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Abstract Glomerulocystic disease is a rare renal cystic
disease with a long descriptive history. Findings from
recent studies have significantly advanced the pathophys-
iological understanding of the disease processes leading to
this peculiar phenotype. Many genetic syndromes associat-
ed with glomerulocystic disease have had their respective
proteins localized to primary cilia or centrosomes. Tran-
scriptional control of renal developmental pathways is
dysregulated in obstructive diseases that also lead to
glomerulocystic disease, emphasizing the importance of
transcriptional choreography between renal development
and renal cystic disease.

Keywords Basal body . Cilia . Glomerulocystic kidney
disease . Polycystic kidney disease .

Tuberous sclerosis complex

Introduction

Although glomerulocystic kidney disease is somewhat rare,
it is far from a new entity. As early as 1941, Roos described
an infant with failure to thrive, rickets, and renal failure
associated with cystic glomeruli [1]. Approximately 20
years later, Bialestock used microdissection to further

characterize glomerular cysts associated with renal dyspla-
sia and failure in an infant [2]. Baxter noted that
glomerulocystic kidney disease could be limited to the
cortex or be associated with medullary cysts [3], while
Taxy and Filmer first used the term ‘glomerulocystic kidney
disease’ to describe this dilatation of Bowman’s space [4].
Bernstein added significant clarity to the diagnoses by
defining the glomerular cyst as the dilatation of Bowman’s
space in the plane of section of two- to threefold that of
normal [5]. Furthermore, he used the occurrence of
glomerular tufts, within at least 5% of otherwise identifiable
cysts, as being consistent with the diagnosis of glomer-
ulocystic kidney and, like Baxter, he did not exclude
associated tubular dilatations or cysts. Bernstein originally
classified glomerulocystic kidney disease into three cate-
gories: (1) glomerulocystic kidney disease comprising
nonsyndromal inheritable and sporadic forms of severely
cystic kidneys in children and adults, (2) glomerulocystic
kidneys associated with inheritable malformation syn-
dromes, and (3) glomerular cysts in dysplastic kidneys
[5]. His work served as the basis for a working descriptive
classification of glomerulocystic disease (Table 1) [6].
Recent scientific progress offers new insight into the
pathobiology of glomerulocystic disease and builds upon
the Bernstein classification. A greater understanding of the
developmental and genetic pathobiology of glomerulocystic
disease will likely refine the classification system and may
also reveal new therapeutic targets.

Inherited and syndromic forms of glomerulocystic
kidney disease

In describing glomerulocystic kidney disease, Bernstein
noted that many patients had a family history of autosomal
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dominant polycystic kidney disease (Fig. 1). He based the
diagnosis of glomerulocystic kidney disease on anatomical
findings and did not distinguish between familial and
sporadic disease, in part because of the possibility of new
mutations in known polycystic disease loci. The autosomal
dominant inheritance of glomerulocystic kidney disease is
well documented in the literature and can be associated
with autosomal dominant polycystic kidney disease
(ADPKD) genes [7]. An autosomal dominant glomerulo-
cystic kidney disease that is not linked to the autosomal
dominant polycystic kidney disease genes (PKD1 and
PKD2) or the human homolog of mouse jcpk locus also
exists [8]. While the presentation of glomerulocystic kidney
disease is more common in newborns and young children,
it also occurs in older children and adults. A developmental
aspect of renal cystic disease has recently been identified,
and it is possible that the glomerulocystic kidney disease
phenotypic may manifest because of developmental timing
and the effects of specific mutations [9, 10]. These effects

may hinge on cell proliferation during organogenesis that
then slow but which can then increase again following
acute renal injury [11]. Glomerulocystic kidney disease also
can be found in patients diagnosed with other identifiable
diseases, such as tuberous sclerosis complex, medullary
cystic kidney disease, Jeune syndrome, nephronophthisis,
Meckel-Gruber syndrome (Fig. 2), orofaciodigital syn-
drome, brachymesomelia-renal syndrome, trisomy 9, 13, and
18, the short rib-polydactyly syndromes, and Zellweger’s
syndrome (Table 2).

Dysplastic and acquired forms of glomerulocystic
kidney disease

Glomerulocystic kidney disease also can be seen as a
component of renal dysplasia (Fig. 3) and following
significant fetal renal damage, such as that caused by
maternal intake of drugs such as phenacetin [12], or
following hemolytic uremic syndrome [13]. Tubular ob-
struction is postulated to play a role in the development of
some forms of glomerulocystic kidney disease. This link to
obstruction is not a simple relationship and appears to
involve transcriptional reprogramming as well as changes
in cilia length, as discussed below (Fig. 4).

Specific genetic diseases associated with glomerulocystic
kidney disease

Tuberous sclerosis complex

Tuberous sclerosis complex (TSC) is a tumor suppressor
syndrome associated with solid and cystic renal lesions.
Glomerulocystic kidney disease associated with TSC was
described almost 60 years ago [14] and is a well-

Table 1 Classification of glomerulocystic disease

Classifications of
glomerulocystic kidney disease

Example

Familial nonsyndromic Autosomal dominant
polycystic kidney disease
in young infants

Associated with inheritable
malformation syndromes

Tuberous sclerosis complex

Syndromic, non-Mendelian Trisomy 9, 13, or 18

Sporadic New mutations

Acquired and dysplastic kidneys Hemolytic uremic syndrome
and obstructive uropathy

Fig. 1 An example of glomer-
ulocystic disease in a child with
autosomal dominant polycystic
kidney disease. a Coronal sec-
tion of a polycystic kidney, b
histology demonstrating glo-
merular cysts (magnification
20×). Note the normal-sized
glomeruli with the enlarged
Bowman’s space and tubular
cystic changes
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documented phenomenon [5, 15, 16]. In one study, among
ten patients with TSC, four exhibited glomerulocystic
kidney disease [16]. Only one of these patients was a
teenager and the other three were infants. In each case, the
glomerulocystic involvement was unilateral. The glomeru-
lar spaces exhibited large, bizarre parietal epithelial cells
piled up against Bowman’s capsule, and the glomerular
tufts exhibited similarly atypical podocytes. The lining in
the large cysts in TSC is also different from that in other
renal cysts insofar as the epithelial cells are hypertrophic

and hyperplastic with strongly eosinophilic cytoplasm [17,
18]. This type of hypertrophy is reminiscent of the
phenotype seen in the eye cell of the Drosophila gigas
mutant, which also lacks Tsc2 and cannot make tuberin
[19]. The protein products of the TSC loci, the tumor
suppressors tuberin and hamartin, function together to
integrate cellular growth, nutritional, and energy status
signals to gate cell growth and facilitate proliferation.
Cellular loss of one of the TSC gene products results in
constitutive activity of the mTORC1 growth pathway [20].

Fig. 2 An example of glomer-
ulocystic disease in an infant
with Meckel–Gruber syndrome.
a Coronal section of the affected
kidney, b histology demonstrat-
ing glomerular cysts (magnifi-
cation 20×). Note the fetal
glomeruli and surrounding dys-
plastic tissue with tubular cystic
changes

Table 2 Inherited and genetic malformation syndromes with glomerulocystic disease

Syndrome OMIM numbera Disease reference

Arthrogryposis-renal dysfunction-cholestasis (ARC) #208085 [46]

Brachymesomelia-renal syndrome 113470 [47]

Cornelia de Lange syndrome #122470, #300590, #300590 [5]

Congenital nephrotic syndrome Finnish type (microcystic disease) #256300 [48]

Down syndrome #190685 [49]

Asplenia with cardiovascular anomalies %208530 [50]

Multiple acyl-CoA dehydrogenase deficiency #231680 [51]

Jeune’s syndrome %208500 [5]

Marden-Walker’s syndrome %248700 [52]

Maturity-onset diabetes of the young #606391 [27, 28, 41, 42]

Meckel-Gruber syndrome #249000 [26]

Medullary cystic kidney disease #603860 [24]

Nephronophthisis #256100 [53]

Orofaciodigital syndrome-type I #311200 [54]

Phocomelia syndrome or Robert’s syndrome (pscudothalidomide syndrome) #269000 [5]

Short-rib-polydactyly syndrome %263530, %263520 [55]

Smith-Lemli-Opitz’s syndrome #270400 [5]

Tuberous sclerosis complex #191100 [5, 14–16]

Zellweger’s cerebrohepatorenal syndrome #214100 [56]

a OMIM numbering symbols: #, indicates that a descriptive entry, often a phenotype, and does not represent a unique locus; %, indicates a
confirmed Mendelian phenotype or phenotypic locus for which the underlying molecular basis is unknown; no symbol, indicates a phenotypic
description for which the Mendelian basis has not been clearly established or that the phenotype may also be in other entries
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The TSC2 and PKD1 genes are adjacent on chromosome
16p13, and a contiguous germline deletion or mutation
involving both genes results in a severe polycystic kidney
phenotype at birth [21]. Children with this contiguous gene
syndrome can be genetically mosaic; for example, DNA
obtained from the peripheral white blood cells may show a
different fraction of mutant allele when compared to DNA
isolated from the kidney [21, 22]. The cystic disease can
demonstrate rapid expansion, and the children can have
very significant hypertension. This rapid progression may
be due to developmental timing of the mutation [11] or its
effects on the translation of critical genes. This latter
possibility may also be compounded by RNA interference
involving translation from the mutated alleles or possibly
due to altered gene expression a result of the convergent
transcription of genes on the unaffected allele [23].
Although the reason why these affected children have such
an accelerated disease is unknown, the cellular morphology
in the glomerular and medullary cysts provides strong

evidence that the cysts are very unlike those found in
ADPKD. The large size of the cells likely betrays the
underlying defect in the mTORC1 signaling pathway for
cell growth as well as the role of this pathway in renal
development.

Medullary cystic kidney disease

Medullary cystic kidney disease (MCKD) type 2, familial
juvenile hyperuricemic nephropathy, and glomerulocystic
kidney disease are associated with mutations in the MCKD2
gene encoding uromodulin. Benetti et al. reported a family
with an affected father and son. The son exhibited reduced
bilateral kidney volumes, cortical hyperechogenicity, and
two cysts in the left kidney, and the renal biopsy revealed
the typical enlargement of Bowman’s space with fibrosis
and alpha actin positivity. At the corticomedullary junction,
histological examination revealed immature tubules with
cytokeratin and paired box gene 2 (PAX2)-positive immu-

Fig. 3 An example of glomer-
ulocystic disease in a child with
a multicystic dysplastic kidney.
a Coronal section of a multi-
cystic dysplastic kidney, b his-
tology demonstrating glomerular
cysts (arrow) and a focus of
cartilage (asterisk) associated
with the multicystic dysplastic
kidney (magnification 20×)

Fig. 4 An example of glomer-
ulocystic disease with obstruc-
tion. a Coronal section of a
dysplastic kidney demonstrating
a ureteropelvic junction ob-
struction, b histology demon-
strating glomerulocystic disease
(magnification 40×). Note the
normal size of the glomerulus
and dense interstitial lympho-
plasmic infiltrate and tubular
dilatation
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nostaining surrounded by vimentin-positive mesenchymal
tissue. The patient did not excrete uromodulin, and a
sequencing analysis showed a novel heterozygous sequence
change in the UMOD gene [24]. Mutations in the MCKD2
gene often lead to earlier disease manifestation compared to
mutations in the MCKD1 gene [25].

Nephronophthisis

Bergmann et al. studied a mouse model of nephronophthisis
as well as families with the disease to understand the
phenotypic spectrum of mutations in the NPHP3/Nphp3
gene and to garner insight into the functional role of the
nephrocystin-3 protein [26]. The pcy mouse model results
from a hypomorphic Nphp3 allele causing a slowly
progressive renal cystic disease, while a complete loss of
the locus function results in a more severe, multi-organ
phenotype that includes situs inversus, congenital heart
defects, and embryonic lethality.

The study of these families revealed that NPHP3
mutations caused a broad clinical spectrum of early
embryonic patterning defects that likewise resulted in situs
inversus, polydactyly, central nervous system malforma-
tions, structural heart defects, preauricular fistulas, and a
variety of congenital anomalies of the kidney and urinary
tract. Importantly, the authors noted glomerulocystic kidney
disease in at least one of the patients. There are numerous
NPHP genes, but only the NPHP3 gene is currently
associated with glomerulocystic disease. The authors
further demonstrated that nephrocystin-3 directly interacted
with another renal cystic kidney disease-related protein
called inversin and that nephrocystin-3 inhibited the
inversin-mediated canonical Wnt signaling. Wnt signaling
is critical in renal development and has a role in renal
cystogenesis. Wnt signaling occurs through the canonical
and non-canonical pathways (Fig. 5), and switching
between these pathways appears to be controlled by cilial
deflection and cilioproteins. Using a Xenopus model,
Bergmann et al. demonstrated that nephrocystin-3 deficien-
cy led to planar cell polarity defects, supporting a role for
nephrocystin-3 in the control of renal canonical and non-
canonical Wnt signaling and establishing the importance of
this pathway in renal cystic disease.

Maturity-onset diabetes of the young

Mutations in the gene encoding hepatocyte nuclear factor
(HNF)-1β are associated with early-onset diabetes (matu-
rity-onset diabetes in the young) and non-diabetic renal
disease, including renal cystic disease. Bingham et al.
sequenced the HNF-1β gene in four unrelated families with
autosomal dominant glomerulocystic kidney disease and
identified mutations in two families [27]. The protein

product of this gene, HNF-1β, is a widely expressed
transcription factor that is critical for embryonic develop-
ment of the kidney, pancreas, liver, and Mullerian duct. The
affected families exhibited a dual phenotype that included
hypoplastic glomerulocystic kidney disease and early-onset
diabetes or impaired glucose tolerance. The authors
concluded that there was genetic heterogeneity in familial
glomerulocystic kidney disease and that the hypoplastic
subtype was part of the clinical spectrum of the renal cysts
and diabetes syndrome that are associated with HNF-1β
mutations. Edghill et al. sequenced the HNF-1β gene in 160
unrelated subjects with renal cystic disease. Of these
patients, only 64 had a personal or family history of
diabetes mellitus. They identified 23 different heterozygous
HNF-1β gene mutations. Despite the original association of
the HNF-1β gene with diabetes, they emphasized the
relationship to renal cystic disease, including glomerulo-
cystic kidney disease [28].

Mechanistic insights into glomerulocystic pathobiology

Associations with the primary cilium

Glomerulocystic disease is an anatomically descriptive term
and is associated with cystic disease syndromes, such as
autosomal dominant and recessive polycystic kidney
disease, maturity onset diabetes in the young, orofaciodigi-
tal syndrome, Bardet Biedl syndrome, and nephronophthi-

Fig. 5 Wnt signaling pathways. The canonical pathway is mediated
through the cystoplasmic protein disheveled (Dvl) and ultimately
effected through β-catenin-mediated transcription. The non-canonical
pathway is mediated through membrane-bound Dvl and ultimately
controls planar cell polarity. Inversin, the NPHP2 gene product, in
concert with the NPHP3 protein, appears to facilitate development by
controlling the Wnt pathway signaling. RhoA Ras homolog gene
family, member A
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sis, to name a few (Table 3). These syndromic renal cystic
diseases are also associated with mutations in genes whose
proteins are expressed in the renal tubular primary cilia or
centrosome, and this association has lead to a ‘unifying
theory’ of renal cystic disease involving these structures
[29].

Primary cilia and the requisite centrosome are found in a
variety of cells throughout the body where they serve a
predominantly sensory role, including mechanosensation,
chemosensation, and receptor-mediated signal transduction
[30]. A recent comparative analysis of genomic and
proteomic data sets enriched for basal body and ciliary
proteins support the suggestion that the vertebrate cilium
may require over 1000 different polypeptides [31]. These
ciliary and basal body proteins are strongly linked to renal

cystic disease as well as other cellular proliferation-
associated diseases, including certain cancers [32]. The
number of different proteins associated with cilia begins to
shed light on the variety of signaling processes involved.
Cilia facilitate signaling through the transient receptor
potential (TRP) channels (notably polycystin-2) [33], the
Wnt, hedgehog, and mitogen and growth factor pathways
[30, 33–35]. Mouse models with disrupted cilia expression
(Table 4) lead to a very clear glomerulocystic phenotype
(Fig. 6), and cilia are expressed in parietal epithelial cells of
Bowman’s space (Fig. 7). The Wwtr transcription factor
and Glis3, a cilia-related protein, have been shown to
interact by co-immunoprecipitation and mammalian two-
hybrid systems, and dysfunction of the Glis3 or Wwtr1
signaling pathways results in aberrant gene regulation and
the development of glomerulocystic kidney disease [36,
37].

Cilia are crucial for proper embryonic development.
During development, the temporal and spatial expression of
ciliopathy proteins are tightly controlled, and failure of
proper expression can lead to renal cystic disease. Even
non-renal manifestations can be explained on the basis of
primary cilia; for example, eye findings are a logical
extension of the nephronophthisis phenotype because
ocular rods and cones are modified cilia. These critical
cilial functions help explain the association of some renal
cystic disease with such unusual features as retinal
abnormalities and situs inversus [38]. The cilial involve-
ment in development and the timing and extent of
mutations may also impact the phenotypic expression of
renal cystic disease. Glomerulocystic disease, at least in
some cases of inherited cystic disease, is often identified in
the very young patient, usually by ultrasound studies
revealing increased renal cortical echogenicity. The timing
of such glomerulocystic disease onset suggests that the
pathogenesis may be developmentally regulated, as has
been identified for certain murine models of renal cystic
kidney disease [39]. In such a case, it is possible that
disruptions in specific gene and signaling pathways at
critical points during renal development could manifest in
the glomerular region in a similar fashion to that of other
regions of the kidney. Such temporal and spatial regulation
may help explain the wide phenotypic variability of, for

Table 3 Ciliopathy-related renal disease

Syndrome Mutated gene Cilia/centrosome
references

Autosomal dominant
polycystic kidney
disease (ADPKD)

PKD1 [57]
PKD2

Autosomal recessive
polycystic kidney
disease

PKHD1 [58, 59]

Jeune IFT80 [60]

Orofaciodigital (type 1) OFD1 [61]

Meckel–Gruber MKS1 [62]
MSK3

Nephronophthisis NPHP1 [63]
NPHP2 (inversin)

NPHP3

NPHP4

NPHP5

NPHP6

NPHP7

NPHP8 (RPGRIP1L)

NPHP9 (NEK8)

Tuberous sclerosis
complex (TSC)

TSC1 [64–67]
TSC2

Bardet–Biedl BBS1 [63]
BBS2

BBS3/ARL6

BBS4

BBS5

BBS6/MKKS

BBS7

BBS8

BBS9

BBS10

BBS11/TRIM32

BBS12

Table 4 Mouse models of glomerulocystic disease

Mouse model Gene Reference

pcy mouse Nphp3 [26]

Wwtr1 mutant Wwtr1 [36]

Glis3 mutant Glis3 [37]

jcpk mouse Bicc1 [8]

Pkd1 over expression Pkd1 [68]
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example, ADPKD, in which there can be significant
pediatric involvement in the cases of very early onset
disease and glomerulocystic disease, or geriatric onset
disease.

Glomerulocystic disease associated with aberrant ex-
pression/signaling of HNF-1β may be indirectly related to
primary cilia by virtue of recently described roles for the
transcription factor in regulating the expression of certain
cystoproteins that are expressed in cilia and in cilia-related
cell signaling pathways. Hiesberger et al. recently demon-
strated a role for HNF-1β in the transcription of the
autosomal recessive polycystic kidney disease protein

PKHD1 [40]. Using a mouse model, these researchers
identified an evolutionarily conserved HNF-1-binding site
that mapped in a region of deoxyribonuclease hypersensi-
tivity. They also demonstrated the binding of both HNF-1β
and HNF-1α to the Pkhd1 promoter and that this binding
stimulated gene transcription. Transgenic mice expressing a
dominant-negative HNF-1β controlled by a kidney-specific
promoter developed renal cysts, and Pkhd1 transcripts were
not expressed in the cells lining the cysts but were present
in normal surrounding tubules. Gresh et al. also noted that
renal-specific HNF-1β inactivation resulted in polycystic
kidney disease, but they further observed a significant

Fig. 7 Immunohistological ex-
ample of normal glomerular cil-
ia. a Arrowheads indicate
glomerular cilia on visceral and
parietal epithelium, b magnifi-
cation of cilia from a for a better
visualization of the cilia. c Glo-
merular cilia; arrow depicts tu-
bular cilia as a control, d
magnification of cilia seen in c.
Images were obtained using a
Zeiss Axiovert 200 M micro-
scope equipped with a 40× lens;
acetylated alpha-tubulin 1:250,
Alexa-488 chicken anti-mouse
immunoglobulin G 1:250; nuclei
stained with DAPI. Scale bar:
20 μm

Fig. 6 Hematoxylin and eosin staining showing glomerulocystic
disease in an 8-week old Wwtr1−/− mouse. a Coronal kidney sections
showing numerous cysts in the corticomedullary region of the kidney
from the knockout mouse (magnification 20×), b higher magnification

showing clear glomerulocystic disease with a reasonably normal
glomerulus (arrow, magnification 40×). Modified with permission
from [36]
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transcriptional defect in the Umod, Pkhd1, and Pkd2 genes.
These three genes when mutated alone also lead to distinct
cystic kidney syndromes [41]. Using immunoprecipitation,
they identified that HNF-1β binds to several DNA elements
in murine Umod, Pkhd1, Pkd2, and Tg737/Polaris genomic
sequences, further asserting the link between HNF-1β and
cystoproteins. The findings from these murine studies are
compelling, but they do not indicate that the neonatal cystic
disease is caused solely by reduced expression of these
cystoproteins. Haumaitre et al. characterized two human
fetuses with novel mutations, one in exon 2 and the other in
exon 7 of the HNF-1β gene, that exhibited severe bilateral
enlarged glomerulocystic kidneys, severe pancreas hypo-
plasia, and abnormal genital tracts. In contrast to the murine
studies, a significant proportion of cysts expressed
polycystin-1, polycystin-2, fibrocystin/polyductin complex,
and uromodulin. The authors concluded that cyst formation
in these cases may have resulted from a deregulation of
cell–cell adhesion and/or the Wnt/β-catenin signaling
pathway. This contention was supported by the fact that
the fetuses exhibited strongly down-regulated β-catenin
and E-cadherin in the hypoplastic pancreas [42].

Urinary tract obstruction

The association of glomerulocystic kidney disease with
renal dysplasia likewise may be rooted in transcription and
developmental gene regulation. Renal malformations are
often associated with urinary tract obstruction. Using an
ovine model, Attar and colleagues unilaterally obstructed
the ureter at a developmental point where only a few layers
of glomeruli had formed and then characterized the renal
development in the context of the un-obstructed kidney.
They identified ureteric and pelvic dilatation and an
increased renal parenchymal weight on the operated side
compared to the contralateral organs or those from un-
operated fetuses. The renal cortex on the obstructed side
exhibited glomerulocystic disease [43]. The cystic epithelia
strongly expressed PAX2, a growth-stimulating transcription
factor down-regulated during normal maturation. The cysts
also exhibited increased cell proliferation and apoptosis, as
had been previously reported in human kidney malforma-
tions. Dressler and Woolf described an association between
renal cysts and increased PAX2 expression [44]. One could
speculate that the increased proliferation of cells would also
be associated with a reduction in the number of primary
cilia because the centriole cannot be involved in cytokinesis
and cilia formation and maintenance at the same time. In
light of these findings, it would be interesting to investigate
the potential relationship between primary cilia and PAX2
expression, particularly whether the persistence of PAX2
expression beyond its developmental usefulness impacts
proper cilia expression and signaling. Unilateral ureteral

obstruction has also been shown to result in rather
impressive changes in cilia morphology, supporting a link
between cilia structure and function and glomerulocystic
kidney disease [45].

Conclusions

The classification of glomerulocystic kidney disease has
been almost exclusively descriptive up to this point in time,
and for good reason. The different phenotypes are rare and
associated with a wide array of additional features. Recent
findings regarding gene and protein associations with some
forms of glomerulocystic diseases have shed some light on
the mechanisms that may underlie disease pathogenesis,
indicating that primary cilia dysfunction may be involved.
Based on current knowledge, the pivotal role of renal
development in renal phenotypic cystic disease expression
is to clarify the roles of developmental genes not only in
cystogenesis but also ultimately in the link between renal
cysts and renal neoplasms.
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Questions
(Answers appear following the reference list)

1. Which of the following statements about glomer-
ulocystic kidney disease are true?

a. Glomerulocystic kidney disease can be associated
with autosomal dominant polycystic kidney disease.

b. Glomerulocystic kidney disease can only be said to
occur in otherwise normal kidneys.

c. Glomerulocystic kidney disease can be associated
with tuberous sclerosis complex.

d. a and c.
e. a, b, and c.

2. Which statements about glomerulocystic kidney disease
and ureteral obstruction are true?

a. Ureteral obstruction has been shown to be associ-
ated with glomerulocystic kidney disease.

b. Ureteral obstruction has an effect on PAX2 expression.
c. Ureteral obstruction has an effect on cilia expression.
d. a and b.
e. a, b, and c.

3. Which of the following statements about glomerulo-
cystic kidney disease is false?

a. Glomerulocystic kidney disease is an anatomically
descriptive term.
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b. Glomerulocystic kidney disease can be inherited as
an autosomal dominant or recessive disorder.

c. Glomerulocystic kidney disease is associated with
several different genetic loci.

d. Mouse models of glomerulocystic kidney disease
do not resemble the human disease state.

e. Glomerulocystic kidney disease can be associated
with changes in Wnt signaling.

4. Which of the following statements about glomerulo-
cystic kidney disease is most true?

a. Glomerulocystic kidney disease can be associated
with nephronophthisis.

b. Glomerulocystic kidney disease can be associated
with medullary cystic kidney disease.

c. Glomerulocystic kidney disease can be associated
with tuberous sclerosis complex.

d. Glomerulocystic kidney disease can be associated
with maturity onset diabetes in the young.

e. All of the above are true.
5. Which of the following statements about glomerulo-

cystic kidney disease is false?

a. Glomerulocystic kidney disease maymanifest in some
patients because of developmental timing effects.

b. Glomerulocystic kidney disease may manifest
because of a change in ureteral patency.

c. Glomerulocystic kidney disease may develop be-
cause of changes in Wnt or hedgehog signaling.

d. Glomerulocystic kidney disease may develop fol-
lowing Henoch–Schönlein purpura.

e. Glomerulocystic kidney disease may develop fol-
lowing nephrotoxin exposure.
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