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Abstract
The complexities that underlie the cognitive impairment and neurodegeneration characteristic of
Alzheimer's disease have yet to be completely understood, although many factors in disease
pathogenesis have been identified. Particularly important in disease development seem to be
mitochondrial disturbances. As pivotal role players in cellular metabolism, mitochondria are
pertinent to cell survival and thus any deviation from their operation is certainly fatal. In this
review, we describe how the dynamic balance of mitochondrial fission and fusion in particular is a
necessary aspect of cell proliferation and that, as the cell ages, such balance is inevitably
compromised to yield a destructive environment in which the cell cannot exist. Evidence for such
disturbance is abundant in Alzheimer disease. That is, the dynamic balance of fission and fusion in
AD is greatly shifted toward fission, and, as a result, affected neurons contain abnormal
mitochondria that are unable to meet the metabolic demands of the cell. Moreover, mitochondrial
distribution in AD cells is perinuclear, with few metabolic organelles in the distal processes where
they are normally distributed in healthey cells and where they are needed for exocytosis, ion
channel pumps, and synaptic function, among other things. AD neurons are thus characterized by
increases in reactive oxidative species and decreases in metabolic capability, and notably, these
changes are evident very early in AD progression. We therefore believe that oxidative stress and
altered mitochondrial dynamics contribute to the precipitation of AD pathology and thus cognitive
decline. These implications provide a window for therapeutic intervention (i.e., mitochondrial
protection) that has the potential to significantly deter AD progression if adequately developed.
Current treatment strategies under investigation are herein described.

The uncertainty surrounding the causes of the vastly debilitating neurodegenerative disorder
Alzheimer's disease (AD) has fostered much debate. That it is the leading cause of senile
dementia in the US, affecting 15% of people aged >65 years and almost 50% of those aged
>85 years,[1] generates further controversy and warrants increased investigation, as the
aging population demands an effective therapeutic measure to facilitate disease prevention/
control. Fortunately, studies have begun to connect the pathological ‘dots’ that characterize
the disease, such that the immeasurably complex interactions that yield AD are now
becoming clear.

The disorder is characterized by progressive neuronal loss and an accompanying cognitive
deterioration that eventually proves fatal. Extracellular aggregates of amyloid-β (Aβ)-
containing senile plaques have long been implicated in disease onset and progression, as
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mutations in the amyloid-β protein precursor (AβPP) are known to initiate early onset,
familial AD,[2,3] and concentrations of anti-Aβ antibody have been shown to be an effective
marker for the disease and its progression.[4] Similarly, the microtubule associated protein
tau has been confirmed as a role player in AD, as its hyperphosphorylated, aggregated fibrils
occupy neuronal space in vulnerable regions of AD brains (i.e., hippocampus/cortices) in the
form of neurofibrillary tangles (NFTs).[5,6] Notably, these hallmarks of AD, while once
thought to be primary mediators of the sporadic form of the disease (responsible for 90–95%
of all AD cases[7]), are now understood to be secondary role players in AD pathogenesis.[8]
Although much is unclear about the origins of AD, evidence supports the role of
mitochondrial dynamics as a potential suspect.

Indeed, malfunctions in mitochondria have been documented in AD brains.[9,10] Given that
mitochondria are immensely pertinent to cellular proliferation as they are the metabolic and
energy centres of the cell, and that abnormalities in mitochondrial dynamics widely precede
many of the hallmark pathologies of AD,[9,10] it is not unreasonable to investigate them as
progenitors of the disease. Moreover, the mitochondria provide a potential access point for
therapeutic intervention that, if appropriately harnessed, could yield remarkable treatment
strategies for patients and as yet unaffected individuals. As we shall see, although there are
still some points that must be clarified, the prognosis for mitochondria as instigators of AD
is strong, and thus an effective preventative measure in this regard will certainly be
beneficial.

1. Mitochondrial Dynamics: Fission, Fusion and Function
Mitochondria are not static organelles, but are dynamic bodies that constantly divide and
fuse within the cell as the environment demands.[11] They are composed of an inner
membrane (almost entirely impermeable) and an outer membrane (permeable to ions and
small molecules), such that establishment of an proton gradient during oxidative
phosphorylation is possible. Maintenance of membrane integrity is vital to mitochondrial
and cellular functioning: 95% of the cell's energy supply is generated in mitochondria via
the citric acid (tricarboxylic acid [TCA]) cycle and oxidative phosphorylation.

As such, the number and morphology of the mitochondria in a cell are controlled by delicate
balance of organelle fission and fusion mechanisms.[9,11] In particular, genetic inactivation
of fission results in elongation of mitochondria, whereas inactivation of fusion yields
fragmentation.[12,13] It is through this balance that the cell ultimately maintains
mitochondrial integrity and homogeneity: fusion allows the exchange of lipid membranes
and mitochondrial contents, such as mitochondrial DNA (mtDNA), and fission (coupled
with fusion and autophagy) allows sequestration and elimination of irreversibly damaged
mitochondria and mitochondrial content.[14-16] Both processes effectively lower the
percentage of defective mitochondria in the cell and ensure stability in cellular proliferation;
indeed, metabolism, energy production, calcium signaling, reactive oxidative species (ROS)
production, apoptosis and senescence all depend on the balance of fission and fusion.[17-22]
Conversely, dynamic distortion (i.e., excessive fragmentation/elongation) results in
inefficiencies in cell functioning, if not cell death. Studies have specifically demonstrated a
direct reduction in metabolism and loss of mtDNA after dynamic misbalance.[9,19,23-25]

In fission, at least two proteins are involved: a large guanosine triphosphatase (GTPase),
dynamin-like protein 1 (DLP-1) and a small molecule Fis1.[26-28] DLP-1 is a member of
the conserved dynamin large GTPase superfamily that controls membrane tabulation and
fission; it is primarily a cytosolic protein that is recruited to punctuate spots on the
mitochondrial surface.[28] DLP-1 is believed to oligomerize to form large ring-like
complexes that, once bound to the mitochondrial surface, hydrolyze guanosine triphosphate
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(GTP) to constrict and twist tubules to initiate fission.[29] Fis1 then acts as a receptor to
DLP-1, recruiting the complex-forming protein to the appropriate mitochondria. As such,
Fis1 is evenly distributed along the mitochondrial surface.[30] Fission produces two
daughter organelles with cristae and other inner structural remodeling, the mechanisms of
which are not entirely clear.[26,27]

Fusion, on the other hand, is regulated by three large GTPases: mitofusin 1 (Mfn1),
mitofusin 2 (Mfn2) and optic atrophy protein 1 (OPA-1).[26-28] Mfn1/2 are transmembrane
proteins localized to the outer mitochondrial membrane that appear to play similar roles in
fusion, although they function independently of one another and have different rates of GTP
hydrolysis.[19,28,31] Mechanistically, the two proteins form homo- or hetero-oligomeric
complexes (through interactions of their coiled-coil extracellular domains) and tether two
mitochondria together for fusion of the outer membranes.[31,32] Inner membrane fusion,
while not as completely understood, occurs primarily through the functioning of OPA-1,
which faces the intermembrane space, in correspondence with Mfn1.[19,33]

Within the cellular environment, mitochondrial dynamics are manipulated by regulations
involving the above listed proteins, among others. While much of this dynamic interplay is
yet unknown, studies have revealed the interactions and regulations that utilize DLP-1 to
instigate or prevent mitochondrial fission.[28] Specifically, post-translational modifications
of the fission protein have been examined and include phosphorylation, SUMOylation (i.e.
the covalent attachment of a small ubiquitin-like modifier [SUMO]), ubiquitylation and
nitrosylation.[34-39] Phosphorylation of DLP-1 at two serine residues (Ser616 and Ser637)
has been demonstrated, although only that of Ser616 has been confirmed as actually
facilitating fission. That is, while phosphorylation of Ser616 by mitosis promoting factor has
been shown to directly induce mitochondrial fission,[34,35,39] there is still debate over the
effect of Ser637 phosphorylation: two groups indicate Ser637 phosphorylation by protein
kinase A inhibits fission[34,35] (while its dephosphorylation by calcineurin promotes
fission[40]) and another group indicates that Ser637 phosphorylation by calcium/calmodulin
dependent protein kinase-1α induces DLP-1 translocation to mitochondria, thereby
enhancing fission.[41] Further investigation is thus required to elaborate on the specificities
of DLP-1 dynamics.

Similarly, SUMOylation of DLP-1 by SUMO-1 protects the protein from degradation,
effectively enlarging the DLP-1 pool, and facilitates its translocation to the mitochondria
from the cytosol.[28,36] S-nitrosylation of DLP-1 activates its GTPase activity and thus
instigates fission.[42]

In addition to fission/fusion processes, mitochondrial activity depends on the physical
location of the organelles within the cell. The distribution of mitochondria is orchestrated by
the cytoskeleton and associated proteins such that regions with high metabolic requirements
receive the highest concentrations of mitochondria.[9,43] Notably, mitochondrial
distribution is affected by mitochondrial dynamics: both fission mutants with elongated
mitochondria (i.e. DLP-1 mutants) and fusion mutants with short, rounded mitochondria (i.e.
OPA-1 mutants) cause distribution changes within the cell.[44-46] Because a cell's
functioning strongly relies on its ability to generate energy in the appropriate location at the
appropriate time, the position of mitochondria within the cell greatly affect its performance,
and thus the balance of fission and fusion is pivotal. Even more crucially, because neurons
are particularly dependent on mitochondrial integrity as they have much greater energy
demands than any other cell type (including the extremely energy taxing functioning of ion
channels and pumps, synaptic transmission, axonal/dendritic transport of signal molecules
and vesicles, etc.[28,47]), this balance is pertinent to brain functioning. Any perturbations in
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mitochondrial fission/fusion and function would therefore expose the neuron to disastrous
consequences which, as we shall see, include the neurodegeneration typical of AD.

2. Mitochondrial Mechanistic Malfunction in Alzheimer's Disease (AD):
Altered Metabolism Due to Dysfunctional Dynamics

Metabolic defects in AD are one of the best documented abnormalities in the disease.[10] In
fact, neuropsychological testing and neuroimaging studies have demonstrated that such
abnormalities precede evidence for functional impairment or brain atrophy attributed to
traditional pathologies of neurodegeneration (i.e. senile plaques and tangles).[9,10] Damage
to the components and structure of mitochondria are also well documented in AD,[48,49]
and oxidative stress has recently been strongly implicated in disease pathogenesis.[8] As the
process of oxidative phosphorylation inevitably yields ROS, damage to mitochondria are
suspected to be the progenitors of oxidative stress, and therefore mitochondria themselves
are thought to be integral to AD pathobiology.

Specific deficiencies in mitochondrial enzymes have been reported in AD. These include
enzymes involved in the TCA cycle, such as ketoglutarate dehydrogenase complex and
pyruvate dehydrogenase complex, as well as those involved in the electron transport chain
of oxidative phosphorylation, such as cytochrome oxidase.[50-56] As these complexes
orchestrate the oxidation/reduction reactions necessary for oxidative phosphorylation (and
the generation of adenosine triphosphate (ATP)), any such deficiency will produce a
malfunctioning metabolism. Sporadic mutations in mtDNA have also been reported in
certain regions of AD at a much higher rate than in age-matched controls, and in some cases,
mtDNA mutations are completely unique to AD cases.[9,57] Moreover, calcium
homeostasis is altered in AD, and mitochondrial impairment is the proposed reason for its
dysregulation.[58] Altogether, mounting evidence supports the role of mitochondrial
disturbance in the pathogenesis of AD, and recent studies show that mitochondrial dynamics
lie at the heart of these disturbances.

AD neurons are known to contain significantly lower percentages of normal mitochondria as
well as relatively high percentages of mitochondria with broken cristae, when compared
with age-matched controls.[9] Significant changes in mitochondrion size and number were
also found in vulnerable AD neurons.[59] These specific trends provide a potential cause for
the aforementioned mitochondrial disturbances and, notably, are associated with defects in
fission/fusion dynamics and the corresponding proteins.[9]

In fibroblast cells, for example, altered dynamics was confirmed in AD in a series of studies
by Wang et al.[9] While fibroblast cells are very different to the hippocampal neurons that
are devastated in AD, these data nonetheless provide important insights into the specifics of
dynamic alterations in the mitochondria of AD cells. Fibroblast mitochondria were
significantly longer when compared with the short and rounded mitochondria of age-
matched normal human fibroblasts, and were often joined together irregularly in a
mitochondrial network.[60] Further investigation indicated that DLP-1 mutations were the
likely cause of the shift in mitochondrial dynamics toward fusion: (i) DLP-1 levels were
significantly decreased, while OPA-1 levels were unchanged; (ii) DLP-1 knockdown, as
well as the expression of dominant negative DLP-1 in normal human fibroblasts, caused
mitochondrial changes similar to those seen in sporadic AD (sAD) fibroblasts; and (iii)
DLP-1 overexpression rescued abnormal morphology in sAD fibroblasts.[60] The
distribution of mitochondria themselves was also altered in sAD fibroblasts when compared
with controls: the organelles were mainly concentrated in the perinuclear area and were
sparse in remote and peripheral regions of the cells. Notably, this phenomenon had little
effect on the functioning of the fibroblast cell; however, in the vastly polarized
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environments characteristic of neurons, such alterations in mitochondria distribution would
be detrimental.

Indeed, mitochondrial fission/fusion proteins have been demonstrated to exist at altered
levels and in altered distributions in AD hippocampal pyramidal neurons compared with
age-matched controls.[61] Specifically, AD neurons had reduced DLP-1, OPA-1 and
Mfn1/2 protein levels and increased Fis1 levels. These proteins, furthermore, were
aggregated in neuronal soma and not in the neuronal processes, indicating abnormal
mitochondrial distribution. Interestingly, synaptic dysfunction, an early and robust correlate
of AD-associated cognitive defects,[62] may be the direct result of this altered mitochondrial
distribution. Whereas under normal conditions mitochondria are abundantly located at
synaptic terminals[63] due to the intense energy demands of an active neuron (which is
engaged in synaptic transmission but also requires calcium buffering), in Drosophila
containing a mutant Milton protein (which is involved in mitochondria transport via binding
to kinesin heavy chain), loss of mitochondria at axon terminals led to synaptic dysfunction
in photoreceptor cells.[64] Similarly, loss of Miro protein (which is involved in
mitochondria morphology regulation) resulted in mitochondria accumulation in neuronal
cell bodies at neuromuscular junctions with subsequent synaptic dysfunction.[65,66] DLP-1
mutations in Drosophila also produced impaired calcium buffering and dysfunction in the
mobilization of reserve pool vesicles, and this effect was primarily due to the elongation of
mitochondria and their resulting failure to populate the distal axon.[67] Finally, the plasticity
of spines and synapses was demonstrated to be perturbed in cells after an alteration of
DLP-1 or OPA-1 that yielded a lack of dendritic mitochondria.[68]

Clearly, alterations in mitochondria dynamics and distribution are profound in AD neurons.
While there is no certainty as to their origins, evidence implicates the gradual accumulation
of oxidative damage over the course of decades in the generation of malfunctioned
mitochondria, and increasing data identifies such abnormalities as the primary mediator in
neurodegeneration.

3. Oxidative Stress in AD
The abundant evidence for mitochondrial malfunctions in AD, coupled with the immense
impact of mitochondria on cell vitality and function, implicate the metabolic organelle as a
primary mediator of the neurodegeneration in AD. While much has yet to be elucidated, the
‘age-induced mitochondrial cascade’ of neurodegenerative events seems a likely key
operator in AD pathogenesis.

There is no doubt that oxidative stress is an instigating factor in AD onset and progression.
Current research, in fact, suggests it to be the primary producer of pathology traditionally
descriptive of AD, and much evidence corroborates this theory. Our two-hit hypothesis, for
example, describes a system whereby a long-term, pathological condition, such as oxidative
stress in late-onset AD, instills a degree of damage upon the affected cell such that it must
enter a compensatory ‘steady state’ to maintain basic functions.[8] Indeed, oxidative
markers generally precede all of those associated with typical hallmarks of AD, such as NFT
formation and Aβ aggregation. Specifically, 8-hydroxyguanosine (8-OHG), a marker of
oxidative damage, appears decades prior to Aβ senile plaques, and AβPP-mutant Tg2576
transgenic mice demonstrate oxidative damage preceding that due to Aβ aggregation.[69-76]
This repeated oxidative stress eventually overwhelms the cell's antioxidant machinery,
producing cumulative alterations in vital macromolecules: indeed, lipid peroxidation,
nitration and nucleic acid oxidation are all prevalent in AD and AD models.[8]

As such, because the new ‘oxidative steady state’ represents the cell under repeated and
consistent stress, vulnerabilities to damage produced by other aberrant mechanisms, such as
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mitotic re-entry and aggregation of non-soluble Aβ, become the progenitors of the cell's
death (because it cannot fight these alterations in its weakened state).[8] In fact, oxidative
stress itself seems to be the direct precursor of several AD pathologies. Evidence
demonstrates that Aβ secretion, for example, initially occurs as an antioxidant response to
elevated ROS. Aβ has been shown to have antioxidant activity and to protect lipoproteins
from oxidation in cerebrospinal fluid and plasma (via metal sequestration),[77-80] and AD
cases with the most extensive Aβ deposition show the lowest levels of 8-OHG while
neurons lacking such AD pathology have significantly higher levels of 8-OHG.[81] Tau
hyperphosphorylation and the formation of NFTs have similarly been demonstrated as a
possible compensation for overwhelming concentrations of ROS.[82,83] Neurons with
NFTs have significantly lower 8-OHG levels despite obvious oxidative damage (i.e., the
presence of advanced glycation endproducts or lipid peroxidation),[81] and phosphorylation
of tau has been demonstrated to antagonize apoptosis by stabilizing β-catenin.[84]
Therefore, a chronic oxidative stress situation, as initiated by altered mitochondrial
dynamics, may in fact elicit the hallmark pathologies of AD.[85]

Interestingly, while the hallmark pathologies of AD seem to originate in response to
excessive cellular oxidative damage, their presence eventually inflicts burden on the
associated cells and only intensifies the cascade of events that leads to neurodegeneration.
Specifically, once secreted, Aβ becomes subject to oxidation itself, and its resulting
dityrosine cross-linkages make the peptide insoluble and thus more likely to aggregate.
[80,86] Aβ, in its aggregated form, then has a detrimental effect on the cell because it elicits
further oxidative stress[80,81] and inflicts damage on mitochondrial functioning. The latter
process has been demonstrated in M17 cells overexpressing mutant AβPP (these cells
exhibited more than a 4-fold decrease in the rate of mitochondrial fusion[87]), and studies
further indicate that Aβ overproduction induces mitochondria fragmentation, dysfunction,
heightened ROS production and reduced ATP generation.[60] These detriments to the cell
directly stem from oxidative damage, and as we discuss next, it is the mitochondria that are
responsible for the accumulation of oxidative stress.

4. Mitochondrial Mediation of Oxidative Stress and Neurodegeneration: an
Attractive Culprit

Mitochondria are the centres of energy production in the cell, and, over the course of aging,
the metabolic machinery they possess inevitably produce ROS. As stated in section 2, key
enzyme complexes in both the TCA cycle and the electron transport chain function as
oxidizing/reducing agents, and dysfunction in one of these complexes results in aberrant
electron transfer and the generation of oxidative free radicals. Ketoglutarate dehydrogenase,
cytochrome oxidase and pyruvate dehydrogenase have all been shown to elicit ROS in vitro;
in particular, in the electron transport chain, superoxide radical (O2

−) and hydrogen peroxide
(H2O2) are predominantly produced.[81] Furthermore, the sheer number of oxidation/
reduction reactions that take place within a given neuron statistically guarantees the
production of a large number of ROS on a daily basis: the average non-neuronal cell uses
1013 O2 molecules per day in metabolic processes, and approximately 1% of these
molecules (i.e., 1011) become O2

−.[81] As the brain utilizes 20% of the body's oxygen
supply despite constituting only 2–3% of its mass,[81] the ROS generation in the brain is
likely much higher than 1011 molecules per day. Although the cell contains antioxidant
mechanisms, this astounding number of radicals eventually overwhelms these mechanisms,
leading to a cascade of mtDNA mutation and oxidative damages characteristic of the
‘oxidative steady state’.

Notably, mtDNA damage and general mitochondrial malfunction takes years to accumulate;
the integrity of these organelles is strictly maintained via the delicate balance of fission and
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fusion. As stated in section 1, fusion provides defective mitochondria with replenished
supplies of mtDNA and mitochondrial proteins, and fission allows the sequestration and
elimination of irreversibly damaged mitochondria and mitochondrial proteins.[28] However,
despite these efforts, mutations in vital mitochondrial proteins eventually cross a threshold
beyond which mitochondrial dysfunction propagates uncontrollably.[28,65] Once mutations
in mitochondrial dynamics become manifest, the cell's mitochondrial safety net quickly
dissipates and the cascade of neurodegeneration begins.

Research has shown that mutations in over 80% of mtDNA genes elicit abnormal
mitochondria morphology, including fragmentation and elongation.[88-90] In addition, short
exposure of mitochondria to ROS causes mitochondrial imbalances in fission and fusion as a
result of mtDNA mutation.[91] Mfn1/2-null cells and OPA-1 deficient cells also have
excessively fragmented mitochondria and demonstrate greatly reduced endogenous and
uncoupled respiratory rates. The latter phenomena are due to attenuation of electron
transport rates in complexes I, III and IV.[19,23] Similarly, Purkinje cells of Mfn2 knockout
mice demonstrate aberrant electron transport activity,[16] and genetic inhibition of DLP-1
causes a reduced rate of ATP synthesis due to decreased complex IV activity and inefficient
oxidative phosphorylation.[24,28] Fission/fusion imbalance as a result of mtDNA mutation
can also disrupt calcium homeostasis,[92,93] and both excessive fragmentation and
elongation of mitochondria lead to increases in ROS produced in the cell, with excessive
deposition of iron.[22,25,94-96]

Once excessive fragmentation or elongation takes place within the cell (as a result of
accumulating oxidative damages and corresponding mtDNA mutations), the sequestration
mechanisms for defective mitochondria become incapable of controlling the accumulation
of these damages. As the defective mitochondria directly produce neuronal insults, such as
oxidative free radicals and reduced metabolism, a vicious cycle ensues in which ROS
generation, oxidative steady state compensation and mitochondrial deterioration upregulate
each other. It is this feedback cascade that ultimately proves fatal to the cell. Mitochondrial
malfunctions thus seem to be the primary medium through which age produces
neurodegeneration.

5. Potential Treatment Strategies
The profound influences of brain mitochondria in the pathogenesis of AD afford a new
perspective on potential therapeutics for the disease. Indeed, recent research has focused on
mitochondrial repair strategies and mitochondrial antioxidants to prevent and control the
neurodegenerative cascade for which the metabolic organelles are responsible.
Mitochondrial antioxidant therapy has been found to be most effective in producing
pathological changes without any adverse effects.[97-99] In particular, the restoration and
rescue of mitochondrial complexes can be achieved via selective mitochondrial antioxidant
treatment.[100]

Studies of the brains of aged rats have specifically demonstrated the protective effects of
such mitochondrial antioxidants. The antioxidants acetyl-L-carnitine (ALCAR) and R-α-
lipoic acid (LA) reduced oxidative stress and mitochondrial abnormalities and restored
cognitive function in rat parenchyma cells,[98,100-102] and such targeting of mitochondrial
oxidative stress also improved the overall cognitive ability of aged rats and dogs.[102-106]

Furthermore, administration of ALCAR 0.5% and LA 0.2% greatly reduced mitochondrial
damage in hippocampal neurons of aged rats.[98] Neuronal cell bodies showed fewer giant
mitochondria (i.e. less fusion abnormalities) compared with age-matched controls, and
treated mitochondria lacked ultrastructural abnormalities and appeared intact or with
minimal damage. ALCAR/LA administration was followed by statistically significant
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decreases in the prevalence of damaged mitochondria (p < 0.001), increases in normal, intact
mitochondria (p < 0.02) and significant improvements in the differences in damaged
mitochondria between old and young rats. In addition, dietary supplementation of these
antioxidants in young and old rats indicated that more significant treatment effects can be
achieved with early supplementation.[98] Thus, there appear to be significant benefits
associated with mitochondrial dysfunction treatment, and it is to be hoped that increased
investigation will see efficient and reliable therapies become a clinical reality.

6. Conclusions
The effects of mitochondria and mitochondrial balances within the cell are immense. As
accumulating evidence confirms, mitochondrial behaviour in the cell is dynamic and
complicated, and maintaining the exact balance in their processing is absolutely necessary
for full cell functioning. In our proposed ‘age-induced mitochondrial cascade’ (figure 1),
this balance is eventually tipped by aggregation of oxidizing agents that are the natural result
of cellular respiration. Although this rate-limiting step takes years, perhaps decades, to
become harmful, it nonetheless seems to be an inevitable part of the aging process, and
presents substantial concern for the aged community. Fortunately, though, antioxidant
therapies are demonstrating significant benefits for damaged and potentially damaged
mitochondria, and the results of studies of these agents indicate an overall improvement in
cognitive ability and function. Although much investigation is necessary in the future, there
is certainly a light at the end of the neurodegenerative tunnel that will hopefully relieve
society of the burden of AD.
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Fig. 1.
The age-induced mitochondrial cascade of neurodegeneration. The reactive oxidative
species (ROS) inevitably generated in the respiration process accumulate within the cell
over years, gradually damaging mitochondrial DNA (mtDNA) and related mitochondrial
proteins. Eventually, an imbalance in mitochondrial dynamics (i.e., fission/fusion) occurs
and initiates a detrimental cycle of further ROS generation, increased mitochondrial damage
and dysfunction, and cell death. It is through this sequence of events that the
neurodegeneration typical of Alzheimer's disease (AD) occurs. Aβ = amyloid β; ATP =
adenosine triphosphate; MCI = mild cognitive impairment; NFT = neurofibrillary tangle.
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