is collectively referred to as a
pathway ranking. We adopted a strategy for representing pathway rankings that is based on
pairwise comparisons of gene expression levels (i.e., the relative mRNA abundance in each
pair of genes). Such pairwise comparisons have been used to build two-gene predictors with
simple decision rules for classification of expression profiles [8,9]. These decision rules
have resulted in highly-accurate two-gene diagnostic classifiers that have proven effective
for molecular identification of cancer [8–10]. As an extension of the relative expression
reversal concept to pathways, we determined the pairwise ordering for each distinct pair of
genes within a pathway, establishing an intuitive and computationally straightforward
method for calculating pathway rankings.

Rank conservation for a pathway describes the extent to which the ordering of genes is
maintained over a population, or the manner in which a pathway ranking is maintained (i.e.,
the specific ordering observed). We have developed a new method, Differential Rank
Conservation (DIRAC), to evaluate how patterns of rank conservation for pathways change
in different phenotypes. Specifically, differential rank conservation occurs in two forms. The
first is differential rank conservation between pathways in a phenotype, where either (i)
pathways are ranked similarly in all samples (high rank conservation); or (ii) pathways for
which gene ordering is highly varied (low rank conservation). In the second case,
differential rank conservation can manifest as a change in ranking (i.e., shuffling) between
two phenotypes for a selected pathway.

We applied DIRAC to analyze gene expression profiles obtained from primary intestinal
tumors in patients with two related sarcomas: gastrointestinal stromal tumor (GIST) or
leiomyosarcoma (LMS).

II. Materials and Methods
A. Microarray Data

The gene expression profiles from 68 sarcoma patients were previously analyzed to identify
a two-gene relative expression classifier that accurately differentiates GIST and LMS
tumors[10]. Given the list {g1, …, gG} of G genes on a microarray, we let X = (X1, …, XG)
denote the corresponding expression profile, where Xi is the expression of gene gi. Our data
then consists of a G x N matrix; the n’th column represents the expression profile xn of the
n’th sample, n = 1, …, N. In addition, each sample is labeled by a class (e.g., phenotype) Y ∈
{1, 2,…,K}; K = 2 for binary classification. The labeled training set is F = {(x1, y1), …, (xN,
yN)}. Expression profiles X and phenotype labels Y are regarded as random variables, and
the elements of F represent independent and identically distributed samples from some
underlying probability distribution of (X, Y).

B. Rank Template Matching for Pathways
Knowing the ordering of the gene expressions within each profile is equivalent to knowing
all of the pairwise orderings, i.e., whether Xi < Xj or Xi > Xj for each distinct pair of genes 1
≤ i, j ≤ G. For example, various rankings for the GS pathway in GIST patients are shown in
Fig. 1. In order to define a template representing the expected ranking of pathway genes
within a class, we consider the probabilities Pr(Xi < Xj |Y = k) for each pair of genes gi < gj
and for each class k. These probabilities are estimated from the training set by computing the
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fraction of samples in each phenotype for which gene gi is expressed less than gene gj. The
class k rank template for a fixed pathway m is the binary vector T(m,k) of length G(G − 1)/2
where the i,jth component is 1 if Pr(Xi < Xj |Y = k) > 0.5 and 0 if Pr(Xi < Xj |Y = k) ≤ 0.5. The
rank template for the GS pathway in GIST patients is highlighted in Fig. 1.

Given an expression profile x, there is then a natural measure for how well the sample
matches the template T(k). The matching score of sample x is denoted by R(k)(x) and is
defined to be the fraction of the G(G − 1)/2 pairs for which the observed ordering within x
matches the template – those expected for class k. Rank matching scores corresponding to
each unique ranking of the GS pathway in GIST patients are shown in Fig. 1.

C. Rank Conservation Indices
Averaging the rank matches over all the samples in a class k yields an rank conservation
index denoted by μR

(k) = E(R(k)|Y = k). It is estimated in practice by averaging the scores
R(k)(x) over all the samples (x, y) in the training set for which y = k. This index can be seen
as a measure of stability in rankings among genes in the class. Two extreme cases
correspond to (i) pure random shuffling of the expression values in the class from sample to
sample, in which case μR

(k) ≈ 5; and (ii) all samples displaying exactly the same ordering, in
which case μR

(k) ≈ 1. In general, however, there are many gene pairs gi and gj which are
expressed on different scales, and hence xi < xj across nearly all samples and phenotypes. As
a result, one generally finds μR

(k) ≪ 5. This index is similar to entropy in the sense that
values of μR

(k) ≪ 1 indicate a highly disorganized state in which there is a great deal of
variation among the rankings in class k from sample to sample and values of μR

(k) ≪ 1
indicate a highly ordered state in which samples have very similar, and hence predictable,
orderings among the genes.

D. Rank Difference Scores
We consider two phenotypes Y = 1, 2 and a fixed pathway m. If m is tightly regulated in one
phenotype, the samples from that class, say Y = 1, will have high R(m,1) values on average.
But if μR

(k) is large for both k = 1 and k = 2, and if the two rank templates T(m,1) and T(m,2)

are significantly different, then the samples from class Y = 1 will generally have low values
for the statistic R(m,2) as well as high values for the statistic R(m,1), and vice-versa for the
samples from class Y = 2. We want to capture this phenomenon, namely low variance of
pathway ranking within classes, but variance between classes, with a single statistic or
metric. The natural measure is the difference Δ(m,x) = R(m,1)(x) − R(m,2)(x). Clearly, − 1 ≤
Δ(m,x) ≤ 1 with positive (respectively, negative) values providing evidence that the
phenotype of sample x is Y = 1 (resp., Y = 2). The characteristics captured by the rank
difference score are illustrated in Fig. 2 for the EDG1 pathway. The difference score
provides a classifier for phenotype identification based on the degree of regulation of the
genes in pathway m. A new sample x is predicted to belong to class Y = 1 if Δ(m,x) > 0 and
to class Y = 2 if Δ(m,x) ≤ 0. The classification rate for pathway m is then: η(m) = Pr(Δ(m,X)
> 0|Y = 1)*Pr(Y = 1) + Pr(Δ(m,X) ≤ 0|Y = 2)*Pr(Y = 2).

For example, if Y = 1 denotes GIST and Y = 2 denotes LMS, and if we assume that the two
phenotypes are a priori equally likely, then η(m) is simply the average of sensitivity and
specificity relative to identifying GIST. In order to determine the most differentially
expressed pathways between two given classes, we calculate rank templates for each class,
evaluate the differential metric for each sample in the training set and choose the pathways
with the largest estimated classification rate.
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III. Results and Discussion
A. Tightly Regulated Pathways in GIST and LMS

The 20 most tightly regulated pathways in GIST and LMS, as measured by rank
conservation indices, are shown in Table I. Large rank conservation index values indicate
that gene orderings in these pathways are very similar among all samples of each phenotype.

One example of a tightly regulated pathway in both GIST and LMS is the GS pathway
(illustrated in Fig. 1). The GS pathway comprises major signaling proteins downstream of
G-protein coupled receptors, including guanine nucleotide binding proteins alpha (GNAS),
beta (GNB1), and gamma (GNGT1); adenylate cyclase 1 (ADCY1); and both the catalytic
(PRKACA) and regulatory (PRKAR1A) subunits of the cAMP-dependent protein kinase C
(PKC). Determining the relative expression level for each distinct pair among the six
pathway genes resulted in an overall ranking defined by 15 pairwise orderings. We found
that one pathway ranking was shared by 27 out of 37 GIST samples (73%) and 23 out of 31
LMS samples (74%); as the probability for each pairwise ordering is much greater than
50%, it follows that the rank templates are identical for the two phenotypes. Furthermore,
six other samples in GIST and LMS (12 total) displayed only a single mismatch. PKC
family members phosphorylate a wide variety of protein targets and are known to be
involved in diverse cellular signaling pathways, such as those associated with cell adhesion,
cell transformation, cell cycle checkpoint, and cell volume control.

B. Differentially Expressed Pathways in GIST and LMS
A total of 165 pathways were identified that significantly differentiated between expression
profiles of GIST and LMS (P-value less than 0.05), the top 20 of which are listed in Table
II.

The EDG1 pathway was identified as one of the most differentially expressed pathways in
GIST and LMS, achieving a classification rate of 97.3% when used to separate expression
profiles in the training data. The principal features governing the formulation of the rank
difference metric, and also an example of how it is applied for molecular classification are
illustrated for the EDG1 pathway in Fig. 2. Here, R denotes the rank matching score for a
profile, and superscripts indicate the phenotype of the rank template (e.g., RGIST represents
the rank matching score for a sample when compared to the ordering defined in the GIST
template). The rank difference values calculated for the EDG1 pathway are also shown in
Fig. 2, along with the corresponding class predictions (i.e., GIST where positive, LMS if
negative).

C. Classification with DIRAC
We used leave-one-out cross validation to estimate how accurately the top pathways –
selected as those achieving the highest apparent classification rate for predicting sample
classes based on rank difference scores – were able to predict the class of future samples
(Fig. 3).

As a means for comparison, we used the top scoring pair (TSP) algorithm and support vector
machines (SVM) to classify samples in each of the datasets. We found that our method
performed well in a number of the datasets, including estimated accuracies between 90–98%
in gastrointestinal sarcoma, leukemia, and prostate cancer (Fig. 3). In cases with poor
accuracies such as breast cancer, lung cancer, and melanoma, we saw that the other methods
used also failed to accurately classify samples. We thus suspect that the poor performance in
these cases is a factor of unclear differences in phenotypes, rather than a shortcoming of our
method. The foremost goal of our method is to aid in biological discovery and hypothesis
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generation, and the excellent classification accuracy overall affirms the robustness of the
pathway rank regulation measure.

IV. Conclusions
In this study we demonstrate a novel method to identify highly discriminative biological
pathways based on differing patterns of gene expression ranking within pathways.
Importantly, this method not only identifies perturbed pathways, but does so in such a way
that it can be used for classification of samples. Thus, predictive accuracy becomes a strong
measure for the validity of the perturbed pathway being a reproducible hallmark of the
disease phenotype. Studying rank regulation of biologically relevant gene sets is thus a
promising tool for measuring pathway behavior within and across different populations.
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Fig. 1.
Example of tightly regulated pathway in GIST. A simplified diagram of the GS pathway,
comprising six signaling proteins downstream of G-protein couple receptors, is shown
above. The majority of GIST samples match the pairwise orderings in the GIST rank
template exactly.
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Fig. 2.
Differential rank conservation of the EDG1 pathway in GIST and LMS. The GIST template
matching scores (RGIST) are higher on average in GIST samples than LMS template
matching scores (RLMS). In LMS samples, RLMS scores are higher on average than RGIST

scores. Comparing the two rank matching scores in each sample, GIST samples match the
GIST template more than the LMS template in all but two cases; LMS samples match the
LMS template more than the GIST template in all cases. Samples are classified as GIST if
the difference score is positive, and as LMS if the difference is negative.
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Fig. 3.
Comparison of classification with DIRAC to other methods.
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TABLE I

Tightly Regulated Pathways in GIST and LMS

Pathway
Number of Rank

Genes Gene Pairs Conservation

GIST

 GS 6 15 0.948

 BETAOXIDATION 6 15 0.941

 IFNG 6 15 0.930

 ETC 10 45 0.915

 CELL2CELL 13 78 0.906

LMS

 RAN 5 10 0.968

 GS 6 15 0.966

 FEEDER 9 36 0.943

 CDC42RAC 14 91 0.939

 ETC 10 45 0.938
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TABLE II

Differentially Expressed Pathways in GIST and LMS

Pathway
Number of

Apparent Accuracy P-valueGenes Gene Pairs

GH 6 15 0.973 < 1.0E-07

EDG1 6 15 0.973 < 1.0E-07

EIF4 6 15 0.970 < 1.0E-07

ATM 10 45 0.959 < 1.0E-07

CREB 13 78 0.950 < 1.0E-07

KERATINOCYTE 5 10 0.932 1.6E-06

P53HYPOXIA 6 15 0.931 1.6E-06

FEEDER 9 36 0.930 1.6E-06

CDC42RAC 14 91 0.927 2.4E-06

ETC 10 45 0.925 2.4E-06
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