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Abstract
Although it is well established that there is considerable inter-individual variation in the
circulating levels of IGF-I in normal, healthy individuals and that a genetic component contributes
substantially to this variation, the direct evidence that inter-individual variation in IGF-I
contributes to differences in peak bone mineral density (BMD) is lacking. To examine if
differences in IGF-I expression could contribute to peak BMD differences, we measured skeletal
changes at days 23 (prepubertal), 31 (pubertal) and 56 (postpubertal) in mice with
haploinsufficiency of IGF-I (+/−) and corresponding control mice (+/+). Mice (MF1/DBA)
heterozygous for the IGF-I knockout allele were bred to generate +/+ and +/− mice (n=18–20 per
group). Serum IGF-I was decreased by 23% (P<0·001) in mice with IGF-I haploinsufficiency (+/
−) group at day 56 compared with the control (+/+) group. Femoral bone mineral content and
BMD, as determined by dual energy X-ray absorptiometry, were reduced by 20% (P<0·001) and
12% respectively in the IGF-I (+/−) group at day 56 compared with the control group. The
peripheral quantitative computed tomography measurements at the femoral mid-diaphysis
revealed that periosteal circumference (7%, P<0·01) and total volumetric BMD (5%, P<0·05)
were decreased significantly in the +/− group compared with the +/+ group. Furthermore, serum
IGF-I showed significant positive correlations with both areal BMD (r=0·55) and periosteal
circumference (r=0·66) in the pooled data from the +/+ and +/− groups. Our findings that
haploinsufficiency of IGF-I caused significant reductions in serum IGF-I level, BMD and bone
size, together with the previous findings, are consistent with the notion that genetic variations in
IGF-I expression could, in part, contribute to inter-individual differences in peak BMD among a
normal population.

Introduction
The risk of developing senile osteoporosis in men and postmenopausal osteoporosis in
women is, in large part, determined by the amount of bone mass accumulated during the
active growth phases early in life. In terms of the potential regulatory molecules that
contribute to the acquisition of peak bone mineral density (BMD) during postnatal growth,
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insulin-like growth factor-I (IGF-I) has received considerable attention for a number of
reasons, including: (1) the effects of growth hormone (GH) on skeletal growth are largely
mediated via IGF-I (Kasukawa et al. 2004); (2) mice lacking a functional IGF-I gene exhibit
severe impairment in bone formation and a severe deficiency in peak BMD (Bikle et al.
2001, Mohan et al. 2003); (3) osteoblast-specific knockout of the IGF receptor gene exhibits
a decrease in cancellous bone volume, connectivity and trabecular number (Zhang et al.
2002); (4) transgenic overexpression of GH or IGF-I leads to an increase in bone accretion
(Saban et al. 1996, Zhao et al. 2000, Eckstein et al. 2004); (5) a congenic mouse containing
a chromosome 6 serum IGF-I quantitative trait locus (QTL) region from a C3H/HeJ mouse
into the C57BL/6J background exhibited a decrease in serum IGF-I and femoral BMD
(Bouxsein et al., 2002); (6) IGF-I is required for the anabolic actions of parathyroid
hormone on mouse bone (Miyakoshi et al. 2001, Bikle et al. 2002); and (7) insulin receptor
substrate-1 knockout (KO) mice exhibited an insufficient proliferation of chondrocytes,
calcification of hypertrophic chondrocytes, acceleration of apoptosis and early closure of the
growth plate (Hoshi et al. 2004). Thus, there is strong evidence that IGF-I production is a
major regulator of bone mass in mice.

There is also evidence that IGF-I plays an important role in the regulation of peak bone mass
in men and women. In this regard, an adolescent male lacking a functional IGF-I gene had a
BMD of 5 S.D. less than corresponding age-matched normal children (Woods et al. 1997).
Furthermore, we and others have shown that serum levels of IGF-I increase during puberty
and correlate with BMD (Moreira-Andres et al. 1995, Libanati et al. 1999, Thorsen et al.
1999, Richman et al. 2001, Kasukawa et al. 2003). Although recent studies provide
evidence that both the variation in peak BMD and circulating levels of IGF-I are largely
determined genetically (Harrela et al. 1996, Recker & Deng 2002, Baldock & Eisman 2004),
the direct experimental evidence for the hypothesis that genetic-dependent variation in IGF-I
production is a major determinant of the variation in peak BMD seen in normal healthy
individuals is lacking at the present time. If differences in IGF-I expression caused by
genetic alterations do indeed influence peak bone mass, then haplo-insufficiency should lead
to decreased IGF-I levels and a corresponding decrease in BMD. We therefore generated
heterozygous IGF-I KO mice and corresponding control mice to evaluate the consequence(s)
of half-normal gene expression on bone accretion. This study is an extension of a previous
study (Mohan et al. 2003) which compared skeletal phenotypes of homozygous IGF-I KO
mice with wild-type mice.

Materials and Methods
Animals

Heterozygous breeder MF1/DBA IGF-I KO mice (kindly provided by Dr Argiris
Efstradiatis, Columbia University College of Physicans and Surgeons, New York, USA)
were mated to generate heterozygous IGF-I KO and wild-type mice as described previously
(Mohan et al. 2003). Heterozygous IGF-I KO and corresponding control littermate mice
were killed at day 23 (before puberty), day 31 (at the end of puberty) and day 56 (post
puberty) to collect bones for phenotypic measurements and serum for IGF-I measurements.

Bone densitometry
Femur BMD and bone mineral content (BMC) measurements were performed by dual
energy X-ray absorptiometry, using the PIXImus instrument (LUNAR Corporation,
Madison, WI, USA). The precision was ± 1% coefficients of variation (C.V.) in vitro and ±
2% C.V. in vivo.
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Volumetric bone density and geometric parameters of the femur
The length of the femur was measured with calipers. Volumetric bone density and geometric
parameters at the mid-diaphysis were determined by peripheral quantitative computed
tomography as described (Mohan et al. 2003). The C.V. for total BMD and periosteal
circumference for repeat measurements of four mouse femur (two to five measurements)
were less than 3% and 1% respectively (Mohan et al. 2003).

IGF-I RIA
IGF-I was measured by specific RIA using rabbit poly-clonal antiserum and recombinant
IGF-I as standard and tracer respectively. IGF-binding proteins (IGFBP) were removed from
serum prior to RIA by an acid gel filtration protocol (Mohan & Baylink 1995).

Statistics
All values are expressed as means ± S.D. Statistical analyses of the data were performed by
Student’s unpaired t-test.

Results
Serum IGF-I levels were reduced by 23% (P<0·001) in heterozygous IGF-I KO mice
compared with control mice (Fig. 1). Body weight was decreased by 14·5% (P<0·01) in
IGF-I +/− mice compared with corresponding control mice at 8 weeks of age (data not
shown). Accordingly, femur length was significantly reduced (P<0·01) in heterozygous IGF-
I KO mice compared with control mice (Fig. 2). Both the body weight and femur length
were reduced to a similar extent in the male and female heterozygous IGF-I KO mice
compared with corresponding control mice. The rate of gain in femur length was reduced by
10% during puberty in the heterozygous IGF-I KO mice compared with control mice (data
not shown).

Femoral BMC was reduced by 25% (P<0·001) at days 23 and 31 in heterozygous IGF-I KO
mice compared with control mice. The reduction in femoral BMC was 20% (P<0·001) at
day 56 in heterozygous IGF-I KO mice compared with control mice (Fig. 3). The rate of
gain in femoral BMC was reduced by 25% in heterozygous IGF-I KO mice compared with
control mice during puberty (data not shown), suggesting that IGF-I plays a critical role in
regulating the bone accretion that occurs during puberty.

Femoral BMD was reduced by 7%, 12% and 11% respectively at days 23, 31 and 56 in the
heterozygous IGF-I KO mice compared with control mice (Fig. 4). The rate of gain in areal
BMD was reduced by 24% in heterozygous IGF-I KO mice compared with control mice
during puberty (data not shown), suggesting that IGF-I plays an important role in regulating
BMD during sexual maturation.

Total volumetric BMD (vBMD) showed no variation between heterozygous IGF-I KO and
control mice at day 23. Total vBMD was decreased by 9% and 4% respectively in
heterozygous IGF-I KO mice compared with control mice at days 31 and 56 (Fig. 5). The
rate of gain in total vBMD was reduced by 34% in heterozygous IGF-I KO mice compared
with control mice during puberty (data not shown). There was no gender difference in the
total vBMD deficit of heterozygous IGF-I KO mice (data not shown).

Femoral periosteal circumference was reduced by 7% in heterozygous IGF-I KO mice
compared with control mice at days 23, 31 and 56 (Fig. 6). The magnitude of reduction in
periosteal circumference was similar in male and female heterozygous IGF-I KO mice
compared with control mice (data not shown). The rate of gain in periosteal circumference
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was not significantly different between the heterozygous IGF-I KO and control mice during
puberty.

Serum levels of IGF-I showed a significant positive correlation with areal BMD of the
femur in heterozygous IGF-I KO mice and control mice (Fig. 7). Serum levels of IGF-I also
showed a significant positive correlation with the periosteal circumference of the femur in
both the heterozygous IGF-I KO mice and control mice (Fig. 8).

Discussion
The findings of this study have demonstrated for the first time that haploinsufficiency of
IGF-I caused a significant reduction in serum IGF-I level in mice. If both copies of the IGF-I
gene contribute equally to the level of serum IGF-I, we would anticipate the serum IGF-I
level to be reduced by 50% in the heterozygous IGF-I KO mice compared with control mice.
However, the magnitude of reduction in IGF-I was only about 25% in the mice with
haploinsufficiency compared with 100% in homozygous IGF-I KO mice. There are a
number of potential explanations for the less-than-anticipated reduction in circulating IGF-I,
which include: (1) the lower IGF-I production in the heterozygous mice may lead to
diminished negative feedback on the production of GH-releasing hormone and GH by the
hypothalamus and the pituitary respectively (Mohan & Baylink 1999); (2) increased
proportion of circulating IGF-I may be bound to acid labile subunit (ALS) and IGFBP-3/
IGFBP-5 in the heterozygous mice which would increase the half-life of circulating IGF-I
(Rajaram et al. 1997); and (3) two copies of the IGF-I gene may not produce twice the
amount of IGF-I compared with a single copy of the IGF-I gene. Future studies are needed
to establish the extent to which the expression of IGF-I is reduced in various tissues
compared with serum levels of IGF-I in heterozygous mice.

This study also demonstrated for the first time that a 25% reduction in circulating IGF-I
caused by haploinsufficiency of IGF-I led to significant reductions in total vBMD (4%) and
bone size (7%) in the femur in mice at 8 weeks of age. Consistent with these data, Bouxsein
et al. (2002) have recently shown that a congenic mouse strain with a donated segment from
a C3H/HeJ mouse into a C57BL/6J mouse had 11–21% lower IGF-I levels and 2·3–4·8%
lower total femoral vBMD. The magnitude of reductions in BMD and/or bone size in IGF-I
heterozygous mice and congenic mice were far less compared with IGF-I KO mice in which
both copies of the IGF-I gene were disrupted (32% and 43% reduction in BMD and bone
size respectively). These data raise the possibility that while a small reduction in IGF-I
expression (10–20%) produces a significant effect on both BMD and bone size, two
important determinants of bone strength, a reduction in IGF-I expression below a certain
threshold level may contribute to a much more dramatic effect on the skeletal phenotype. In
this regard, it was recently reported that the lowering of serum IGF-I below a threshold by
crossing liver-derived IGF-I KO mice with ALS KO mice produced a dramatic effect on
bone size which was not seen in either liver-derived IGF-I KO mice or ALS KO mice alone
(Yakar et al. 2002).

In previous studies, we and others have shown that circulating levels of IGF-I vary
considerably in normal healthy men and women between 20–40 years of age (Rajaram et al.
1997). Although variation in circulating levels of IGF-I may be regulated by a number of
variables, including diet and exercise, there is considerable evidence for the involvement of
genetic regulation of variation in serum IGF-I levels. Rosen et al. (1998) first reported that
serum IGF-I levels are related to a polymorphism in a microsatellite within the IGF-I gene in
healthy Caucasian men and women. Several subsequent studies have confirmed the
association between IGF-I polymorphisms and circulating IGF-I levels (Johnston et al.
2003, Rietveld et al. 2003, 2004, Nielsen et al. 2004). Based on these data, it can be
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concluded that genetic variation in IGF-I expression caused by polymorphism in one or
more genes involved in regulating IGF-I expression and/or its action could contribute to
inter-individual variations in peak BMD among a normal population.

The conclusion that differences in IGF-I expression could contribute to peak BMD
differences in humans should be viewed in the following context. (1) IGF-I heterozygous
mice and corresponding control mice were developed in mixed genetic backgrounds.
Therefore, one could argue that the observed phenotypic differences between the
heterozygous and control mice may be due to differences in genetic backgrounds. However,
this is unlikely since we used corresponding control littermates, but of the same mixed
genetic background, mice from several litters and a large number of mice (n = 18–20) per
group in our studies. (2) It is known that differences in bone size can influence BMD
measurements. Because the bone size of IGF-I heterozygous mice is slightly smaller
compared with wild-type mice, the estimated magnitude of reduction in BMD in IGF-I
heterozygous mice may not be precise. (3) While the findings in this study that
haploinsufficiency of IGF-I leads to a reduction in BMD are consistent with previous studies
using various transgenic mouse models regarding an important role for IGF-I in the
regulation of peak bone mass in mice, the issue of whether genetic-dependent variation in
IGF-I production is a major determinant of variation in peak BMD in normal healthy
humans is still to be resolved.
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Figure 1.
Serum IGF-I levels in heterozygous IGF-I KO and control mice at 8 weeks of age. Values
are means ± S.D. and represent an n of 18–20 per group.
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Figure 2.
Femur length in heterozygous IGF-I KO and control mice during postnatal growth. Values
are means ± S.D. and represent an n of 18–20 per group.
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Figure 3.
Femoral BMC in heterozygous IGF-I KO and control mice during postnatal growth. Values
are means ± S.D. and represent an n of 18–20 per group.
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Figure 4.
Femur areal BMD in heterozygous IGF-I KO and control mice during postnatal growth.
Values are means ± S.D. and represent an n of 18–20 per group.
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Figure 5.
Femur total vBMD in heterozygous IGF-I KO and control mice during postnatal growth.
Values are means ± S.D. and represent an n of 18–20 per group.
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Figure 6.
Periosteal circumference (Circ.) of the femur in heterozygous IGF-I KO and control mice
during postnatal growth. Values are means ± S.D. and represent an n of 18–20 per group.
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Figure 7.
Correlation between areal BMD of femur and serum levels of IGF-I in heterozygous IGF-I
KO and control mice at 8 weeks of age.
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Figure 8.
Correlation between periosteal circumference of femur and serum levels of IGF-I in
heterozygous IGF-I KO and control mice at 8 weeks of age.
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