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Abstract
A state-space formulation is introduced for estimating multivariate autoregressive (MVAR)
models of cortical connectivity from noisy, scalp recorded EEG. A state equation represents the
MVAR model of cortical dynamics while an observation equation describes the physics relating
the cortical signals to the measured EEG and the presence of spatially correlated noise. We assume
the cortical signals originate from known regions of cortex, but that the spatial distribution of
activity within each region is unknown. An expectation maximization algorithm is developed to
directly estimate the MVAR model parameters, the spatial activity distribution components, and
the spatial covariance matrix of the noise from the measured EEG. Simulation and analysis
demonstrate that this integrated approach is less sensitive to noise than two-stage approaches in
which the cortical signals are first estimated from EEG measurements, and next an MVAR model
is fit to the estimated cortical signals. The method is further demonstrated by estimating
conditional Granger causality using EEG data collected while subjects passively watch a movie.

Index Terms
Effective connectivity; expectation-maximization (EM) algorithm; Granger causality; multivariate
autoregressive models; state-space models

I. Introduction
Multivariate autoregressive (MVAR) models [1]–[3] have been successfully applied to
analyze cortical connectivity using invasive electrophysiological recordings (e.g., [4]–[6])
and can be used to obtain several different measures of connectivity [7]–[10]. MVAR
models are linear in the parameters and relatively parsimonious – hence they can be easily
identified – yet they are also capable of describing fairly complex network behavior.
However, estimating cortical connectivity from EEG or MEG data is challenging because a
noisy mixture of the cortical signals is measured at the scalp. Conventional approaches to
cortical MVAR modeling using EEG/MEG involves three steps. First, cortical regions of
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interest (ROIs) are identified. Next, cortical signals associated with each ROI are estimated
from the scalp EEG/MEG. Finally, the estimated cortical signals are used to identify an
MVAR model and connectivity measures are derived from the MVAR model parameters.

In this paper we propose a method for estimating the MVAR model directly from the EEG/
MEG data and knowledge of the cortical ROIs. Selection of ROIs is assumed to proceed as
in conventional approaches: by source localizing the data, e.g., [11], or using anatomy and
the result of other neuroimaging studies, such as fMRI, to identify ROIs, e.g., [12]–[14]. Our
contribution is a state-space framework for integration of the cortical signal and MVAR
model estimation steps. A state equation represents the MVAR model for the cortical signals
while an observation equation describes how the cortical signals are observed at the scalp in
the presence of noise. Uncertainty in the spatial distribution of activity associated with each
cortical ROI is accommodated in a very parsimonious manner. An expectation-
maximization (EM) algorithm is developed to obtain maximum likelihood estimates of the
MVAR model parameters, the observation noise covariance matrix, and the spatial activity
patterns within each region. This integrated approach results in dramatically improved
estimates of connectivity compared to conventional two-stage approaches where MVAR
models are identified from independently estimated cortical signals, especially at the low
signal to noise ratios (SNRs) typical of EEG and MEG data. Analysis and simulations
support these assertions. The effectiveness of the method on human EEG data is illustrated
by showing that cortical connectivity estimates for different segments of data are consistent.

Examples of two-stage MVAR modeling approaches are reported in [11]–[15]. Hui, et al.
[15] use a spatial filter to estimate multiple source time courses corresponding to apriori
specified ROIs and the estimated time courses are then used to estimate MVAR model
parameters. Ding, et al. [11] fit an MVAR model to cortical signals estimated via a least
squares approach. Babiloni, et al. [12] and Astolfi, et al. [13], [14] use a linear minimum
norm inverse problem solution to estimate cortical currents for a distributed source model of
about 5000 dipoles. Next they collapse these 5000 time series into a single “net” time series
for each region of interest (ROI) by averaging the magnitudes of all dipole currents within
the ROI. An MVAR model is then fit to the average magnitudes and used to assess
connectivity. At sufficiently high SNRs, two-stage approaches are able to obtain high
quality cortical signal estimates and consequently the estimated MVAR models are also
accurate. However, at typical low SNRs the cortical signal estimates are noisy which
produces severe bias in the MVAR models.

Our state-space approach does not circumvent the limitations of EEG and MEG physics, but
works within them by using parsimonious source models, explicitly representing observation
noise, and directly solving for MVAR parameters from the data using the maximum
likelihood criterion. Maximum likelihood (ML) estimates are known to be asymptotically
unbiased with variance approaching the Cramer-Rao lower bound as data length increases
[16]. Consequently, the state-space approach is effective at lower SNR than two-stage
methods. Another benefit of our approach is the accommodation of unknown spatial activity
distribution within each ROI. Averaging dipole current magnitudes as in [12] is a nonlinear
step that potentially alters the inherent cortical interactions in the data.

Spatio-temporal state-space methods involving indirect observation of noisy dynamic
networks have been applied in diverse engineering and scientific applications, e.g., [17]–
[19]. Nalatore, et al. [20] employ a state-space approach to MVAR model estimation for
invasive electrophysiological recordings and show that explicitly modeling noise results in
improved connectivity estimates. Shumway and Stoffer [21] developed an EM approach to
maximum likelihood parameter estimation in state-space MVAR models. Our approach
differs from this previous work in that we estimate cortical connectivity from scalp EEG or
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MEG and our observation equation involves the product of a known matrix and a set of
unknown spatial activity distribution parameters.

The following section motivates the state-space approach by analyzing the effect of noise on
MVAR parameter estimates in conventional, two-stage approaches. In Section III we
introduce the MVAR state equation and our observation equation. Section IV presents the
EM algorithm for maximum likelihood estimation of the MVAR parameters and Section V
describes computation of conditional Granger causality metrics from the MVAR parameters.
Simulations illustrating the effectiveness of our state-space approach are given in Section VI
and application to human EEG data in Section VII. The paper concludes with a discussion in
Section VIII.

Boldface lower and upper case symbols represent vectors and matrices, respectively while
superscript T denotes matrix transpose and superscript −1 matrix inverse. Subscripts n, j
denote sample n from trial or epoch j, while integer superscripts index matrix or vector
elements. The trace of the matrix A is written as tr{A} and the determinant is |A|. E{a}
denotes the expectation of the random variable a. A preliminary version of this work
appeared in [22].

II. Two-Stage Approaches to MVAR Model Estimation
Two stage approaches first estimate cortical signals from the measured data by solving a
variant of the inverse problem. Next an MVAR model is fit to the estimated cortical signals
(see, e.g., [11]–[15]). We show in this section that two stage approaches result in biased
MVAR model estimates –particularly at moderate and low SNR. Such biases can lead to
false connectivity conclusions.

We assume that the forward model for each cortical source is known and that the sources are
related by a first-order MVAR model to simplify the analysis. Let yn be the L by 1 vector of

measured data and  denote the ith cortical signal at time n. Defining ,
we may write

(1)

where the columns of Γ contain the forward models for each cortical source. The
measurement and background brain noise vn is assumed zero-mean, independent from
sample to sample and has covariance matrix . The matrix A of MVAR
parameters is M by M and wn is an M by 1 vector representing the component of xn that
cannot be predicted from xn−1. The matrix A satisfies the Yule-Walker equations

(2)

where  and . In practice, Δ and P are approximated using sample
estimates obtained by averaging over the available data.

If a linear method is used to estimate xn, such as minimum norm inversion [13] or linear
constrained minimum variance (LCMV) beamforming [15], [23], then the estimated cortical
signals can be expressed as
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(3)

where W is an N by M matrix. Substitute Eq. (1) for yn to obtain

(4)

Hence, unbiased estimation of x̂n requires W satisfy WTΓ = I. LCMV nulling beamformers
can be designed to satisfy this condition [15] provided M ≤ L and Γ is full rank. If WT Γ has
nonzero off-diagonal values, then the estimated cortical signals will be biased due to cross
talk between sources.

Ensuring x̂n is an unbiased estimate of xn does not result in unbiased MVAR model
parameter estimates due to the presence of the noise term, WTvn. Since , we
obtain the estimated cortical signal covariance matrix

(5)

and cross-covariance

(6)

The term  in the second equality is 0 because vn and vn−1 are assumed
uncorrelated. Hence Δ̂ is a biased version of Δ and consequently the MVAR parameter
estimates are biased. The bias depends on WT RW. If the SNR is sufficiently high, i.e., R is
small, then the bias may be negligible. Clearly the gain of W to the noise affects the bias
through the matrix WT RW in Eq. (5). The LCMV beamformer chooses W to minimize
output power subject to the constraint WT Δ = I and thus attempts to make the term WTRW
as small as possible.

If W satisfies WT Γ = I, then the gain of W to the noise is a function of the degree of linear
dependence in the columns of Γ. The gain to noise can be quite large if two source forward
models are very similar. To see this, suppose R = σ2I and there are two cortical sources with
forward models g and h, respectively, and assume gT g = hTh = 1 for convenience. In this
case the LCMV nulling beamformer is W = Γ (ΓT Γ)−1 and WTRW = σ2(ΓT Γ)−1. Use Γ =
[g h] and define cos θ = gT h as the angle between the source forward model vectors g and h
to obtain

(7)
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We see that the noise in the estimate x̂n is correlated, and the original noise power σ2 is
amplified by . If the source forward models are similar, cos2 θ can be close to one and
x̂n will be very noisy, even if σ2 is small. This implies the SNR required to reliably estimate
the MVAR model using the nulling beamformer depends on the degree of similarity in the
source forward models. Similar source forward models require much higher SNR than
dissimilar ones. High noise gain in an LCMV beamformer can be reduced by relaxing the
nulling requirement WTΓ = I. For example, minimum norm imaging solutions do not
enforce this condition. However, as discussed extensively in [15], this leads to cross talk in
the estimated cortical signals and biased MVAR model estimates – even at high SNR.

III. State-Space Cortical MVAR Model For EEG
Our state-space model consists of a state equation representing the cortical MVAR model
and an observation equation describing the EEG measurement of cortical signals.

A. MVAR Model for Cortical Signals

Let , j = 1, 2, …, J, i = 1, 2, …, M represent the jth observation or epoch of the cortical
signal from region i at time n and collect the cortical signals from all regions into an M by 1

state vector . A Pth order MVAR model [1] for the cortical signals
xn,j is expressed as

(8)

where Ap, p = 1, 2, …, P are M by M matrices whose (k, l) elements describe the influence

of the past P values from region  on the present value  from
region k. The M by 1 vector wn,j represents the errors in predicting present cortical signals
using the past ones. We model wn,j as a sequence of independent and identically distributed
Gaussian random vectors with zero mean and covariance matrix Q.

It is convenient to rewrite Eq. (8) in the form

(9)

by defining A = [A1, A2, …, AP] as an M by MP matrix of MVAR coefficients and

 as an MP by 1 vector containing the past P state vectors.
Our estimation procedure assumes that the initial vector z0,j is Gaussian distributed with
unknown mean μ0 and unknown covariance matrix Σ0.

B. Observation Model for Spatially Extended Cortical Sources
As in previously proposed MVAR methods, the cortical regions of interest (ROIs) are
assumed known from prior analysis, for example, based on anatomical information,
neuroimaging, or source localization studies.

We derive the observation model for a single ROI for simplicity of presentation. Let Ω
denote the spatial extent of the ROI (see Fig. 6 for an example) and assume Ω is sampled by
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a dense grid of Q dipoles. A distributed source model [24] for the activity in Ω represents
the L by 1 measured EEG at time n, yn as

(10)

where hi is the leadfield for a dipole at the ith grid location and  is the corresponding
current source density. Rewrite this expression in matrix notation as

(11)

where H = [h1, h2, …, hQ] is the collection of leadfields in the ROI and

 describes the current source spatial distribution over Ω.

At typical SNR and values of Q we cannot see all Q spatial degrees of freedom in the
measurement yn because of ill-conditioning in the forward physics. That is, in practice H is a
low-rank matrix. Let the singular value decomposition of H be UΣVT and represent the K
largest singular values and corresponding singular vectors of H using the matrices UK, ΣK

and VK, where UK and VK contain the first K columns of U and V, respectively, and ΣK is
the K by K upper left block of Σ. Hence, a rank K approximation to H is H ≈ UKΣKVKT.
Limpiti, et al. [25] found that H was well modeled as rank 4 or less for ROIs as big as 590
mm2 and termed the columns of UK cortical patch bases. We define the L by K matrix C =
UKΣK and K by 1 vector λn = VKT αn to approximate Eq. (11) in terms of the K degrees of
freedom in the measurement as

(12)

Thus, although an ROI may involve a spatial sampling of several hundred grid points, a very
small number of these degrees of freedom are visible in the measured data. The visible
spatial degrees of freedom are represented by the K entries in λn. The current source density
distribution αn associated with Eq. (12) is of the form αn = VKλn. This follows from VKT VK

= I and Cλn ≈ Hαn. Hence, the left singular vectors in VK are a basis for spatial patterns αn
that are measurable at the scalp. Note that Eq. (12) also applies to dipolar source models
with unknown moment orientation. In this case C is the L by 3 leadfield matrix for the
dipole location and λn is the dipole moment.

In general the spatial pattern within the ith ROI varies with time, as indicated by the notation
 and . The EM algorithm presented in Section IV is applicable to this case, however, for

simplicity we assume here that the spatial pattern does not vary with time. That is, 
where λi describes the pattern and  the amplitude as a function of time. In the case of a
dipolar source model, this implies the moment orientation is fixed (λi) while the amplitude

 varies with time.
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The measured signal is expressed as a sum of the activity due to each ROI plus a noise term
vn,j that accounts for measurement noise and unmodeled source activity. Let the activity due

to the ith ROI be represented as  and write

(13)

The ROIs are assumed known but the spatial patterns are unknown, so Ci is known but λi is
unknown. We rewrite Eq. (13) in terms of xn,j as

(14)

where C = [C1, C2, …, CM] is now an L by MK matrix and

(15)

is MK by M. Note that it is not necessary to assume each ROI uses the same number of
spatial degrees of freedom K; we have done so for notational convenience. We assume the
noise vn,j is multivariate Gaussian distributed with mean zero and covariance matrix R and
is independent across samples and epochs.

C. The State-Space Model
The observation equation (14) and MVAR model (9) combine to provide a state-space
representation for the measured data

(16)

where wn,j ~ N(0, Q) and vn,j ~ N(0, R). We assume C is known, but A, Q, xn,j, Λ, R are
unknown. Furthermore, z0,j ~ N (μ0, Σ0) with μ0 and Σ0 unknown.

The question of uniqueness is addressed by considering whether yn,j is invariant to any
transformation of the state xn,j. If transformations of the state do not affect yn,j, then there
are many models capable of describing identical measured data. Let x̃n,j = Ψxn,j where Ψ is
a nonsingular state transformation. Assuming C is full rank, uniqueness of yn,j with respect
to Ψ requires that there is no valid Λ̃ for which Λxn,j = Λ̃x̃n,j. That is, the model is unique if
and only if Λ = Λ̃Ψ implies the matrix Ψ = I.

First note that both Λ and Λ̃ must have the block structure in Eq. (15). This implies Ψ must
be a block diagonal matrix, which implies λi = λ̃iψi where ψi is the ith diagonal element of Ψ.
Hence the model of Eq. (16) is not unique with respect to the magnitude and sign of the
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cortical signals ; an increase in the magnitude of  is offset by a decrease in λi. The
magnitude ambiguity is eliminated by requiring λiT λi = 1, that is, by normalizing the cortical

signals  to be proportional to the corresponding cortical current density. The sign

ambiguity implies λi = − λ̃i and  produce equivalent measurements. This sign
ambiguity leads to sign ambiguities in the entries of A; however such ambiguities do not
alter the connectivity structure of the MVAR model and will not be considered further.

IV. An EM Algorithm for Maximum Likelihood Estimation of Model
Parameters

ML estimates have the desirable properties of being unbiased and attaining the Cramer-Rao
lower bound on variance in the asymptotic case of increasing data length/epochs [16]. EM
algorithms are used in a variety of incomplete-data problems when closed-form expressions
for ML estimates are not available. They monotonically increase likelihood at each iteration
and are guaranteed to converge to a maximum of the likelihood surface [26]. EM algorithms
have been developed for state-space models by Shumway and Stoffer [21] and others. Our
algorithm differs from previously proposed approaches because the state xn,j is observed
through the product of a known matrix C and unknown, structured matrix Λ.

The EM algorithm computes the ML estimates of Θ = {A, Q, R, μ0, Σ0, Λ} for the state-
space model described in Eq. (16). We assume N time samples are available in each of J
epochs. Let {Y, X} denote the so-called complete data, where Y = {y1,1, …, yN,1, …, y1,J,
…, yN,J} is the observed data and X = {x1,1, …, xN,1, …, x1,J, …, xN,J} is the hidden data.
The complete data likelihood function can be written in the form

(17)

The probability densities p(z0,j), p(yn,j|xn,j) and p(xn,j|zn−1,j) are given by the Gaussian
distributions N(μ0, Σ0), N(CΛxn,j, R) and N(Azn−1,j, Q), respectively.

The EM algorithm iteratively maximizes the conditional expectation of the log-likelihood of
the complete data using a series of two steps in each iteration. In the first step, known as the
expectation step (E-step), the expectation of the log likelihood of the complete data

(18)

is computed conditioned on the measured data and the estimated parameters at the previous

iteration, denoted as . The second step, known as the
maximization step (M-step), finds new parameter estimates Θr+1 by maximizing q(Θ|Θr)
with respect to Θ. These two steps are repeated until the likelihood of the observed data
converges to a maximum value.

The log likelihood of the observed data is proportional to
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(19)

where en,j(Θr) is the prediction error and Pen,j(Θ
r) is the error covariance matrix, both of

which can be obtained from the Kalman filter [27] as described in [28]. The EM iterations
are terminated when the relative change in the likelihood of Eq. (19) drops below 10−5.
Since the EM algorithm is guaranteed to converge to a local maximum of the log likelihood
function [26], we start the algorithm from multiple randomized initial conditions and select
the solution with the largest likelihood. Additional details of the EM algorithm and the
choice of initial conditions are given in the Appendix.

V. Cortical Connectivity via Conditional Granger Causality
Multiple measures of connectivity between cortical signals can be obtained from the MVAR
model parameters including directed transfer function [9] and partial directed coherence
[10]. In this manuscript we employ the conditional Granger causality metric introduced by
Geweke [8] to illustrate the merits of our state-space approach. Consider three vector time-
series un, vn and zn and define the past of each time series as Un−1 = {u1, u2, …, un−1},
Vn−1 = {v1, v2, …, vn−1} and Zn−1 = {z1, z2, …, zn−1} respectively. The Granger causality
from vn to un conditioned on zn is given by [8]

(20)

where Σ1 is the error covariance matrix for predicting un using both Un−1 and Zn−1, and Σ2
is the error covariance matrix for predicting un using Un−1, Vn−1 and Zn−1. It is easy to
show |Σ2| ≤ |Σ1| [29]. This implies FV→U|Z ≥ 0 with FV→U|Z increasing as the ability of
Vn−1 to improve the prediction of un increases. Note that FV→U|Z differentiates the direct
influence of Vn−1 on un from the indirect influence of Vn−1 mediated through Zn−1.

In the context of MVAR modeling, the error covariance matrix Σ1 is replaced by Q1, the
error covariance matrix based on an MVAR model using un and zn, and Σ2 is replaced by
Q2, the error covariance matrix for an MVAR model employing un, zn and vn. This requires
estimating two MVAR models and can produce negative values of FV→U|Z due to
estimation errors [30]. Furthermore, the potential for FV→U|Z to be negative is exacerbated
with the state-space formulation when two distinct models are estimated because the cortical
signals are measured in the presence of observation noise and the observation noise
covariance matrix is estimated separately for each model. Differences in the two MVAR
models may be obscured by changes in the estimated noise covariance matrix. Chen, et al.,
[30] introduce a partitioned matrix approach for computing FV→U|Z based on one MVAR
model that is guaranteed to produce a nonnegative metric and we employ this approach here.
The partitioned matrix approach is also beneficial with our state-space formulation as it
avoids the computational cost of estimating multiple MVAR models.

VI. Simulation Results
Four examples based on simulated data are presented to illustrate the effectiveness and
performance attributes of our state-space approach when the true connectivity is known. We
compare the results of our state-space approach to the two-stage nulling beamformer (NBF)
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approach proposed by Hui, et al. in [15]. The NBF is based on same singular vectors used to
construct the Ci in (13), so equivalent source models are employed. In each example we use
N = 200 samples and J = 15 epochs and run the example over 100 different signal and noise
realizations to estimate the mean and variance of the Granger causality metric. The
observation equation assumes a 56-channel EEG system. Spatially white observation noise
is simulated and we define SNR as

where Hi is the collection of leadfields in the ith ROI and  is the corresponding
spatial-temporal source activity. Example 1 presents a scenario to support the analysis given
in Section II while Example 2 to 4 introduce various modeling errors for studying the
robustness of our approach.

Example 1: Two ROI connectivity
We assume two dipolar sources with known moments in the left hemisphere as shown by the
markers in Fig. 1, and simulate cortical signals using the following first order MVAR
model:

(21)

The covariance matrix Q used to simulate the data is diagonal with Q11 = 0.6 and Q22 = 0.2.
Note that this model involves causal influence from source 1 to source 2, and no influence in
the reverse direction. Both the EM algorithm and NBF approach are used to estimate the
MVAR parameters to support the analysis in Section II.

Fig. 2 depicts the true and estimated MVAR model coefficients A21 and A12 and the
Granger causality between the dipoles marked in red and green in Fig. 1 as a function of
SNR. Here the angle between the source forward models (see Section II) is cos θ = 0.8. The
EM approach produces unbiased estimates of MVAR model coefficients and Granger
causality across the entire range of SNRs. In contrast, the bias in the NBF increases
significantly as the SNR decreases. In this example the EM approach obtains performance
comparable to the NBF approach with over 15 dB less SNR.

The influence of the angle between the source forward models on the EM and NBF
approaches is depicted in Fig. 3 assuming SNR = −5 dB. The angle cos θ = 0.2 is obtained
using sources at the red and black (arrow in Fig. 1) markers, cos θ = 0.5 is obtained using
sources at the red and magenta markers, and cos θ = 0.8 is obtained using sources at red and
green markers in Fig. 1. Angles cos θ ≥ 0.8 with respect to the red source are not unusual;
the blue shaded regions in Fig. 1 depict all sources that satisfy cos θ ≥ 0.8. The performance
of the EM approach is insensitive to the angle between the forward models, while, as
predicted in Section II, the NBF approach performance degrades significantly as the angle
decreases.
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Example 2: Two ROI Connectivity with Interference
In this example we simulate two spatially distributed sources (ROI 1 and ROI 2) whose
cortical signals follow the MVAR model in Eq. (21). The activity simulated in each ROI has
a raised cosine distribution with 10 mm geodesic radius. A third, independent spatially
distributed and temporally random source is introduced as an interferer. The contributions

from the ith ROI are simulated using Eq. (11) where . Here αi implements the

raised cosine distribution and  is the cortical signal from the ith ROI at time n and epoch
j. The interfering source is not modeled in the state equation (Eq. (9)) when the simulated
data is processed, and thus contributes to the observation noise vn,j in Eq. (14). The two
sources of interest are represented in the observation equation (Eq. (14)) by designing C
assuming only the ROI extent is known and using K = 3 basis vectors to represent each ROI.
The SNR in the absence of the interfering source is 5 dB. Fig. 4 shows source and interferer
locations for two cases: where the angle between source 1 and interferer is cos θ = 0.5, and
where the interferer and source 1 satisfy cos θ = 0.8. The interferer and source 2 are at
identical locations in each scenario. When cos θ = 0.5 the interferer and source 1 are well
separated.

Fig. 5 compares the estimated and true Granger causality from source 1 to source 2 as a
function of the signal to interference (SIR) level for both scenarios. The results for Granger
causality from source 2 to source 1 are close to 0 in both EM and NBF approaches and are
not shown in Fig. 5. The SIR is defined as

The matrix H̃ is the collection of leadfields in the interfering cortical patch and α̃n,j is the
spatial-temporal activity of cortical interferer. SIR = ∞ implies the interferer is not present,
while SIR = −10 dB implies the interferer power is 10 times as large as the source power in
the measured data. The results indicate that the presence of the interferer causes only a slight
shift in the mean estimated Granger causality from source 1 to source 2 that is nearly
independent of the interferer strength. The EM approach is robust to unmodeled,
independent source activity because such activity is represented in the state-space model by
the observation noise. NBF is also robust to interfering source activity because output power
is minimized, although it exhibits some sensitivity to the angle between source 1 and the
interferer.

Example 3: Four Spatially Distributed Sources
This example is inspired by the properties of the human subject example presented in
Section VII. The four ROIs are the inferior occipital gyrii (IOG) and the superior parietal
lobules (SPL) in each hemisphere as illustrated in Fig. 6. The activity simulated in each ROI
has a raised cosine distribution with 10 mm geodesic radius as shown by the insets in Fig. 6.
A P = 4 order MVAR model is simulated to generate the back-to-front causal influences
depicted by the line drawing superimposed on the cortical surface in Fig. 6.

The matrix C in the observation equation (Eq. (14)) is designed assuming the ROI extent is
known, but the spatial distribution of activity within each ROI is unknown as described in
Section III.B. The results obtained using K = 2 and K = 3 singular vectors for each ROI at
SNR = 5 dB are depicted in Fig. 7. Note that as K increases, the number of spatial degrees of
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freedom estimated and the ability to represent spatial detail for each ROI increases. Hence
we observe that at high SNR the K = 3 based solution provides better quality estimates of
Granger causality than K = 2. At lower SNR (not shown) the K = 2 based solution results in
less bias than K = 3 because the spatial detail is less visible at lower SNR and the additional
spatial degrees of freedom associated with K = 3 are more difficult to estimate. The NBF
significantly underestimates Granger causality.

Example 4: Four ROIs with Spatial Mismatch
This example uses two MVAR models with order P = 4 corresponding to the scenario in
Fig. 6 to explore the effects of errors in assumed ROI location and extent. Three different
observation models are considered. The first assumes the true ROIs (10 mm geodesic radius)
are used in the observation equation (Eq. (14)). In the second case the centers of the
assumed ROIs used in the observation equation are 10 mm from the true centers. The third
case assumes the ROI centers are 10 mm from the true centers and the geodesic radius of
each ROI is 20 mm instead of the true value of 10 mm. Each ROI is represented in the
observation equation using K = 3 singular vectors. The results are depicted in Fig. 8 for SNR
= 5 dB. Note that ROI location mismatch and location/size mismatch result in relatively
small errors in the estimated Granger causality relative to the case of no mismatch for the
EM approach. NBF significantly underestimates Granger causality and exhibits greater
sensitivity to mismatch.

VII. Application To Real EEG Data
We apply the EM algorithm to 56 channels of EEG data collected from three healthy
subjects passively watching a 30-minute portion of an engrossing movie (The Good, The
Bad, and The Ugly). The data were zero-phase filtered using a Chebyshev type II filter with
passband 1Hz - 20Hz and then down sampled to a 62.5 Hz sampling rate. Three artifact free
segments were selected from EEG recordings for each subject to gauge consistency of the
estimated connectivity. For Subject 1 each segment consists of one contiguous 16-sec epoch,
while for Subjects 2 and 3 each segment consists of four 3-sec epochs. Connectivity between
IOG and SPL regions in both hemispheres is evaluated because these regions are likely to be
activated by visual simulation [31], [32]. Fig. 6 depicts these four regions on a cortical
surface reconstruction of the average brain from the Montreal Neurological Institute (MNI).
Each of the four ROIs is modeled using K = 3 singular vectors. Forward models for the
dipoles in each ROI are computed within the Geosource software package (EGI, Eugene,
OR) using a four-shell spherical head model with locations derived from the MNI
probabilistic atlas. Dipoles are constrained to 7mm cortical voxels of the average MNI brain
and consist of three orthogonal source orientations (xyz). The MVAR model order P is
selected based on the Bayesian information criterion (BIC) [33]

(22)

where log p(Y|Θp) is the maximum observed data log-likelihood defined in Eq. (19), ϕp is
the number of free parameters estimated by EM and T = N × J is the total number of
samples. The BIC curves vary; however, P = 12 is the exact or near minimum BIC in each
subject.

An order P = 12 MVAR model is estimated using the EM algorithm and the conditional
Granger causality metric between the two IOG and SPL regions is computed. Fig. 9 depicts
the results of processing each segment for Subject 1. Only significant conditional Granger
causality values are shown. We determined a significance threshold for each connection
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using random temporal permutation of the measured data to destroy cortical interactions.
One hundred random permutations of the data over time and epochs for each subject/
segment are generated using MATLAB’s “randperm” command and an order P = 12 MVAR
model is fit to each permutation using the EM algorithm to obtain a histogram of conditional
Granger causality under the hypothesis that the interactions are zero. Significance thresholds
are determined such that only 5% of the permuted cases exceed the threshold. Connection
SL → IR is not significant in all three segments for Subject 1. In Subject 2 and 3 all non-
homologous connections are significant for all three segments.

We assess the consistency of the estimated conditional Granger causality values across the
three independent segments in all three subjects by computing the coefficient of variation
(CV). CV is the ratio of the sample standard deviation to the sample mean expressed as a
percentage [34]. Hence, a CV of 0% indicates the three values are identical, while a CV of
100% indicates the sample standard deviation is equal to the mean. For example, the CV for
IL → SL in Fig. 9 is 12.5% while SR → IR is 29.4%. A histogram of CV values for the 23
significant non-homologous connections in all three subjects is shown in Fig. 10. Fifteen of
the 23 CV values are less than 20% and the maximum CV is 34.4%. This indicates general
consistency in the estimated conditional Granger causality metric across different segments
of data.

The results reveal general patterns of consistency between the three segments for each
subject. The true connectivity pattern for each subject is unknown and likely varies some
between segments. The consistency of the estimates between segments and significance
relative to that of temporally permuted data suggest that this approach is identifying genuine
cortical interactions.

VIII. Discussion
The state-space formulation of Eq. (16) integrates the MVAR cortical connectivity model
with the EEG measurement physics and explicitly accounts for the presence of noise in the
measured data. The presence of noise is not explicitly addressed when estimating MVAR
parameters via two-stage approaches that attempt to first estimate cortical signals and then
fit an MVAR model to the estimated cortical signals. Our analysis reveals that noise in the
estimated cortical signals from two-stage approaches leads to biased MVAR parameter
estimates, and that the effect of the noise depends strongly on the cosine of the angle
between the forward models associated with different sources. In contrast, the EM algorithm
provides a means for obtaining ML estimates of the MVAR model parameters in the state-
space formulation. ML methods are known to be asymptotically unbiased, and thus, given
sufficient data, our EM approach is expected to yield unbiased MVAR model parameter
estimates.

Simulated examples support our analysis of two-stage approaches. Bias in estimated
Granger causality is evident at all but the highest SNRs and this bias depends on the
similarity of the forward models associated with different cortical sources. Simulations also
show that our EM approach yields unbiased Granger causality estimates at significantly
lower SNRs and is relatively insensitive to varying similarity between forward models. The
NBF is sensitive to the similarity between forward models and the performance degrades
significantly as SNR decreases. The NBF significantly underestimates Granger causality in
the four ROI examples, even at a relatively high SNR of 5 dB. The robustness of our state-
space approach to noise is a significant advantage given the relatively low SNR of typical
EEG data.

Cheung et al. Page 13

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Explicitly modeling noise with unknown spatial covariance also endows our approach with
robustness to artifacts and brain activity that is not from an ROI of interest, as shown in Fig.
5. The estimated Granger causality is relatively insensitive to the power of a spatially
distributed interfering source for two different source/interferer configurations.

The observation model of Eq. (14) describes extended cortical sources with unknown spatial
activity distribution in a very parsimonious fashion by only representing the components of
the spatial activity that are measurable via EEG physics. This significantly reduces the
number of unknown parameters that must be estimated compared to approaches that
tessellate the cortical ROIs with dipoles and estimate the strength of each dipole. At high
SNR fine structure in the spatial activity distribution is more visible and a larger number of
bases are recommended. At low SNR the fine structure of the cortical source spatial
distributions is buried in the noise and fewer bases should be used since the estimated
coefficients of higher order bases will be dominated by noise. These conclusions are
supported by the results given in Fig. 7. The number of bases appropriate for a given source
is also proportional to the spatial extent of the ROI. Given our experience with these bases in
this and source localization applications [25], [35], we anticipate that between two and five
bases per ROI will be appropriate in most MVAR modeling applications.

Our source model also provides a principled way of associating a single time series with a
ROI while allowing the spatial activity distribution within the ROI to be unknown. In
contrast, the two-stage approach of [12] averages magnitudes of each dipole in the ROI – a
nonlinear step that may alter the estimated cortical interactions, while the NBF approach of
[15] can only return a single time series for an ROI. It is possible to employ conditional
Granger causality to estimate connectivity when more than one time series is associated with
each ROI. Use of a single time series implies that the spatial activity distribution is constant,
i.e., it varies only in amplitude. Our approach is easily extended to represent time varying
spatial activity patterns by using a second time series for a ROI. In this case the spatial
activity in the ROI is the sum of the patterns associated with the first and second time series
and this sum varies with time. We have focused here on the constant spatial pattern case
because reliable estimation of time-varying spatial patterns is likely to require higher SNR
and fairly large ROIs to compensate for the additional complexity in the spatial and MVAR
models.

The requirement that C is full rank ultimately determines the maximum number and
locations of ROIs that can be studied. Linear dependence between the columns of C implies
that activity in one ROI cannot be distinguished from activity in another ROI. In practice,
the noise covariance matrix and singular values of C determine the number and locations of
ROIs for which it is reasonable to estimate an MVAR model. since the singular values of C
represent the strength with which the corresponding cortical signal component can be
measured. We recommend that users evaluate the singular values of C and exercise caution
with scenarios involving relatively small singular values. Similar limitations apply to the
NBF.

Use of spatial bases with unknown coefficients (the λi in Eq. (14)) for describing source
activity provides some measure of robustness to uncertainty in the source forward models,
e.g., due to use of a template brain, errors in assumed source locations, and various errors in
cortical surface extraction, coregistration, and electrical properties. The robustness results
because the unknown coefficients are chosen to provide the best fit to the true spatial
distribution of the source. These conclusions are supported by the results shown in Fig. 8 –
the connectivity estimates are not significantly affected by errors in the ROI locations and
extent. Note, however, that this implies care must be exercised when estimating connectivity
between ROIs that have very similar (nearly linearly dependent) bases, because the
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coefficients for each ROI may extract the identical (or very similar) underlying source
activity.

We have assumed the locations of the cortical sources of interest are known, as is typical for
previously proposed MVAR modeling approaches. For example, Hui, et al., [15] also
assume ROIs are known. Babiloni, et al. [12] and Astolfi, et al. [13], [14] select ROIs based
on anatomy, as we have done in Section VII. Ding, et al. [11] use a source localization
technique to identify ROIs. Note that use of source localization to identify ROIs does not
eliminate the advantages of the state-space formulation relative to two-stage connectivity
estimation methods. The disadvantage of two-stage methods lies in decoupling the
estimation of cortical signals from estimation of MVAR model parameters.

Clear validation of cortical connectivity estimation algorithms using human data is very
difficult because the true connectivity is rarely known to reasonable precision. Hence, we
have assessed consistency of connectivity estimates across three distinct segments of data in
three subjects. All three segments lead to either significant (23/24) or insignificant (1/24)
connectivity estimates using thresholds obtained after connectivity is destroyed via random
temporal shuffling of the data. Second, the patterns in estimated conditional Granger
causality for different connections within each subject are consistent across segments. For
example, Subject 1 (Fig. 9) shows IL → SL as the strongest connection in each segment,
while SL → IL and IL → SR are consistently of moderate strength and SR → IL and IR → SL
are consistently the weakest significant connections. Third, the CV for each connection in
each subject is relatively small. The maximum CV is 34.4% and 15 of the 23 significant
connections have CV’s less than 20%. This high level of consistency within each subject
across independent data segments strongly suggests that our estimated models are reflecting
underlying physiological interactions and not noise. The movie viewing experimental
paradigm was not designed to assess consistency between subjects; this will be the subject
of future research.

Although the focus of this paper is EEG, it is straightforward to apply the state-space
formulation and EM algorithm to MEG data. The only modification to the procedure is that
the observation matrix C in Eq. (14) is designed using MEG forward models.
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Appendix

EM Algorithm: E-step and M-step
Following [21], we expand Eq. (18) and write the result of the E-step as

(23)

where
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(24)

(25)

(26)

and the quantities

(27)

(28)

(29)

(30)

(31)

are obtained using the fixed interval smoother [36].

For the M-step step, setting the derivative of q(Θ|Θr) with respect to each unknown
parameter equal to zero yields (see [21])

(32)

(33)

Cheung et al. Page 18

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(34)

(35)

(36)

The estimate of the spatial patterns λi, i = 1, 2, …, M is derived as follows. The expectation
of joint log-likelihood for the complete data q(Θ|Θr) at the (r + 1)th iteration in Eq. (23)
depends on the λi only through the last term and is thus proportional to

(37)

Take the derivative q(Θ|Θr) with respect to λi and set it to zero to obtain

(38)

If we define

(39)

we can combine the condition in Eq. (38) for each of the M ROIs to obtain the following
system of MK equations in MK unknowns

Cheung et al. Page 19

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(40)

which is solved to obtain the unknown λi, i = 1, 2, …, M. The solutions to Eq. (40) are then
normalized to satisfy λiT λi = 1.

Furthermore, the estimates of λi in Eq. (40) can be decoupled from the estimate of R in the
(r + 1)th iteration as follows. Rewrite the expression of R in Eq. (34) as

(41)

Substituting Eq. (14) for the expression of  in the second and third terms of Eq. (41), we
have

(42)

Since

(43)

Eq. (42) can be written independent of Λ as

(44)

where D is defined in Eq. (24).

At the beginning of the EM algorithm, the matrices Ap, p = 1, 2, …, P are initialized to
diagonal matrices with randomly chosen entries in each diagonal element and are checked
for stability. Q is set to a diagonal matrix with randomly chosen positive entries. Initial
values for R and Λ are chosen using an LCMV beamformer designed to estimate Λxn,j in
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Eq. (14), that is, using weights  where .
Following [37] we set the initial λi equal to the eigenvector corresponding to the maximum
eigenvalue of (WTRyyW)i where (WTRyyW)i denotes the ith diagonal M by M block of
WTRyyW. Lastly, we initialize R as a diagonal matrix based on the variance in the data yn,j
after removing estimated variance due to CΛxn,j, that is, R = diag{Ryy − CΛRxxΛTCT}
where Rxx = ΛTWTRyyWΛ. MATLAB software for implementing the EM algorithm is
available [38].
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Fig. 1.
Dipolar source locations for Example 1 (the black source is hidden in a sulcus). The blue
shaded region depicts all source locations that have forward model angles equal or
exceeding cos θ = 0.8 with respect to the red source.
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Fig. 2.
EM and NBF approach performance as a function of SNR estimated over 100 runs. Error
bars denote one standard deviation. (a) MVAR cross coupling coefficients A12 and A21. (b)
Granger causality metric from source 1 to source 2 and source 2 to source 1.
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Fig. 3.
EM and NBF approach performance as a function of the angle between source forward
models estimated over 100 runs at SNR = −5 dB. Error bars denote one standard deviation.
(a) MVAR cross coupling coefficients A12 and A21. (b) Granger causality metric from
source 1 to source 2 and source 2 to source 1.
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Fig. 4.
Two-source and interferer scenarios for Example 2. The green patch is the interferer while
the purple patch is source 2. The red and blue patches depict the locations of source 1 for
two different scenarios.
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Fig. 5.
Estimated and true Granger causality from source 1 to source 2 for a simulated two-node
network in the presence of an interfering source as a function of SIR and the angle between
the interferer and source 1 forward models at SNR = 5 dB. Error bars denote one standard
deviation.
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Fig. 6.
Inferior occipital gyrii (IL and IR) and superior parietal lobules (SL and SR) are shown in
green on a rear view of the brain. The line drawing superimposed on the brain illustrates the
causal influences simulated in Examples 3 and 4 while the insets near each ROI depict the
simulated spatial activity distribution
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Fig. 7.
Estimated and true conditional Granger causality for the simulated four-node network of
Example 3 as depicted in Fig. 6 at SNR = 5 dB. The observation equation (Eq. 14) is
designed using either K = 2 or K = 3 basis vectors for each ROI. Error bars denote one
standard deviation.
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Fig. 8.
Estimated and true conditional Granger causality corresponding to the simulated four-node
network depicted in Fig. 6 with ROI mismatch at SNR = 5 dB. Error bars denote one
standard deviation.
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Fig. 9.
Subject 1 conditional Granger causality metrics estimated during movie viewing for three
different segments of data.
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Fig. 10.
Histogram of the coefficient of variation for non-homologous connections in all three
subjects.
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