
The Role of Progenitor Cells in the Development of Intimal
Hyperplasia

S Tsai1, J Butler2, S Rafii2, B Liu1, and KC Kent1
1 Department of Surgery, Division of Vascular Surgery, New York Presbyterian Hospital and Weill
Medical College of Cornell University, New York, NY 10021
2 Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065

Neointimal hyperplasia in response to arterial injury is a complex process, classically
believed to be the consequence of vascular smooth muscle cell proliferation and migration,
and the synthesis of extracellular matrix 1, 2. Recently, it has been proposed that the
neointimal lesion also consists of progenitor cells attracted to the site of vascular injury. In
this review, we will summarize the reports that demonstrate an important role for progenitor
cells in the development of intimal hyperplasia. We will also examine the involved cell
types as well as the mechanisms underlying progenitor cell recruitment to the injured arterial
wall.

Bone marrow derived progenitor cells contribute to the neointimal lesion
after arterial injury

The contribution of bone marrow derived cells to the neointimal lesion has been
demonstrated repeatedly using bone marrow transplant in conjunction with mouse models of
vascular injury 3–6. One of the earliest studies of this phenomenon was performed by Sata et
al using bone marrow cells, which express β-galactosidase (a product of the LacZ gene),
from ROSA26 mice. Cells from these mice are easily identified as blue when stained with
X-gal 3. The techniques were as follows. Wild type mice were lethally irradiated, then
injected via tail vein with bone marrow cells derived from ROSA26 mice. After
confirmation that the ROSA26 bone marrow cells had reconstituted the bone marrow and
blood cell lines of the wild type mice, a wire injury of the femoral artery was performed.
Histological analysis of the subsequent neointimal lesion at specified time points revealed
the presence of LacZ positive, or transplanted bone marrow derived cells. Furthermore,
double staining revealed that the LacZ positive cells had differentiated into both smooth
muscle (α-smooth muscle actin or α-SMA positive) as well as endothelial (CD31+) like
cells. As shown in Table 1, numerous subsequent studies have confirmed the existence of
bone marrow derived cells in the neointima. While in most of these studies the mouse bone
marrow transplant model was employed, differing methods of labeling bone marrow cells as
well as different types of injury have contributed to a wide range of values for the
percentage of neointimal cells that are of bone marrow origin (ranging from 20 to 66%)4, 5.
Furthermore, circulating white blood cells in an animal after bone marrow transplant are
also bone marrow derived. As has been previously demonstrated, these inflammatory cells,
specifically macrophages, can contribute to the neointimal lesion. Thus, it is important to
evaluate the neointima in these models with specific staining to determine whether bone
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marrow derived cells have progenitor cell, smooth muscle cell, endothelial cell, or white
blood cell markers.

The progenitor cell contribution to the neointima appears to be determined
by the type of injury

Whereas the mouse wire injury model was used in all of the studies cited in Table I, it has
been shown that the contribution of bone marrow derived progenitor cells to the arterial wall
may vary depending on the type of injury 4. Using a model that transplanted bone marrow
cells from a transgenic mouse that expresses GFP (GFP+ mouse) to a wild type mouse,
Tanaka et al showed that three distinct types of mechanical injury produced varying degrees
of bone marrow derived cell contribution to the arterial wall. In the first injury model, a
0.38mm straight spring wire was inserted into the mouse femoral artery to denude and dilate
the artery. This model best recapitulates angioplasty procedures in humans, since it involves
both vessel wall dilatation and endothelial denudation. In the second model, a polyethylene
tube was placed around the mouse femoral artery (perivascular cuff induced injury). In the
last model, the mouse common carotid artery was ligated just proximal to the bifurcation.
Wire injury led to large numbers of GFP+ cells in both the media and the neointima, whereas
perivascular cuff placement and carotid artery ligation resulted in significantly fewer GFP+

medial and neointimal cells. (Table 2) The authors also studied the fate of the bone marrow
derived cells by examining α-SMA expression. Whereas a significant number of GFP+ cells
in the neointima and the media after wire injury were also α-SMA+, only a few of the GFP+

cells expressed α-SMA in the other two injury models 4. Finally, the authors showed that
while each mode of injury induced differing degrees of inflammation, the degree of
inflammation did not correlate with the contribution of bone marrow derived cells to the
neointima. In all models, inflammatory cells were predominately macrophages, with the
greatest infiltration of macrophages reported after perivascular cuff placement. At 4 weeks
after injury, few macrophages were detected in the lesions produced by wire injury or
carotid ligation, even though these modes of injury resulted in the greatest number of bone
marrow derived cells in the arterial lesion.

The findings of these studies clearly demonstrate that bone marrow cell contribution to
arterial lesions can vary widely depending on the animal model of arterial injury. Similarly,
previous studies of human vascular lesions suggest that the cellular constituents of vascular
lesions also vary with the type of injury, for example, atherosclerosis vs. restenosis or
restenosis after balloon angioplasty vs. vein graft intimal hyperplasia after vascular bypass 7,
8. In humans, the specific contribution of progenitor cells to vascular disease is less well
defined. Stem cell therapy for vascular disease in humans is currently being tested in clinical
trials, 9, 10 even though it has never been proven with the elegance of the animal models that
progenitor cells actually contribute to the arterial wall response to injury. The animal
models, however, remain crucial in achieving a better understanding of the mechanisms
underlying progenitor cell recruitment. In this review, we focus specifically upon mouse
models of vascular injury that result in intimal hyperplasia and restenosis. However, it is
important to note that none of these models precisely recapitulate the human disease
process.

Characterization of the progenitor cells that contribute to animal models of
intimal hyperplasia
Bone marrow cells

In the foregoing mouse models of restenosis, the entire contents of the bone marrow were
transplanted into the recipient mouse. Bone marrow is primarily composed of cells of the
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blood cell lineages (e.g. myelocytes, lymphocytes, monocytes, megakaryocytes,
erythrocytes) at various stages of differentiation. Stem cells, defined as cells that are capable
of self-renewal and differentiation, constitute in the human only approximately 0.01% of the
total bone marrow. Together, stem cells and also progenitor cells (cells that are more
differentiated) account for approximately 0.1% of total bone marrow cells. Thus, it is only a
small percentage of bone marrow cells that are capable of directly repopulating the
neointimal or endothelial layers after arterial injury.

In humans, stem cells have been classified broadly into hematopoietic stem cells (HSC)
(CD34+/CD38−) or non-hematopoietic or mesenchymal stem cells (MSC) (Figure 1) 11.
HSCs, which differentiate into all the blood cell lines, are believed to be derived from a very
early embryonic precursor – the hemangioblast. Of note, many believe that the
hemangioblast is a common precursor for both HSCs and endothelial progenitor cells
(EPC), although this point remains controversial.12–14 EPCs, however, are thought to be
important in adult vasculogenesis and, relevant to this review, may also participate in the
neointimal lesion. MSCs, on the other hand, have been described to differentiate into muscle
cells, osteoblasts, chondrocytes, or adipocytes. Important cell surface markers that
distinguish between the different types of progenitor cells are summarized in Table 3. In the
following sections we will review how both HSCs and MSCs may contribute to neointimal
hyperplasia.

Hematopoietic stem cells
HSCs are defined by the properties of self-renewal and the ability to differentiate into cells
of all blood lineages. Although the accepted marker for human HSCs is CD34+, the gold
standard for identifying these cells remains a reconstitution assay. Though impractical in
humans, in the mouse a single HSC is capable of reconstituting the entire hematopoietic
system for the life of the animal15, 16. In the mouse, HSCs are characterized by the
combination of various markers, including c-kit+/sca-1+/lineage depleted, and are often
referred to as the KSL cell population.

Some authors have proposed that HSCs can differentiate into muscle cells (including smooth
and skeletal muscle as well as myocardial cells), neural cells, hepatocytes, as well as
epithelial, kidney, intestinal and pancreatic cells 17–19. Moreover, early studies by Sata et al.
have demonstrated that HSC’s are important in the bone marrow’s contribution to the
neointima 3. HSCs, or KSL cells, were isolated from ROSA26 mice and just these cells,
rather than the entire bone marrow, were transplanted into wild type mice. Mice then
underwent femoral artery wire injury and the resulting neointimal lesion was shown to
contain LacZ+ cells, some of which were also α-SMA positive. The authors therefore
concluded that the HSC fraction of bone marrow could give rise to not only hematopoietic
cells, but also vascular cells involved in intimal hyperplasia. Despite these findings, the
ability of HSCs to differentiate into non-hematopoietic cells (i.e. SMCs) remains
controversial 20. In studies where the mouse bone marrow has been reconstituted with a
single HSC, transdifferentiation of HSCs into non-hematopoietic cells is extremely rare 21–
23. In fact, when Sata’s group repeated their initial experiments using a single HSC to
reconstitute the bone marrow rather than (c-kit+/sca-1+/lin−) cells, they found very few cells
in the neointima that were the progeny of the single transplanted HSC, suggesting that the
population of c-kit+/sca-1+/lin− cells used in their original experiments may have been
contaminated with other progenitor cells 3, 20, 23.

Endothelial progenitor cells
EPCs were first isolated by Asahara et al. from human peripheral blood CD34+ cells 24.
Asahara found that after 7 days of culture on fibronectin coated plates, not only were the
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cells morphologically different from freshly isolated CD34+ cells, but there was also a
significantly higher percentage of cells that exhibited endothelial cell markers including
CD31, Flk-1, Tie-2, or E-selectin. EPCs are currently defined as cells that express both
progenitor and endothelial cell markers. In human cells, these markers would be CD34+

(progenitor) and VEGFR2+ (for endothelial cells) 25.

In the biology of intimal hyperplasia, it is believed that a faster rate of re-endothelialization
after an arterial injury that results in intimal denudation, can reduce the formation of intimal
hyperplasia 26. Werner et al. reported that bone marrow derived progenitor cells contributed
to the endothelial layer after mouse carotid wire injury 27. Using retroviral infection to label
bone marrow cells with a virus expressing GFP, these authors showed that up to 10% of ECs
(vWF+ cells) were also GFP+, and therefore of bone marrow origin. Follow-up studies by
this group reported that mouse spleen-derived mononuclear cells could differentiate into
cells with characteristics of EPCs. Intravenous injection of these mouse-derived EPCs after
wire carotid injury accelerated re-endothelialization and decreased neointimal hyperplasia,
thus suggesting that EPCs may indeed play an important role in regulating neointimal
formation 28.

Mesenchymal stem cells
In contrast to hematopoietic stem cells, there is also a population of non-hematopoietic stem
cells or mesenchymal stem cells (MSC) that are believed to originate from bone marrow
stromal cells and differentiate into myocytes, osteoblasts, chondrocytes, and adipocytes 11.
Human MSCs typically express several cell surface markers such as CD105, CD44, CD90,
CD71, and Stro-1, although none of these are specific to MSCs 11. MSCs are, however,
distinct from HSCs and other hematopoietic cells in that they generally do not express CD34
and CD45. Since there are no reliable MSC markers, these cells are often isolated using
specific cell culture conditions. Typically, a single-step purification method using adherence
to plastic cell culture plates is employed. This results in a population of fibroblast-like cells,
which are characterized as MSCs based on their ability to differentiate into multiple
mesenchymal lineages (e.g. osteogenic, chondrogenic, myogenic, etc.) 29

Studies have shown that MSCs home to areas of injury after both site-directed and systemic
administration 11. MSCs have been studied extensively in the context of cardiac tissue repair
and are currently one the of the cell types being studied in clinical trials of cardiac
regeneration following myocardial infarction 30, 31. The contribution of MSCs specifically
to restenosis has only recently been explored 32. Irradiated wild type mice underwent bone
marrow transplantation with MSCs derived from GFP+ mice. The mice were also
transplanted via tail vein injection with whole bone marrow from GFP− mice since MSCs
alone would not be expected to fully rescue these mice from myeloablative doses of
radiation. Two months after transplant and successful engraftment, femoral artery wire
injury was performed. After four weeks, the injured vessels developed a significant amount
of intimal hyperplasia containing GFP+ cells (39±17%), indicating a robust contribution of
bone marrow derived MSCs to this process.

Circulating progenitor cells
In addition to progenitor cells residing in the bone marrow, a constant small population of
peripheral circulating progenitor cells has also been described 24, 33. It is thought that this
population of circulating progenitor cells can be isolated from peripheral mononuclear cells
and have the ability to differentiate into other cell types, such as endothelial cells or smooth
muscle cells34, 35. Simper et al. for example, demonstrated that smooth muscle cells could
be derived from the peripheral blood of normal, healthy human subjects 34. Specifically,
these authors isolated mononuclear cells and cultured these cells in media containing PDGF-
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BB which resulted in the induction of smooth muscle cell differentiation.
Immunocytochemistry and western blot analysis of these cells revealed that they not only
possessed typical SMC markers (α-SMA, smooth muscle myosin heavy chain, and
calponin), but they also stained positive for the progenitor marker CD34 and the VEGF
receptors (Flt1 and Flk1).

Similarly, Zhao et al. have shown that peripheral blood mononuclear cells can give rise not
only to smooth muscle progenitor cells, but also pleuripotent stem cells 35. They identified a
subset of peripheral blood monocytes that display a fibroblast-like morphology but exhibit
both monocyte (CD14) and HSC (CD34 and CD45) markers. These cells could be induced
to differentiate into macrophages, T lymphocytes, epithelial cells, endothelial cells, neuronal
cells, and hepatocytes 35. Their findings suggest that progenitor cells that contribute to tissue
repair after injury can be derived from the population of circulating cells and not necessarily
directly from the bone marrow itself.

To further address whether circulating progenitor cells, as opposed to bone marrow derived
progenitor cells, contribute to the arterial response after injury, Tanaka et al. developed a
parabiotic model in which a GFP transgenic mouse was conjoined subcutaneously (no direct
vascular anastamoses) with a wild type mouse 36. These authors found as early as 10 days
and up to 20 weeks after surgery, that 35–40% of circulating leukocytes in a wild type
mouse were GFP+. After femoral artery wire injury of the wild-type mouse, GFP+ cells were
detected in both the neointima (14.8±4.5%) and media (31.1±8.8%), thereby suggesting that
a portion of the cells in the injured arterial wall were derived from the pool of circulating
peripheral cells. Furthermore, GFP+ cells found in the injured arterial wall were also shown
to stain positively for CD31 and α-SMA, implying the presence of a cohort of circulating
progenitor cells that has the potential to give rise to both endothelial and smooth muscle
cells.

Mechanisms underlying progenitor cell recruitment to sites of arterial
injury

Bone marrow derived progenitor cell recruitment to neointimal hyperplasia after vascular
injury can be conceptualized in three stages: 1) mobilization of cells from the bone marrow,
2) migration and recruitment of bone marrow cells to the site of injury, and 3) differentiation
of bone marrow cells into mature vascular cells, such as endothelial or smooth muscle cells.
Cytokines and chemokines that have been shown to be important in these steps include but
are not limited to Granulocyte Colony Stimulating Factor (G-CSF), Stromal derived
factor-1α (SDF-1α), c-kit and c-kit ligand (KitL, also known as Stem Cell Factor or SCF),
Matrix Metalloproteinase -9 (MMP-9), and Vascular endothelial growth factor (VEGF) as
well as its receptor (VEGFR). In the following sections we will review each stage of
progenitor cell recruitment and the current understanding of the important involved
chemokines and cytokines.

Mobilization of progenitor cells from the bone marrow
It is believed that bone marrow progenitor cells (HSC or MSCs) are mobilized into the
peripheral circulation in response to stress signals produced at the time of injury 37. In the
bone marrow, progenitor cells exist in a complex environment consisting of bone marrow
stromal cells and extracellular matrix (ECM) rich in fibronectin, collagens, and various
proteoglycans 37. In order to exit the bone marrow, progenitor cells must migrate through a
vascular barrier (bone marrow venous sinuses) that separates the hematopoietic
compartment from the circulation. Quiescent progenitor cells are believed to be attached to
bone marrow stromal cells or ECM through specific binding interactions, including VLA-4/
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VCAM-1, SDF-1α/CXCR4, CD44/HA (hyaluronic acid), and interactions between P-E- and
L- selectin 37. For example, VCAM-1 is constitutively expressed by bone marrow
endothelial and stromal cells, and disruption of the VCAM-1/VLA-4 interaction by
antibodies to VCAM-1 or VLA-4 ultimately leads to progenitor cell mobilization.. 38, 39

Additionally, α4 and β2 integrins have also been shown to play a role in the interactions
between progenitor cells and the bone marrow microenvironment, and defects in integrin
expression have also lead to increased progenitor cell mobilization. 40, 41

G-CSF has been well established as a mobilizer of stems cells in both humans and mice 42,
43. Treatment with G-CSF leads to the accumulation of proteases, particularly neutrophil
elastase and cathespin G, in the bone marrow and concurrent downregulation of their
inhibitors. Neutrophil elastase and cathespin G, in turn, lead to cleavage of key adhesion
molecules, including VCAM-1. Mobilization of progenitor cells by G-CSF has also been
shown to be dependent on MMP-9, as Heissig et al have reported that G-CSF-induced
progenitor cell mobilization was impaired in MMP-9−/− mice 44.

The possibility that treatment with G-CSF may increase intimal hyperplasia was suggested
by the results of the MAGIC Cell trial, a randomized control clinical trial examining the
effect of G-CSF mobilized peripheral blood stem cells in cardiac function after myocardial
infarction and coronary stenting 45, 46. The study found a trend towards increased restenosis
in the patient cohort treated with G-CSF. This finding prompted follow-up studies of how G-
CSF might affect neointimal hyperplasia in animal models. In a model of rabbit iliac artery
stenting, Cho et al reported that at 60 days after stenting, rabbits treated with G-CSF
developed significantly more intimal hyperplasia when compared to rabbits treated with
placebo (0.34±0.04 vs. 0.26±0.04, p=0.015) 47. Furthermore, the authors showed that at
early time points after injury, treatment with G-CSF not only increased total peripheral
white blood cell count, but specifically increased the number of putative EPCs (CD31+, VE-
cadherin+, CD34+, KDR+) and smooth muscle progenitor cells (VE-cadherin+/a-SMA+ or
CD31+/a-SMA+). Culture of these cells over 3 weeks with VEGF or PDGF resulted in
endothelial (cobble stone shape and CD31+) and smooth muscle like cells (hill and valley
morphology and a-SMA+), respectively. Therefore, increasing the number of mobilized
progenitor cells may be beneficial to some types of injury (myocardial infarction), but may
exacerbate others (arterial injury).

In addition to the effects of G-CSF, the interaction between SDF-1α and its receptor CXCR4
has also been shown to be important in regulating progenitor cell survival, cell cycle and
mobilization 37. Intravenous administration of exogenous SDF-1α as well as treatment with
a specific CXCR4 inhibitor (AMD-3100) rapidly induces progenitor cell mobilization in
both humans and mice 48. Heissig et al. have shown that SDF-1α induces MMP-9 in the
bone marrow, leading to cleavage of membrane bound KitL (mKitL) to soluble KitL
(sKitL). This in turn results in increased progenitor cell cycling and enhanced cell motility,
and ultimately leads to progenitor cell mobilization 5, 44, 48, 49. MMP-9-induced cleavage of
mKitL to sKitL has also been demonstrated to be essential in the formation of intimal
hyperplasia. While vascular injury in MMP-9−/− mice resulted in minimal intimal
hyperplasia, treatment with exogenous sKitL was found to “rescue” these mice and increase
intimal hyperplasia by 2.5 fold 5. Furthermore, mobilization of bone marrow derived cells,
and consequently intimal hyperplasia, can be inhibited by administration of the drug
Gleevec, a c-kit inhibitor 5.

Progenitor cell mobilization has been studied extensively in the context of wound healing
and vasculogenesis. The data from these studies have shown that certain disease states may
alter bone marrow cell mobilization in response to injury. Of note, these disease states are
often the co-morbidities present in patients with peripheral vascular disease. Patients with
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diabetes have recently been found to have fewer circulating progenitor cells, as
demonstrated by peripheral blood analyses. 50–52 Both diabetes and advanced age have been
shown to impair progenitor cell mobilization in mice. 53, 54 In their studies of wound healing
in diabetic mice, Gallagher et al. have shown that impaired nitric oxide synthase (NOS)
activation results in decreased EPC mobilization and therefore impaired vasculogenesis and
wound healing. Hyperbaric oxygen therapy, by activating NOS, increases nitric oxide (NO)
production and therefore increases EPC mobilization from the bone marrow. 53

Furthermore, the group showed that injection of exogenous SDF-1α into the wound acted
synergistically with hyperbaric oxygen treatment in mobilizing EPCs into the peripheral
circulation. Also related to an impaired response to tissue hypoxia, work by Bosch-Marce et
al demonstrated in mice that aging leads to a gradual loss-of-function in hypoxia-inducible-
factor 1α (HIF-1α). This resulted in decreased progenitor cell mobilization, decreased
expression of angiogenic cytokines, and ultimately poor recovery of limb perfusion
following ischemic injury. 54 These effects could be reversed, however, by administration of
an adenoviral vector that expressed a constitutively active form of HIF-1α. While the
process of vasculogenesis is distinct from that of intimal hyperplasia and restenosis, the
findings from the wound healing literature will likely be important in achieving a better
understanding of progenitor cell mobilization after vascular injury. The forgoing studies
reflecting the numerous cytokines, chemokines, and signaling cascades that are involved in
progenitor cell mobilization will ultimately need to be considered in the context of pre-
existing disease states such as diabetes or advanced age, which may have significant
consequences for efficient progenitor cell mobilization and recruitment.

Migration of progenitor cells to the site of injury
Once progenitor cells are in the peripheral circulation, they must be attracted to the site of
tissue injury. In addition to playing an essential role in progenitor cell mobilization, the
SDF-1α/CXCR4 axis has been reported to be involved in progenitor cell recruitment in
numerous injury models including neointimal hyperplasia 55–57. In vitro studies have shown
that SDF-1α induces EPC and CD34+ cell migration and CD34+ cell adhesion 58–60. In the
wound healing literature, SDF-1α has been shown to play an important role in the
recruitment of EPCs to diabetic wounds in mice. 53 In the mouse wire injury model,
Zernecke et al demonstrated that blockade of SDF-1α signaling with either a SDF-1α
blocking antibody, lentiviral-based local gene transfer of a mutant SDF-1α, or by
transplantation of bone marrow cells deficient in CXCR4 resulted in decreased intimal
hyperplasia which was associated with decreased bone marrow derived neointimal smooth
muscle cells 57. The authors reported that SDF-1α induced platelet adhesion at the site of
injury, and that subsequent release of platelet p-selectin led to progenitor cell adhesion and
recruitment. These same mechanistic findings demonstrating an important role of SDF-1α
and platelets in progenitor cell recruitment were confirmed by Massberg et al who studied
this process in vivo using real-time video-fluorescence microscopy 61.

On a molecular level, integrins such as VLA-4, LFA-1 and α5β1 have been shown to play
essential roles in progenitor cell adhesion 5, 60, 62. Notably, the α5β1 integrin has been
shown to be upregulated by statin therapy 62. Consequently, administration of simvastatin to
rats undergoing carotid balloon injury resulted in accelerated and more complete re-
endothelialization due to increased EPC incorporation into the injured artery 62.

Other factors, such as VEGF and its receptor, have also been shown to stimulate progenitor
cell migration and recruitment to sites of tissue injury 63–65. This complex process clearly
involves numerous signaling pathways which are just beginning to be understood.

Tsai et al. Page 7

J Vasc Surg. Author manuscript; available in PMC 2010 August 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Differentiation of progenitor cells into mature vascular cells
The differentiation of bone marrow derived progenitor cells into vascular smooth muscle
cells or smooth muscle-like cells or endothelial cells is the final step in the recruitment of
bone marrow cells into the neointimal lesion. This phenomenon has been studied in vitro
using several different stem and progenitor cell lines. TGF-β, through Smad3 signaling, has
been shown to induce neural crest stem cells to differentiate into smooth muscle cells, 66 and
PDGF-BB has been demonstrated to induce TR-BME2 cells, a mouse bone marrow derived
EPC line, to differentiate into contractile and synthetic SMCs 66, 67. Both cytokines have
been shown to be upregulated after arterial injury. In terms of endothelial cell
differentiation, VEGF is the most studied chemokine. Of note, although EPCs are believed
to be the major source of ECs, it has also been reported that MSCs cultured in the presence
of VEGF can also differentiate into cells with phenotypic and functional features of
endothelial cells 68.

It has been proposed that the direct cell/cell contact may be a stimulus of progenitor cell
differentiation. Several studies have shown that direct cell-to-cell contact between MSCs
and cardiomyocytes or smooth muscle cells results in MSC differentiation into these two
cell types 69,70. Interestingly, it has also been reported that co-culture of MSCs with EPCs
drives MSCs to differentiate into endothelial-like cells 32. Finally, many of the factors that
have been found to be important in progenitor cell mobilization and/or migration may also
play a role in differentiation. For example, co-culture of eYFP (yellow fluorescent protein)
expressing progenitor cells with VSMCs expressing Kit Ligand stimulated differentiation of
progenitor cells into smooth muscle cells, as reflected by cells that were double positive for
eYFP and α-SMA. Consequently, addition of anti-KitL antibody to stimulated VSMCs
expressing KitL resulted in less differentiation 5.

The contribution of different progenitor cells to the arterial response to injury is summarized
in Figure 2. Together, these findings demonstrate that although the process of progenitor cell
recruitment to sites of injury can be conceptualized in three steps, it is apparent that the steps
are closely related in that many signaling molecules play important roles throughout this
entire complex process.

Summary
Bone marrow derived progenitor cells represent a new source of smooth muscle cells and
endothelial cells that contribute to or modulate intimal hyperplasia after arterial injury.
Numerous mouse models have been studied to gain insight into which progenitor cells are
important, although the answers are still unclear. Whereas many studies have demonstrated
the plasticity of HSCs, it is likely that MSCs also contribute to the smooth muscle cells and
perhaps also the endothelial cells that repopulate the injured artery. Identification of the
signaling mechanisms that underlie bone marrow progenitor cell recruitment to the
neointima is only in its early stages. However several molecules, such as SDF-1α and KitL
have emerged as potential targets for molecular therapy. Despite these advances in
understanding progenitor cell recruitment, it is also imperative that these observations, made
in mouse models of arterial injury, be validated in cases of human disease. If progenitor cells
do indeed represent a significant fraction of neointimal cells, then an in-depth understanding
of how the cells migrate from the bone marrow to the site of injury is essential for the
development of targeted therapies for arterial restenosis.
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Figure 1.
Schematic of stem cell and progenitor cell classification. The hemangioblast is believed to
be an embryonic precursor for HSCs and possibly also EPCs. HSCs differentiate into
hematopoietic progenitors and then into the various blood cell lineages, but there is also
evidence that HSCs can transdifferentiate into non-hematopoietic cells. MSCs are believed
to differentiate into multiple mesenchymal lineages. Dotted grey lines indicate points that
are still controversial.
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Figure 2.
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