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CELL GROWTH REQUIRES CELL WALL EXTENSION

Plant cell walls are established by different polysac-
charides and structural proteins. The exact composi-
tion of these complex structures is dependent on the
type of cell and the developmental stage and therefore
is in a constant flow of remodeling. Cell shape is
defined by the balance between turgor pressure from
the symplast and the strength of the cell wall. Yet, for
cell growth to take place, the controlled loosening of
the cell wall is a prerequisite (Cosgrove, 2005). Thus,
control mechanisms that closely survey the different
steps of cell wall remodeling are necessary, implying
that signals from the apoplast to the cell wall and vice
versa ascertain the exchange of information. The goal
of this article is to give an overview on the under-
standing of the signaling mechanisms that take place
between cell walls and the cytoplasm, with a focus on
the recent advances in the field. Plant cell walls are
also defense structures against different abiological
and biological stresses such as pathogens. The mech-
anisms of recognition of pathogens and the modifi-
cation of cell walls upon pathogen encounter are
reviewed elsewhere (Hematy et al., 2009).
A number of phenomena demonstrate that a sensing

and signaling system must exist in the extracellular
matrix that monitors the structure and integrity of cell
walls. For example, cellulose synthesis takes place in
rosette-forming protein complexes made of cellulose
synthases (CesAs). Mutations in Arabidopsis (Arabi-
dopsis thaliana) CesA genes lead to a reduction in
cellulose content and induce compensatory mecha-
nisms, including modifications in lignin deposition,
pectins, xyloglucan, and AGPs. Thus, a cell wall-sensing
process must recognize the cellulose deficiency and
induce appropriate responses. These signaling events
are clearly not linear but induce many different reac-
tions, including stress-related processes that depend
on intact hormone signaling pathways (Ellis et al.,

2002; Cano-Delgado et al., 2003; Bosca et al., 2006;
Hernandez-Blanco et al., 2007).

TRANSMEMBRANE RECEPTORS

Excellent candidates for a function in sensing the
structure of cell walls and transducing this informa-
tion to the cytoplasm are transmembrane proteins.
Plant genomes code for a large number of receptor-like
kinases (RLKs; Arabidopsis, more than 600; rice (Oryza
sativa), more than 1,100; Shiu and Bleecker, 2001),
which can relay a signal to the cytoplasm via the
cytoplasmic kinase domain (Fig. 1). Some of these
proteins should be able to sense changes in the cell
wall structure by, for example, a missing interaction
partner. Indeed, a role in cell wall-related signaling has
been demonstrated for a number of RLKs.

Wall-Associated Kinases

Wall-associated kinases (WAKs) of Arabidopsis are
a family of five transmembrane proteins with a cyto-
plasmic Ser/Thr kinase domain and an extracellular
domain with motifs similar to the vertebrate epider-
mal growth factor repeats. These proteins are involved
in cell expansion but are also induced upon pathogen
attack or as a stress response (Wagner and Kohorn,
2001; Sivaguru et al., 2003). The reduction of WAK
expression has been shown to lead to a reduction in
cell growth (Lally et al., 2001; Wagner and Kohorn,
2001; Kohorn et al., 2006b). Most interestingly with
respect to cell wall sensing is the observation that
WAK proteins interact strongly, in some cases co-
valently, with pectin (He et al., 1996; Wagner and
Kohorn, 2001). For WAK1 and WAK2, pectin binding
could be demonstrated in vivo and in vitro (Decreux
and Messiaen, 2005; Kohorn et al., 2009). In addition,
in a yeast two-hybrid experiment, WAK1 was shown
to interact with the Gly-rich protein GRP3, a structural
protein in the cell wall (Park et al., 2001). These results
strongly indicate a direct interaction of WAK1 and
WAK2 with the cell wall and make them likely candi-
dates for a cell wall-sensing function (Fig. 1). A recent
study revealed that WAK1-GFP accumulates in a
pectin-containing compartment in the cytoplasm.
From there, WAK1-GFP migrates to the plasma mem-
brane, but much slower than RLKs that do not asso-
ciate with cell walls, such as the brassinosteroid
receptor BRI1 (Wang et al., 2001). The migration pro-
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cess is dependent on active cellulose biosynthesis and
negatively influenced by Fuc, which is a component of
pectin (Kohorn et al., 2006a). The regulation of protein
localization by cell wall components adds another
level of complexity to the control of RLK signaling
activity.

A further insight into the possible function of WAK
proteins was provided by a detailed analysis of
Arabidopsis WAK2. A wak2 knockout mutant grew
normal under standard conditions. However, on me-
dium with low salt and no Suc, it showed a reduced
cell elongation rate. The importance of Suc for thewak2
phenotype could be compensated for by expressing a
maize (Zea mays) Suc phosphate synthase (Kohorn
et al., 2006b), indicating that the wak2 phenotype is
linked to Suc-related physiology. Measurements of
Suc-related enzymes revealed that vacuolar invertase
activity, which converts Suc to Glc and Fru, is reduced
in wak2. Most likely, the low level of these sugars in the
vacuole reduces turgor pressure in the cell that affects
cell elongation (Martin et al., 2001). Next, the authors
aimed at makingWAK2 expression inducible to follow
its effect on cell turgor. The WAK2 extracellular do-
main was replaced by the one of the brassinosteroid
(BR) receptor BRI1 (Wang et al., 2001), thus making
WAK2 signaling BR dependent. In protoplast experi-
ments, BR-mediated WAK2 activity induced vacuolar
invertase, which resulted in an increased turgor pres-
sure (Kohorn et al., 2006b). Together, these analyses
suggest that WAK2 interacts with pectin at the cell

surface, upon which the protein induces a signal
transduction cascade (see below) that leads to a mod-
ification of the turgor pressure in the cell.

Lectin Receptor Kinases

Lectin receptor kinases (LecRKs) contain an extra-
cellular lectin domain and thus represent a second
class of RLKs with potential carbohydrate-binding
properties. Lectins have been identified as proteins
that bind carbohydrates, suggesting that, in the con-
text of LecRKs, the lectin domain establishes a direct
link to cell wall polysaccharides (André et al., 2005;
Bouwmeester and Govers, 2009). However, at least
some LecRKs undergo protein-protein interactions.
Upon plasmolysis, during which the plasma mem-
brane detaches from the cell wall, connections remain
between these two structures. The addition of peptides
containing the RGD (Arg-Gly-Asp) tripeptide motif
interferes with the integrity of these linkages (Canut
et al., 1998). This is of particular interest since the RGD
motif is also found in mammalian extracellular matrix
proteins involved in cell adhesion. The search for
Arabidopsis proteins that are able to interact with the
RGD tripeptide via phage display technology revealed
several LecRKs as likely candidates (Gouget et al.,
2006). Thus, LecRKs potentially represent a group of
receptors that have diverse binding specificities and
can have roles in sensing of the cell wall structure/
plasma membrane-cell wall connection (Fig. 1).

Figure 1. Functions of proteins implicated in cell wall-related signaling and development. Receptor-like proteins and
extracellular proteins are shown that have a function in cell wall sensing and/or signaling. From left to right: FEI1 and FEI2
are LRR-containing RLKs that influence cellulose content and act in a linear pathway with the GPI-anchored SOS5. A direct
interaction, however, has so far not been shown. THE1 senses cellulose deficiencies and, under these conditions, induces
changes in cell wall structures. COBRA is a GPI-anchored membrane-associated protein important for the orientation of
cellulose microfibrils. WAK1 binds GRP3, a Gly-rich protein, and both WAK1 andWAK2 are able to interact with pectin. WAK2
activates MAPK3 and thus possibly other MAPKs and induces a vacuolar invertase to modify turgor pressure. The membrane-
associated PERK4 interacts with pectin and activates Ca2+ channels, leading to increased cytosolic Ca2+ content, which can
induce changes in intracellular and extracellular pH and the NADPH oxidase (NOX)-dependent production of ROS. The Arg-
Gly-Asp (RGD) tripeptide is a cell-adhesion motif and is bound by at least one LecRK. AGPs are GPI-anchored membrane-
associated proteins implicated in cell wall-related signaling. LRX1 is an extracellular receptor binding an unknown interactor
and is insolubilized in the cell wall. ANX1 and ANX2 are important for pollen tube rupture involving sudden changes in the cell
wall. The TOR kinase is central to the TOR pathway that also influences cell wall structure, by a so far unknown mechanism.
Solid, double-arrowed lines indicate experimentally shown interactions or signaling outputs; dashed arrows indicate possible,
but not experimentally shown, interactions. Wavy lines represent GPI anchors. [See online article for color version of this figure.]
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Leu-Rich Repeat-Containing Receptor Kinases

For the type of RLKs discussed so far, there is
evidence that at least some of their members do
interact with polysaccharidic components in cell walls.
There are, however, a number of RLKs that rather
interact with proteins, at least based on the structure of
their extracellular domains. A motif particularly well
known for undergoing protein-protein interaction is
represented by Leu-rich repeats (LRRs), which have
been identified in many different organisms such as
plants and metazoans, where they are involved in
signal transduction activities. In plants, a number of
proteins with an LRR domain have been shown to play
a role in pathogen recognition or during developmen-
tal processes (Kobe and Deisenhofer, 1994; Jones and
Jones, 1997). FEI1 and FEI2 are two out of over 200
RLKs in Arabidopsis with an LRR domain (Morillo
and Tax, 2006). They are highly homologous, and fei1
fei2 double mutants develop a swollen-root phenotype
due to isotropic (instead of longitudinal) cell growth
(Xu et al., 2008). This phenotype and the ectopic
deposition of lignin are similar to the cellulose syn-
thase (CesA6) mutant procuste1 (prc1; Fagard et al.,
2000). Indeed fei1 fei2 double mutants contain reduced
levels of crystalline cellulose. Further analyses re-
vealed that FEI1 and FEI2 function in the regulation
of cellulose biosynthesis. Interestingly, the kinase ac-
tivity of the FEI1 and FEI2 kinase domain is not
essential for protein function. Corresponding muta-
tions in the kinase domain still allowed for comple-
mentation of the fei1 fei2 mutant phenotype, even
though the efficiency of complementation was re-
duced (Xu et al., 2008). Hence, the mode of action of
these RLKs appears to be different from the expected
and remains to be determined. Genetic evidence sug-
gests that FEI1 and FEI2 function in the same pathway
as SALT OVERLY SENSITIVE5 (SOS5), which was
identified in a screen for salt-hypersensitive mutants
(Fig. 1). The sos5 mutant showed root growth arrest,
root swelling, and an increased width in etiolated
hypocotyls under high-salt conditions. These sos5
phenotypes are similar to those observed in fei1 fei2
seedlings, but no additive effects were observed in the
fei1 fei2 sos5 triple mutant, suggesting that the pro-
teins function in the same pathway. SOS5 codes for
a glycosylphosphatidylinositol (GPI)-anchored, and
thus extracellular, protein (Shi et al., 2003). Future
experiments will have to reveal whether SOS5 does
directly interact with FEI1 and/or FEI2 or is involved
in perception of the ligand without a direct interaction
with the receptor proteins.

Catharanthus roseus Protein Kinase1-Like
Receptor Kinases

THESEUS1 (THE1) is a member of the subfamily
of Catharanthus roseus Protein Kinase1-Like receptor
kinases, for which a function in cell wall integrity
sensing has been demonstrated (Hematy et al., 2007).
The the1 mutant was identified as a suppressor of

prc1-1, a mutant affected in CesA6 (Fagard et al., 2000).
The prc1-1mutant is characterized by reduced levels of
cellulose and develops short hypocotyls when grown
in the dark. While the short-hypocotyl phenotype is
suppressed by the1, the cellulose deficiency is not,
indicating that THE1 is involved in sensing structural
defects in the cell wall. Cellulose-deficient mutants
tend to accumulate ectopic lignin, and this effect is
dependent on THE1, as prc1 the1 mutants failed to
accumulate lignin ectopically. Overexpression of THE1
led to an overaccumulation of ectopic lignin, but only
in the prc1 mutant background. In addition, the1 was
able to partially suppress other cesa mutants, but as a
single mutant it did not develop a mutant phenotype.
This again indicates that THE1 is involved in sensing
cellulose deficiency and adapts cell wall development
upon changes or irregularities in the cell wall structure
(Fig. 1). THE1 exhibits in vitro phosphorylation activ-
ity and was localized to the plasma membrane, further
supporting the hypothesis that THE1 indeed acts as an
active RLK. It is not clear at present whether THE1
directly interacts with the cell wall or rather acts as a
signaling intermediate.

Recently, two RLKs related to THE1, FERONIA
(FER) and HERKULES1 (HERK1), were characterized.
These three homologous genes are influenced by BRs,
as they were down-regulated in the BR receptor mu-
tant bri1 (Tang et al., 2008) and up-regulated in the
constitutive BR-response mutant bes1-D (Yin et al.,
2002). FER was previously shown to mediate male-
female interaction during fertilization by enabling
pollen tube reception at the synergid cell (Escobar-
Restrepo et al., 2007), and RNA interference plants
show reduced cell elongation (Guo et al., 2009).
HERK1 and THE1 revealed genetic interaction, as a
herk1 the1 double mutant develops a dwarf phenotype.
Together with microarray data, Guo and coworkers
(2009) showed that THE1, HERK1, and FER are likely
to function in a pathway to regulate cell elongation
that is influenced by, but still largely independent of,
BR-induced signaling. ANX1 and ANX2 represent the
two closest homologs of FER in Arabidopsis. These
two RLKs are expressed in pollen and localize to the
tip of the growing pollen tube, where they are thought
to prevent rupture of the tube prior to arrival at the
female gametophyte. The anx1 anx2 double mutant
was characterized by premature pollen tube rupture
(Boisson-Dernier et al., 2009; Miyazaki et al., 2009). The
interaction partner(s) of ANX1 and ANX2 and the
mechanism of pollen tube rupture remain to be shown,
but it is safe to assume that this also involves sudden
changes in the cell wall of the tip region and, hence,
that ANX1 and ANX2 are involved in cell wall-related
signaling (Fig. 1).

PROTEINS AT THE MEMBRANE

Transmembrane receptor proteins are obvious can-
didates for transducing signals from the extracellular
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matrix to the cytoplasm. In addition, proteins can be
attached to the outer surface of the membrane via the
membrane anchor GPI that is posttranslationally at-
tached to proteins (Borner et al., 2003) and integrated
into the membrane. Several GPI-containing proteins
have been identified that play a role in the transfer of
cell wall-related information across the membrane. The
Arabidopsis peanut (pnt) mutants show a defect in the
biosynthesis of GPI and develop a severe phenotype.
The pnt1 mutant displays a strongly retarded mor-
phology, swollen shoots and roots, and can only be
maintained as calli. Comparedwith the wild type, pnt1
cell walls show a strongly reduced cellulose content
and ectopic accumulation of pectin, xyloglucan, and
callose (Gillmor et al., 2005). Hence, GPI-containing
proteins play an important role during cell wall de-
velopment. Indeed, several of these proteins have been
identified as being important for the establishment
and maintenance of the cell wall.

COBRA is a GPI-anchored protein that was identi-
fied based on aberrant cell growth in roots and re-
duced cellulose content in a corresponding mutant
(Schindelman et al., 2001). A detailed analysis revealed
that cellulose is not properly deposited in the cell wall
due to the lack of this membrane-anchored protein
(Fig. 1). Cellulose is a major determinant of the direc-
tion of cell growth, as the microfibrils align trans-
versely to the axis of cell elongation (Taiz, 1984). The
orientation of cellulose microfibrils is critical, as they
are thought to be the load-bearing structure of the
cell wall, in combination with hemicelluloses, and re-
sist the turgor-driven cell enlargement (Carpita and
Gibeaut, 1993). Thus, the disoriented cellulose depo-
sition in cobra mutants may explain the misshaped
cells in elongating root tissue. The orientation of the
microtubule cytoskeleton and the movement of the
rosette complexes synthesizing cellulose in the mem-
brane have been shown to be strikingly similar, and it
was assumed that cortical microtubules define the
movement of the rosettes (Giddings and Staehelin,
1988). Interfering with the microtubule cytoskeleton
by mutations or application of cytotoxic drugs also led
to aberrant cellulose deposition (Burk and Ye, 2002;
Baskin et al., 2004). Together, these data suggest that
COBRA relays the positional information on the mi-
crotubule cytoskeleton to the cellulose synthase com-
plexes and therefore is involved in establishing a
continuum between the cytoskeleton and the cell
wall (Roudier et al., 2005).

Pro-Rich Extensin-Like Receptor Kinases

A direct interaction with cell wall polysaccharides
appears also to be established by the membrane-asso-
ciated Pro-rich extensin-like receptor kinases (PERKs).
Pro-rich proteins and extensins (Hyp-rich glycopro-
teins) are structural cell wall proteins known to insol-
ubilize in the cell wall (Cassab, 1998; Held et al., 2004),
and the extracellular domains of PERKs resemble
these proteins (Nakhamchik et al., 2004). The best-

studied PERK4 of Arabidopsis is effectively extracted
by pectinase treatment, indicating a possible interac-
tion with pectin (Bai et al., 2009). On the functional
level, the Arabidopsis perk4 mutation induces a long-
root phenotype caused by an increased cell length,
indicating that PERK4 negatively influences cell elon-
gation. The perk4 mutant also shows a decreased
sensitivity to abscisic acid (but not other hormones)
with respect to root growth, Ca2+ channel currents, and
cytosolic free Ca2+ levels (Bai et al., 2009). Ca2+ is an
important signaling component, and mechanostimu-
lation leads to changes in Ca2+ fluxes (Nakagawa et al.,
2007). Increased Ca2+ influx induces the production
of reactive oxygen species, which induce again Ca2+

influx and pH changes on both sites of the plasma
membrane that affect cell wall extension (Fig. 1; Foreman
et al., 2003; Takeda et al., 2008; Monshausen et al.,
2009). Together, these data allow for the (admittedly
speculative) model in which PERKs, covalently linked
to the cell wall, sense mechanical stresses in the cell
wall and influence Ca2+ fluxes across the membrane
that modulate a number of cell wall-related processes,
resulting in the alteration of cell (wall) growth.

ARABINOGALACTAN-PROTEINS

Arabinogalactan-proteins (AGPs) belong to the fam-
ily of Hyp-rich glycoproteins and consist of a rather
small protein moiety that is highly glycosylated. AGPs
can be classified according to the composition of the
peptide backbone. Classical AGPs contain Hyp, Ser,
Thr, and Gly. Nonclassical AGPs deviate considerably
from classical ones in their sequence. AGPs usually
have an N-terminal GPI anchor (Fig. 1; Showalter,
2001). As described above, different proteins that are
attached to the plasma membrane via a GPI anchor
have been shown to be involved in linking the intra-
cellular and extracellular space and thus influence cell
wall development (Gillmor et al., 2005; Roudier et al.,
2005). Analysis of AGP function revealed important
roles in cell expansion, proliferation, and differentia-
tion (Showalter, 2001; Yang et al., 2007). AGPs have
been shown to bind components of the cell wall. This
interaction can be covalent and suggests that AGPs
are able to physically link the plasma membrane and
the cell wall (Kjellbom et al., 1997; Nothnagel, 1997;
Kohorn, 2000). Recently, the analysis of tomato (Solanum
lycopersicum) LeAGP1 revealed a mutual dependence
of the distribution of LeAGP1 and the microtubule
and F-actin cytoskeleton. Precipitating AGPs with the
b-Yariv reagent affects microtubules and F-actin, and
interfering with these cytoskeleton components changes
the distribution of LeAGP1 in tobacco (Nicotiana tabacum)
protoplasts (Sardar et al., 2006). These data suggest a link
between the cytoskeleton and LeAGP1. Hence, GPI-
anchored AGPs are likely not only involved in establish-
ing a connection between the cell wall and the plasma
membrane but appear to extend this to the cytoplasm,
establishing a continuum that might serve as a means to
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relay information between the intracellular and extracel-
lular compartments.

LRR-EXTENSINS

LRR-extensins (LRXs) are chimeric extracellular
proteins containing an N-terminal LRR domain and
a C-terminal extensin domain, a typical Hyp-rich
glycoprotein-like structural protein domain (Rubinstein
et al., 1995; Baumberger et al., 2003a). Considering the
function of LRR domains in protein-protein interac-
tion, these proteins are candidates for a signaling
function in cell wall development (Ringli, 2005). The
best characterized LRX protein is LRX1 of Arabidop-
sis, which is expressed in root hairs. LRX1 is insolu-
bilized in the cell wall, a function that is probably
provided by the extensin moiety, since extensins are
known to cross-link in the cell wall (Cassab, 1998). For
LRX1, it could be shown that the LRR-containing N
terminus of the protein undergoes an interaction in the
cell wall, since expressing this extensin-less LRX1
protein in the wild type results in a dominant root
hair phenotype similar to the lrx1 mutant (Fig. 1). This
suggests that this protein titrates out the binding
partner of the endogenous LRX1 (Baumberger et al.,
2001). Mutations in LRX1 and its paralog LRX2 result
in the formation of aberrant cell wall structures
(Baumberger et al., 2003b), confirming a function of
LRX proteins in cell wall development, possibly as a
signaling intermediate. So far, the LRX1 interaction
partner remains elusive, leaving open the question of
the exact function of LRX1 and possibly other LRX-like
proteins during cell wall development. Genetic evi-
dence points at the possibility of LRX1 being involved
in a pectin-related process. This is deduced from the
finding that the pectin-modifying rol1 mutants were
identified as suppressors of the lrx1 root hair pheno-
type (Diet et al., 2006).

SIGNAL TRANSDUCTION BEYOND
RECEPTOR PROTEINS

The identification of potential receptor proteins,
particularly those localized in the plasma membrane,
is relatively straightforward based on bioinformatics
approaches. A number of domains involved in protein-
protein interaction were identified in plants and
(predominantly) metazoans, and they can serve as a
selection parameter in the identification of potential
candidate proteins for a signaling function in cell wall-
related processes. In the past, forward and reverse
genetic approaches have allowed for considerable
progress in this field. However, information on how
the signals are relayed to other components in the
signal transduction cascade is still scarce. Yet, recent
work has shed light on signal transduction pathways
that are involved in cell wall sensing.

MITOGEN-ACTIVATED PROTEIN KINASE PATHWAY

As mentioned above, WAK2 activates a vacuolar
invertase (Inv), leading to the production of Glc and
Fru, which modulates turgor pressure and hence cell
expansion (Kohorn et al., 2006b). But how is this
activation taking place? To identify the trigger of
WAK2 activity, protoplasts were transiently trans-
formed with a reporter gene construct consisting of
the Inv promoter fused to the red fluorescent protein
gene RFP. This construct led to a strong induction of
red fluorescence (i.e. activity of the Inv promoter) upon
addition of pectin to the protoplasts. Since this induc-
tion was not observed in protoplasts derived from a
wak2 knockout mutant, the pectin-induced gene ex-
pression appears to be WAK2 dependent, providing in
vivo evidence for WAK2 being a pectin receptor. The
question remained of how the signal is transferred
from theWAK2 kinase domain. The mitogen-activated
protein kinase (MAPK) pathway is an important sig-
naling pathway, and some MAPKs are activated upon
pectin treatment (Colcombet and Hirt, 2008). Indeed,
the kinase activity of MAPK3 was induced in wild-
type protoplasts upon addition of pectin to the me-
dium, while this induction was not observed in wak2
protoplasts. Further evidence for a connection be-
tween MAPK3 and WAK2 was obtained by a genetic
analysis. A mapk3 mutant develops no visible mutant
phenotype, while a dominant negative allele of wak2
shows a slight growth phenotype. However, a mapk3
wak2 double mutant develops a strong growth pheno-
type that is by far more pronounced that just a sum of
both single mutant phenotypes (Kohorn et al., 2009).
This observed synergistic interaction between the two
mutants also points toward a function in a related
process (i.e. that WAK2 and MAPK3 are part of the
same signal transduction process; Fig. 1).

Evidence for a MAPK pathway playing a role in cell
wall sensing has previously been obtained from yeast
(Heinisch et al., 1999), where cell wall-related sensing
mechanisms have been extensively studied (for re-
view, see Levin, 2005). Cell walls of the yeast Saccha-
romyces cerevisiae differ structurally from plant cell
walls but serve the same purpose. In yeast, the inner
cell wall is composed of different polysaccharides,
mainly Glc (b1-3 glucan, b1-6 glucan linkages) or a Glc
derivative (chitin: b1-4 acetylglucosamine linkages),
whereas the outer layer is rich in proteins glycosylated
with Man. Since this cell wall is a rigid structure, a
well-controlled mechanism of wall enlargement is
required to allow for proper cell growth to take place.
Under particular circumstances, yeast has to undergo
dramatic changes in cell and cell wall development,
such as during the transition to pseudohyphal growth
under nutrient-limited conditions. Hence, the cell wall
integrity (CWI) pathway system is vitally important,
ensuring a controlled adaptation of cell wall develop-
ment to the prevailing conditions and thus neces-
sary developmental transitions. The protein kinase
C-MAPK pathway has been referred to as the CWI
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pathway, since it controls the expression of cell wall-
related genes and is induced in response to changes in
growth or when cell wall damage occurs. A number of
different sensory proteins localize to the yeast plasma
membrane, where they monitor changes in the cell
wall or mechanical stresses. These are described by
others (Levin, 2005; Humphrey et al., 2007) and shall
not be discussed here. Instead, I prefer to pick out one
regulatory pathway that is important for cell (wall)
development in yeast and that turns out to have a
similar function in plants.

TARGET OF RAPAMYCIN PATHWAY

The Target of Rapamycin (TOR) pathway is a major
controller of eukaryotic growth, where it adapts
growth properties to the presence of growth factors
and nutrient availability (Wullschleger et al., 2006).
The TOR protein, a Ser/Thr kinase central to this
pathway, is sensitive to rapamycin, making rapamycin
a drug with anticancer activities (Mao et al., 2008). It
was shown for yeast that some proteins involved in
the transition to pseudohyphal growth (including
rearrangements of the cell wall) also have a function
in TOR signaling (Goehring et al., 2003, and refs.
therein). Thus, it is conceivable that TOR is a modifier
of cell wall structures. Recent work in the yeast Can-
dida albicans identified Rhb1, a small G-protein of the
Ras superfamily, to be required for proper filamenta-
tion of C. albicans under nitrogen-limited conditions. A
mutation in Rhb1 causes rapamycin hypersensitivity,
indicating that Rhb1 also has a function in TOR
signaling. In addition, the rhb1 mutant shows an
enhanced sensitivity toward and a reduced induction
of the CWI-MAPK pathway upon treatment with cell
wall-disrupting agents (Tsao et al., 2009). In plants,
several components of the TOR pathway, including the
TOR protein, have been identified. Even though there
is evidence that the plant TOR pathway is somewhat
different from the TOR pathway in yeast (Bögre et al.,
2003), it is likely that it has CWI-sensing functions as
well (Fig. 1). In Arabidopsis, the TOR kinase is essen-
tial for plant development. A knockout mutant is
embryo lethal, but RNA interference plants with re-
duced TOR expression show retardation in growth
(Menand et al., 2002; Deprost et al., 2007). Mutations in
other TOR pathway components also have an effect on
plant development (Mahfouz et al., 2006; Berkowitz
et al., 2008). There is evidence that the Arabidopsis
TOR pathway is indeed involved in regulating cell
wall development. A suppressor screen was per-
formed on the lrx1 mutant that shows aberrant cell
wall development in root hairs (Baumberger et al.,
2001, 2003b). A suppressor (rol5) was identified that
induces changes in cell wall structures and leads to the
formation of wild-type-like root hairs in the lrx1 mu-
tant background. Comparison with the ROL5 homolog
of yeast revealed a function of ROL5 in the TOR
pathway. Inhibition of the TOR pathway in Arabidop-

sis by treatment with rapamycin not only leads to
suppression of the lrx1 root hair phenotype but also
induces changes in cell wall structures that are com-
parable to those of the rol5mutant (Leiber et al., 2010).
Future analyses will be necessary to get a better insight
into the extent and the mechanism by which the TOR
pathway affects cell wall development in plants.

OUTLOOK

The last few years have led to the accumulation of a
wealth of information on receptor proteins that per-
ceive signals from the apoplast and transduce them to
the cytoplasm. Particular progress was obtained on
WAK2, where the binding partner, one step of the
signal transduction, and a signaling output could be
elucidated. Proteins have been identified that do not
act as receptors but are involved in transducing posi-
tional information from the cytoplasm to the extracel-
lular matrix (e.g. COBRA, which functions in relaying
the orientation of the cortical microtubules to the
movement of cellulose-synthesizing rosette complexes).
For many receptors, the interaction partner(s) remains
to be determined. There is also a lack of understanding
about the steps between signal perception and signal-
ing output. The latter was assessed in some cases by
microarray experiments, yet the signal-transducing
network remains to be elucidated. In some instances,
the comparison of plants with other systems such as
yeast will certainly help to identify possible candidate
proteins. For plant-specific functions, it will be exciting
to follow the progress that will be made in the years to
come, providing us with a much better insight into
complex processes of cell wall-sensing mechanisms.
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