
CodonTest: Modeling Amino Acid Substitution
Preferences in Coding Sequences
Wayne Delport1, Konrad Scheffler2, Gordon Botha2, Mike B. Gravenor3, Spencer V. Muse4, Sergei L.

Kosakovsky Pond5*

1 Department of Pathology, University of California, San Diego, La Jolla, California, United States of America, 2 Computer Science Division, Department of Mathematical

Sciences, Stellenbosch University, Stellenbosch, South Africa, 3 School of Medicine, University of Swansea, Swansea, United Kingdom, 4 Department of Statistics, North

Carolina State University, Raleigh, North Carolina, United States of America, 5 Department of Medicine, University of California, San Diego, La Jolla, California, United States

of America

Abstract

Codon models of evolution have facilitated the interpretation of selective forces operating on genomes. These models,
however, assume a single rate of non-synonymous substitution irrespective of the nature of amino acids being exchanged.
Recent developments have shown that models which allow for amino acid pairs to have independent rates of substitution
offer improved fit over single rate models. However, these approaches have been limited by the necessity for large
alignments in their estimation. An alternative approach is to assume that substitution rates between amino acid pairs can
be subdivided into K rate classes, dependent on the information content of the alignment. However, given the
combinatorially large number of such models, an efficient model search strategy is needed. Here we develop a Genetic
Algorithm (GA) method for the estimation of such models. A GA is used to assign amino acid substitution pairs to a series of
K rate classes, where K is estimated from the alignment. Other parameters of the phylogenetic Markov model, including
substitution rates, character frequencies and branch lengths are estimated using standard maximum likelihood optimization
procedures. We apply the GA to empirical alignments and show improved model fit over existing models of codon
evolution. Our results suggest that current models are poor approximations of protein evolution and thus gene and
organism specific multi-rate models that incorporate amino acid substitution biases are preferred. We further anticipate that
the clustering of amino acid substitution rates into classes will be biologically informative, such that genes with similar
functions exhibit similar clustering, and hence this clustering will be useful for the evolutionary fingerprinting of genes.
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Introduction

Modern molecular evolution has benefited greatly from the

development of a sound probabilistic framework for modeling the

evolution of homologous gene sequences [1]. In particular, codon

substitution models [2,3] have facilitated the estimation of the ratio

of non-synonymous to synonymous substitution rates (referred to

as dN=dS, Ka=Ks, v), which can be interpreted as an indicator of

the strength and type of natural selection (see [4] or [5] for recent

reviews). Codon models are fundamentally mechanistic because

they use the structure of the genetic code to partition codon

substitutions into classes. Initially, and in most subsequent appli-

cations of codon models, all one-nucleotide substitutions were

stratified into synonymous (rate a, using the notation of [2]) and

non-synonymous (rate b) classes. Despite several early attempts,

e.g. [3], none of the widely-adopted codon models incorporated

physicochemical properties of the two residues being exchanged.

In contrast, most protein substitution models are derived by

estimating the relative rates of amino-acid substitutions in large

protein databases [6–8], and consistently report dramatic

differences in the relative replacement rates of different residues.

The persisting dissonance between how codon and protein

models approach amino acid substitution rates has fostered

multiple recent efforts to develop what we will call multi-rate codon

models (or more accurately, multi- nonsynonymous rate models),

in contrast to the existing single-rate model. These models divide

amino acid pairs (or codon pairs) into multiple rate categories,

such that every category has its own rate which governs

substitutions between the pairs in that category. In the most

extreme case, every amino acid or codon pair belongs to a

different category and thus has its own rate – potentially leading to

a very large number of parameters that need to be estimated.

Several strategies have been proposed for limiting the number of

parameters in multi-rate models.

Doron-Faigenboim et al. [9] proposed to overlay existing

empirically derived amino acid substitution matrices (e.g. [7] or

[8]) onto single-rate codon models by weighted partitioning of the

empirical rate of substitution between two protein residues. Kosiol,

Holmes & Goldman [10] directly estimated all 1,830 codon-to-

codon substitution rates in an empirical codon model – a codon

equivalent of the nucleotide GTR model [11], assuming the

universal genetic code. However, this effort required a truly
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massive training dataset encompassing alignments from 7,332
protein families of the Pandit database [12]. The resulting

empirical codon model (ECM) encodes evolution patterns

averaged over many proteins. However, no single empirically-

derived substitution rate matrix appears to be generalizable across

multiple genes and taxonomic groups, as evidenced by a plethora

of specialized substitution models, e.g. for mammalian mitochon-

drial genomes [13], plant chloroplast genes [14], viral reverse

transcriptases [15] or HIV-1 genes [16].

More mechanistic parameters can be introduced to improve

biological realism of codon-models. The linear combination of

amino acid properties (LCAP) model [17] expresses exchange-

ability of a pair of codons as an (exponentiated) linear combination

of differences in five independently validated amino acid

physicochemical properties. This parameterization incorporates

weighting (or importance) coefficients inferred from the data to

allow for differences in protein evolution between genes, shown to

be significant and biologically meaningful in yeast proteins [18],

and once again underscoring the utility of gene-specific evolu-

tionary models.

All multi-rate codon models published to date have shown clear

improvements in model fit over the single-rate model. However,

multi-rate models in which substitutions were randomly assigned

to classes easily outperform the single-rate model [19] and thus it is

a poor performance benchmark. At the other extreme of model

space is the full time-reversible codon model, with 1,830
parameters (or 526, if only single nucleotide substitutions are

modeled), which will certainly suffer from massive over-fitting on

single gene alignments. Over-parameterization can be reduced by

‘‘smoothing’’, i.e. by grouping the rates into exchangeability

classes based on the physicochemical properties of amino acids

[20]. However, without a rigorous model selection framework, it is

difficult to ascertain how well any particular smoothing approach

fits the data. To appreciate how large the space of potential models

is, consider that there are are approximately 2|1022 possible

multi-rate codon models with K~2 nonsynonymous rate classes,

and approximately 2|1050 possible models for K~5. Given such

a large search space it is impossible to evaluate even a small

fraction of possible models exhaustively, and one cannot presume

that any given model or a small set of models are sufficiently

representative without exploring the alternatives.

Huelsenbeck et al. [21] examined a Bayesian approach to

estimate empirical amino acid substitution models in which amino

acid exchangeability classes are assigned using a Dirichlet process.

However, a prior distribution needs to be specified for the number

of classes (K = 2, 5, or 10), and mechanistic features of codon

evolution are excluded. Models which combine empirical codon

models and mechanistic parameters, such as b=a and transition-

transversion bias [10], have been shown to outperform the models

which include only a single effect. This evidence highlights the

necessity to model both mutational effects, which result in

substitution preferences for particular amino acids, and selective

effects, the result of fitness differences of alternate phenotypes. In

this manuscript, we present an information-theoretic model

selection procedure that extends the concept of ModelTest [22],

formulated for nucleotide model selection, to codon models.

Unlike ModelTest, which examines 56 a priori defined models, we

use a Genetic Algorithm (GA) to search the combinatorially large

set of codon models (i.e. select the number of rate classes), to assign

amino acid substitution rates to these classes, infer rate parameters

and, finally, report a set of credible models given the data. Our

group has successfully applied GAs to a variety of problems in

evolutionary biology, including inference of lineage-specific

selective regimes [23], detecting recombination in homologous

sequence alignments [24], and model selection for paired RNA

sequences [25], where the GA was able to recover biologically

relevant properties and outperformed all known mechanistic

models.

Using simulated data, we demonstrate that GA model selection

(under a sufficiently stringent model selection criterion) is not

susceptible to over-fitting, and that codon alignments of typical

size contains sufficient signal to reliably allocate non-synonymous

substitutions into a small number of rate classes, typically 2{8.

On empirical data sets, GA-selected codon substitution models

consistently outperformed published empirical and mechanistic

models. In addition to selecting a single best fitting model, the GA

also estimates a set of credible models for an alignment. A

weighted combination of models in the credible set enable model

averaged phylogenetic [26] and substitution rate matrix [25]

inference and further reduces the risk of over-fitting. We anticipate

that improvements in model realism will translate into improved

sequence alignment, phylogeny estimation, and selection detec-

tion. Moreover, we hypothesize that the clustering of non-

synonymous substitution rates into groups with the same rate

parameter is shared by genes with similar biological and structural

properties, and hence this clustering is informative for improving

evolutionary fingerprinting of genes [27].

Methods

Model definition
Models considered in this paper assume that codon substitutions

along a branch in a phylogenetic tree can be described by an

appropriately parameterized continuous-time homogeneous and

stationary Markov process; an assumption ubiquitous in codon-

evolution literature. The substitution process is uniquely defined

by the rate matrix, Q, whose elements qij denote the instantaneous

substitution rate from codon i to codon j. Using Ai to label the

amino-acid encoded by codon i, and assuming a universal genetic

code with three stop codons (other codes can be handled with

Author Summary

Evolution in protein-coding DNA sequences can be
modeled at three levels: nucleotides, amino acids or
codons that encode the amino acids. Codon models
incorporate nucleotide and amino acid information, and
allow the estimation of the rate at which amino acids are
replaced (dN) versus the rate at which they are preserved
(dS). The dN=dS ratio has been used in thousands of
studies to detect molecular footprints of natural selection.
A serious limitation of most codon models is the unrealistic
assumption that all non-synonymous substitutions occur
at the same rate. Indeed, amino acid models have
consistently demonstrated that different residues are
exchanged more or less frequently, depending on
incompletely understood factors. We derive and validate
a computational approach for inferring codon models
which combine the power to investigate natural selection
with data-driven amino acid substitution biases from
alignments. The addition of amino acid properties can
lead to more powerful and accurate methods for studying
natural selection and the evolutionary history of protein-
coding sequences. The pattern of amino acid substitutions
specific to a given alignment can be used to compare and
contrast the evolutionary properties of different genes,
providing an evolutionary analog to protein family
comparisons.

Codon Model Selection
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obvious modifications), matrix Q comprises 61661 such elements,

where

qij~

r(Ai,Aj)hijpij , i=j, and i?j involves

one nucleotide substitution,

0, i=j and i?j involves two or

three nucleotide substitutions,

{
P

k=i qik, i~j:

8>>>>>><
>>>>>>:

ð1Þ

Here, pij denote equilibrium frequency parameters, hij denote

nucleotide mutational biases, and r(Ai, Aj)~r(Aj , Ai) denote the

substitution rates between amino acids encoded by codons i and j.
How to infer r(Ai, Aj) is the primary focus of this paper. We

consider two different parameterizations of pij : the GY parame-

terization [3], where pij is the equilibrium frequency of the target

codon, and the MG parameterization [2], where pij~wp
a is a

nucleotide frequency parameter for the position that is being

substituted (p~1, 2, 3; a~A, C, G, T ). For the GY parameter-

ization, we estimate codon equilibrium frequencies by their

proportions in the data (the F61 estimator, 60 parameters for

the universal genetic code). For the MG parameterization, we

estimate the nine frequency parameters by maximum likelihood

[28]. The equilibrium frequency of codon xyz can then be

computed as

pxyz~
w1

xw2
yw3

z

1{wX

,

where X~fTAA, TAG, TGAg and wX ~
P

xyz[X w1
xw2

yw3
z .

Finally, we set hij~hji, hAG~1 and estimate 5 other rates

(hAC , hAT , hCG, hCT , hGT ) by maximum likelihood; this parame-

terization follows the MG94|REV model from [29].

Inferring non-synonymous substitution rates
By varying the parametric complexity of the non-synonymous

substitution rate r(Ai, Aj) encoding in equation (1), we can span

the range of models from the single rate model (SR, current default

standard, 1 non-synonymous rate parameter), to the general codon

time-reversible model (REV) with each amino-acid pair substitu-

tion exchanged at its own rate. Only 75 out of 190 total amino-

acid pairs can be exchanged via a single nucleotide substitution,

for example F(TT R) and L(TTY ) are one such pair, but

A(GC N) and H(C AY ) are not. Consequently, the REV model

has 75 non-synonymous rate parameters. The purpose of our

study is to explore the model space between these two extremes,

taking into account the limitations of information content in single

gene alignments. Note that most existing multi-rate models can be

represented with an appropriate choice of r(Ai, Aj) in equation

(1). Empirical models (e.g. ECM) replace r(Ai, Aj) with numerical

values estimated from large training data sets, whereas mechanistic

models (e.g. LCAP) assume that rates can be modeled via a

function measuring differences/similarities in physicochemical

properties of residues (Table 1).

We focus on structured (or rate clustering) models: those which

assume that substitution rates can be partitioned/structured into K
classes, where each class has a single estimated rate parameter.

These structured models may be defined using amino acid

similarity classes [30], but instead of adopting a priori classes of

rates, we propose to infer their number and identity from the data.

A structured model with N substitutions (e.g. N~75 for the

Universal genetic code) in K classes can be represented as a vector

M of length N , where each element is an integer between 1 and K
labeling the class. For example if the vector entries corresponding

to I<L, L<V and S<W substitutions have values 1, 1 and 3,

then r(I , L)~r(L, V)~C1 and r(S, W )~C3. As an analogy, the

HKY85 nucleotide model [31] is a structured model with vector,

MHKY85~(0AC , 1AG, 0AT , 0CG , 1CT , 0GT ), where the substitu-

tions between 6 nucleotide pairs (indicated by a subscript)

are placed into transition (1) and transversion (0) classes.

Given the structure of a codon model, e.g. (0LI , 1LH , 0LV ,
1LS, 2LF , :::3RW ), it can be fitted to the data using standard

maximum likelihood phylogenetic algorithms, e.g. as implemented

in HyPhy [32]. The resulting set of rate estimates ĈC1, . . . ĈCK

instantiate a structured model and induce a corresponding

empirical model, e.g. (0:25, 0:35, 0:25, 0:35, 0:8, :::1:5).

Because the space of structured codon models is combinatorially

large, we utilize a GA previously used to solve an analogous model

selection problem for paired RNA data [25]. Parameter space is

defined by two components: a discrete component which assigns

pairwise non-synonymous substitutions between codons to K rate

classes using the structured vector described above, and a

Table 1. Various approaches to estimating residue-dependent non-synonymous substitution rates.

Model r(A, B) p Description

Single rate C 1

Random – X Crand(1, X ) X Rates randomly assigned to X classes

ECM cij 0 Codon level rates cij are inferred from a large training

data set

ECM+v vcij 1 Codon level rates cij are inferred from a large training

data set

Correction parameter v inferred from the data

LCAP exp
P5

i~1 CiDi(A,B)
h i

5 Based on a weighted combination of 5 physico-
chemical distances Di

GA - X Cg(A, B) X X and g(A, B)?0 . . . X{1 are inferred by the GA

REV CA B 75 Each unique residue pair within one nucleotide
substitution has its own rate

p = number of model parameters estimated from the data. C denotes rates that are estimated by maximum likelihood by the data and c – those that are estimated in
other ways.
doi:10.1371/journal.pcbi.1000885.t001
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continuous component comprising a vector of branch lengths,

nucleotide substitution rates, frequency parameters and non-

synonymous rates C1, . . . CK . The discrete component is

optimized by the GA, while the continuous component is

estimated using numerical non-linear optimization procedures,

given the structure of the model. We initially approximate branch

lengths using the SR model and update them whenever the GA

iteration improves the fitness score by more than 50 mBIC points

(see below) as compared to the most recent model for which

branch lengths have been estimated. Further details of the genetic

algorithm are described in detail in [25], and for the sake of

brevity we do not present it here.

We are left with the problem of inferring the number of rate

classes K . This is done by starting with K~1 and iteratively

proposing to increment K . For each proposal, the model with

Kz1 rate classes is optimized using the optimized K-class model

as initialization. If the proposal results in a model with a better

fitness value (see below), it is accepted and a new proposal

generated. The process terminates when the Kz1-class proposal

does not beat the K-class model.

We initially assigned a fitness value to each model using

BIC~{2 log Lzp log s where s is the sample size and p is the

number of parameters in the model [33]. The ‘‘sample size’’ of a

sequence alignment is difficult to quantify with a single number,

since it depends on both the number of sequences in the alignment

and the lengths of those sequences. We use the number of

characters to approximate ‘‘sample size’’ to make the model

selection criterion maximally conservative. While it is straightfor-

ward to count the number of estimated parameters in any given

structured model, setting p to that number leads to model over-

fitting (results not shown), because the topological component (the

assignment of rates to classes) adds further ‘‘degrees of freedom’’ to

the model. To determine the appropriate penalty term, we

conducted simulations; there is precedent for this in statistical

literature on generalized information criteria (e.g. [34]). We

removed the effect of phylogeny by simulating nine sets of two-

sequence alignments (0:2 divergence): each set of simulations

consisted of 100 replicates with between 104 and 106 codons (in

104 increments). The sets had 1 to 5 rate classes (Figure 1),

representing rate classification problems that ranged from easy

(large numerical differences between class rates, e.g. 0:25 and 1:0)

to difficult (small numerical differences, e.g. 0:25 and 0:3). We

constructed generating multi-rate models by assigning rates to K
bins randomly with equal probability. For each simulation set we

plotted the difference in log likelihood (scaled by the sample

size = log of characters) between the correct model (K rates), and

models with K{1 and Kz1 rates, respectively. Simulations

indicated that doubling the number of parameters in the BIC

penalty term ensured sufficient power, and controlled false

positives for all simulation sets (Figure 1). We used this modified

BIC, mBIC~{2 log Lz2p log s to assign fitness to every model

examined by a GA run and select those with the lowest mBIC.

Simulated data analysis
We also simulated realistic ‘‘gene-size’’ alignments on 16 and 32

taxon trees. Nucleotide frequencies were uniform (0:25) for each

position, and the nucleotide bias component was set to HKY85

with transition/transversion ratio, k~4. We generated 100 data

sets for each K :rate vector combination, under the single rate, and

a fixed Random-K model (Table 2). These data allowed us to

assess the performance of the model when the true underlying

model was known.

For each simulation scenario, we report the proportion of

replicates Pm for which the GA inferred the correct number of rate

classes K , the proportion of underfitted replicates Pu (too few rate

classes were inferred) and the proportion of overfitted replicates Po

(too many rate classes were inferred). For the replicates where the

correct number of rate classes was inferred, we computed the

Rand statistic (Pc, [35]) on the generating and inferred model

structures to quantify the similarity between two clusterings rates.

The Rand statistic quantifies the similarity between two clusterings

(A & B) of the same set of N objects and can be defined as

(N00zN11)=(N00zN01zN10zN11), where N00 is the number of

objects (pairs of substitution rates) that belong to different classes in

both A and B, N01 (N10) is the number of objects that belong to

different (same) classes in A, but the same (different) class in B, and

N11 is the number of objects that belong to the same class in both

A and B. Clearly, Pc~1 for perfect agreement (N11~N) and

Pc~0 for perfect disagreement (N00~N).

Empirical data analysis
We prepared a collection of reference empirical data sets (see

Table 3), to be used for benchmarking GA, published and

extreme-case models. The collection included three protein family

alignments from Pandit [12] selected randomly from all align-

ments with w80 taxa, a randomly selected Yeast protein

alignment [18], a group M HIV-1 pol alignment [36] and an

Influenza A virus (IAV) HA alignment comprising H3N2, H5N1,

H2N2 and H1N1 serotypes. The latter was assembled by random

selection of 30 post-2005 sequences for each serotype from the

NCBI Influenza database [37]. Finally, we examined the

vertebrate rhodopsin protein, recently analyzed for molecular

mechanisms of phenotypic adaptation by [38]. We inferred a

structured multi-rate model for each of these data sets using the

genetic algorithm and mBIC model fitness function defined above.

A comparison of the GA-fitted model against existing models is

unfair, since the former was selected among a set of candidate

models using the test alignment. To confirm that GA models were

generalizable, we evaluated the fit of the GA models and that of

existing models for both the reference datasets, and independent

test alignments for the same taxonomic groups (validation data

sets). Two HIV-1 pol gene alignments were obtained for subtypes

B [39] and C [40]. Subtype assignments were confirmed using the

SCUEAL sub-typing tool [36], and inter- and intra-subtype

recombinants were pruned from the analysis. For IAV HA we used

independent alignments for serotypes H5N1 and H3N2, filtered

from the NCBI Influenza database [37], and from [41],

respectively.

We fitted five reference models to each dataset: (i) the single-rate

model, (ii) a Random-3 and a Random-5 model, (iii) the empirical

codon model (ECM, [10]), (iv) the Linear Combination of Amino

Acid Properties (LCAP) model [17,18], and (v) the reversible

(REV) model (see Table 1).

For every dataset, the corresponding GA-run was processed to

obtain three different alignment-specific multi-rate models.

1. A structured GA model (G As): this is the best-fitting model

(with value mBIC0), which defines K rate clusters. The

numerical values of corresponding K substitution rates are

inferred using maximum likelihood. This model is a direct

analog of the single ‘‘best’’ substitution model reported by the

familiar ModelTest [22] nucleotide model selection procedure.

2. A numerical model-averaged GA model (G Ar), which is

computed by weighting the numerical rate estimates from all

models in the credible set using mBIC-based Akaike weights (as

in [25]). Briefly, for the i{th model examined by the GA, we

compute its evidence ratio versus the G As model as

ri~exp mBIC0{mBICið Þ=2½ �, which can be thought of as

Codon Model Selection
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Figure 1. Simulation studies used to derive the appropriate penalty term for mBIC . Each panel plots the difference in log likelihood (log L)
normalized by the logarithm of the sample size (number of characters), between best fitting GA models with n and k rates (d(n, k)), against the
number of sites in the alignment. For simulations with a single rate class we plotted d(2, 1), top right. Figures for multiple rate simulations (2–5 rates)
show d(n, n{1) as black dots (left column); and d(nz1, n) as blue dots (right column). Values to the right of row report simulated rates for each class.
The left column is a reflection of power, whereas the right column – of the degree of over-fitting. For the case where a single rate was simulated, the
degree of over-fitting is the rate of false positives. The desired behavior for mBIC is achieved when the model with n rate classes is preferred to

Codon Model Selection
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the probability that model i is the best model to explain the

data, in the sense of minimizing the Kullback-Leibler

divergence from the ‘‘true’’ unobserved model [42]. In addition

to the G As model, we also construct a set of credible models,

i.e. all those models whose ri is sufficiently large (§0:01). From

this credible set we compute a model averaged estimate of any

parameter p, by a weighted sum of the estimate under model i,
pi as

P
i wipi, where the Akaike weight of model i, wi is defined

as wi~ri=
P

j rj . This G Ar model is an analog of an empirical

substitution model (e.g. ECM), and has no rate parameters that

are estimated from validation data sets. By combining

information from multiple models, statistical noise may be

reduced (e.g. [26]).

3. The numerical G Ar model with the addition of a single non-

synonymous substitution rate parameter (G Arzv) which

multiplies all non-synonymous substitution rates in the Q

matrix. The direct analog is the ECMzv model of [10], and

its purpose is to add a dataset specific ‘‘adjustment’’ to the

baseline numerical model, since the estimated parameters of

the baseline numerical model are weighted over the credible set

and fixed at these estimates when applied to other datasets.

We used both BIC [33] and Likelihood ratio tests, where

appropriate, for model comparison. These goodness-of-fit com-

parisons allowed us to evaluate whether a model estimated on

reference alignments yielded a significant improvement over the

other models when fitted to independent alignments for the same

taxonomic groups. All models were implemented with the F61

frequency parameterization, in addition to their original frequency

parameterizations, because the methodology used to estimate the

ECM model precluded the use of other frequency parameteriza-

tions for across-the-board comparison. Alignments and phyloge-

netic trees were provided for the Pandit data set. In all other cases,

alignments were generated using codon alignment tools imple-

mented in HyPhy [32]. Maximum likelihood phylogenetic trees

were estimated using PhyML [43] under a GTR [44] model of

nucleotide substitution and among-site rate variation modeled as a

discretized gamma distribution with 4 rate-classes [45]. Empirical

alignments and trees are available at http://www.hyphy.org/

pubs/cms/.

Rate matrix comparisons
The entries of the substitution rate matrix Q can be used to

estimate the expected number of substitutions per site per unit

time, E(t)~{t
P

i piqii, and to determine the value of the time

parameter (assuming all other parameters are known) t1 which

yields E(t1)~1. Furthermore, the expression for the number of

expected one-nucleotide substitutions between codons i and j,
in time t, at a site is given by Eij(t)~piqijzpjqji~2piqij

(the simplification is the consequence of time-reversibility). Given

two amino-acid residues x and y which can be exchanged by a

single nucleotide substitution, we can further define Exy(t)~P
Ai~x,Aj~y Eij(t), where Ai denotes the residue encoded by

codon i. Consider a 75{element substitution spectrum vector

SQ(t)~(EA,G(t), . . . ,EK ,R(t)), which describes the relative abun-

dance or paucity of a particular type of amino-acid pair

substitution under the model defined by Q. Given two models,

Q1 and Q2, we propose to compare their similarity by computing

the distance between the corresponding substitution spectrum

vectors evaluated at the corresponding ‘‘normalized’’ times:

models with n{1, and nz1 rate classes. For a modified BIC criterion mBIC~{2 log Lzcp log s with c~2, the former happens if d(n, n{1)w1
(more definitively with increasing sample size), and the latter if d(nz1, n)v1 (regardless of sample size).
doi:10.1371/journal.pcbi.1000885.g001

Table 2. The performance of GA model selection with mBIC in estimating the number and membership of K rate classes as well
as rate values from simulated data.

C taxa D simulated rates s Pm Pu Po Pc

1 2 0.2 n/a n/a 0.99 n/a 0.01 n/a

2 2 0.2 (0.25, 1.0) (0.004, 0.010) 1.00 0 0 1.00

(0.25, 0.3) (0.012, 0.009) 0.98 0.02 0 0.860

3 2 0.2 (0.25, 0.5, 1.0) (0.011, 0.015, 0.053) 1.00 0 0 0.996

(0.25, 0.35, 0.5) (0.004, 0.011, 0.008) 0.97 0.03 0 0.971

4 2 0.2 (0.05, 0.35, 0.7, 1.0) (0.006, 0.021, 0.040, 0.041) 0.99 0.01 0 0.993

(0.5, 0.65, 0.75, 1.0) (0.004, 0.007, 0.006, 0.006) 0.82 0.18 0 0.936

5 2 0.2 (0.05, 0.25, 0.5, 0.75, 1.0) (0.003, 0.012, 0.008, 0.014, 0.012) 0.91 0.09 0 0.981

(0.5, 0.65, 0.75, 0.85, 1.0) (0.003, 0.005, 0.006, 0.007, 0.010) 0.67 0.33 0 0.927

1 16 0.2 n/a n/a 1.00 0 0 n/a

2 16 0.2 (0.25, 1.0) (0.016, 0.044) 1.00 0 0 0.923

3 16 0.2 (0.25, 0.5, 1.0) (0.022, 0.045, 0.052) 0.23 0.77 0 0.713

0.2 (0.25, 0.75, 1.5) (0.019, 0.050, 0.061) 1.00 0 0 0.837

0.5 (0.25, 0.5, 1.0) (0.014, 0.022, 0.037) 1.00 0 0 0.861

3 32 0.2 (0.25, 0.5, 1.0) (0.018, 0.026, 0.038) 0.89 0.11 0 0.817

D measures the simulated pairwise sequence divergence (expected substitutions/nucleotide site); s, standard deviation (averaged over replicates) of estimated rates
from the generating values; Pm , the proportion of simulations for which the correct number of rate classes are inferred; Pu , the proportion of simulations which are
under-fitted, Po , the proportion of simulations which are over-fitted, and Pc , the mean Rand C-statistic [35] between rate clusters in the generating model and that in
the inferred models.
doi:10.1371/journal.pcbi.1000885.t002
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Any norm on the standard 75{dimension real valued vector

space can be used, but for the purposes of this paper we consider

the L2 norm, and the corresponding induced Euclidean distance

metric.

Implementation
All models and data sets utilized in this study are implemented

as scripts in the HyPhy Batch Language (HBL), and are be

available with the current source release of HyPhy [32]. In

addition, we have made the GA codon model selector available as

an analysis option at http://www.datamonkey.org [46]. The GA

model selection code requires an MPI cluster environment with

typical runtimes of approximately 36–48 hours for an intermedi-

ate-sized alignment (50 taxa) and 32 compute nodes.

Results

Power and accuracy analysis on simulated data
Results from both two- and multi-taxon simulations (Table 2,

Figure 1) indicated that mBIC controlled the rates of overfitting,

defined as the proportion of replicates that overestimated the

number of rate classes K , Po. For null (single-rate model)

simulations (K~1), false positive rates were 0:01 for two-taxon

simulations and v0:01 for 16-taxon simulation. Neither two- nor

multi-taxon simulations showed over-fitting across any simulation

scenarios (Table 2). We deliberately designed the procedure to be

conservative, since over-fitting is a major concern in statistical

model selection. The power to select the correct number of rate

classes K (Pm) behaved as expected: increasing, and eventually

reaching 100%, given sufficiently divergent sequences and well

resolved rate classes (Table 2). Indeed, the limited information

content of alignments where simulated rate classes are similar (i.e 3

rates of 0:25, 0:35, 0:5), and/or where pairwise sequence

divergence is low (0.2), was evident as increased model under-

fitting (Table 2), Pu. Model under-fitting was substantially reduced

when information content was increased, either by boosting the

disparity in rate classes, or by elevating sequence divergence and/

or number of taxa (Table 2). Further evidence that the GA

procedure has high power is provided by the positive association of

the difference between mBIC scores of the correct model with K
rates, and one with K-1 rates, and separation between simulated

rates, pairwise sequence divergence or number of taxa (Table S1).

The ability to assign individual rates to the correct group (as

measured by the Rand statistic) was similarly improved, while the

variance in numerical rate parameter estimates decreased, for

more divergent sequences and rate classes, suggesting that the GA

search procedure recaptures most of the rate class structure, given

sufficient information.

Empirical data analysis
We compared the fit of 6 codon substitution models (Table 1) on

11 empirical data sets (Table 3), spanning a range of proteins,

taxonomic groups and divergence levels, using the BIC to measure

goodness-of-fit. Using the GA procedure, we inferred distinct multi-

rate models from 7 of these data sets (labelled with asterisks in

Table 3). The remaining 4 alignments were used for validation such

that we could determine the generalizability of two of the GA-fitted

models (HIV and IAV) to other alignments from the same

taxonomic groups. In 5 cases, the GA model outperforms every

other model (often by a large margin), and in 2 cases it comes in

second after the parameter rich REV model (Table 4). Note that

the GA model outperforms REV in all 7 cases under the more

conservative mBIC criterion (which was used to inform the GA).

Data set specific GA models consistently fit the data better than

state-of-the-art empirical (ECM) and mechanistic (LCAP) models.

An intuitive understanding of the model selection process via

the GA may be gained by thinking of it as a non-linear curve

fitting problem, where the ‘‘true’’ curve is the unobserved dis-

tribution of biological substitution rates (Figure 2). We consider the

61|61 substitution rate matrix for a codon model, extract non-

Table 3. Empirical data set characteristics.

source Taxon Gene # taxa # sites D K Ck

Pandit/Pfam (PF03477)* Multiple ATP cone 72 312 66.6{ 5 (0.007, 0.036, 0.144, 0.341, 3.108)

Pandit/Pfam (PF06455)* Multiple NADH5 C 82 552 1.68 4 (0.043, 0.208, 0.456, 0.910)

Pandit/Pfam (PF02780)* Multiple Transketolase C 83 393 3.00 6 (0.002, 0.033, 0.094,

0.268, 0.678, 4.744)

[38]* Vertebrate Rhodopsin 38 990 0.44 4 (0.018, 0.116, 0.371, 0.724)

[18] Yeast Pyruvate kinase 16 1389 0.51 4 (0.024, 0.093, 0.226, 0.608)

(YAL038W)*

NCBI* HIV-1 group M pol 142 2847 0.15 7 (0.047, 0.114, 0.211, 0.350,

0.532, 0.998, 1.562)

[39] HIV-1 subtype B pol 371 1497 0.06 n/a n/a

[40] HIV-1 subtype C pol 348 1170 0.09 n/a n/a

NCBI* Seasonal IAV HA 349 987 0.09 3 (0.350, 1.211, 3.287)

NCBI IAV A H5N1 HA 279 1545 0.04 n/a n/a

[41] IAV A H3N2 HA 68 987 0.02 n/a n/a

D is mean pairwise nucleotide divergence (substitutions/site, estimated under the single rate codon model), K is the number of rates estimated in the GA, Ck are the
maximum likelihood estimates for the rates.
*Reference alignments for which GA models were estimated. All GA results presented are for the model with best mBIC.
{ATP cone is comprised of highly divergent sequences, with only 22% average pairwise amino-acid identity; synonymous rates appear to be saturated.
doi:10.1371/journal.pcbi.1000885.t003
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synonymous rates for the 196 above-diagonal entries which

correspond to one-step non-synonymous substitutions and rank

them in an increasing order to obtain monotonically increasing

rate curves as shown in (Figure 2). Note that because the ratios for

all substitutions between the same pair of amino-acids (of which

there are 75 pairs) are identical, this will create steps in such

curves. In the case of one non-synonymous substitution rate (SR)

the curve is a flat line at the estimated average non-synonymous

substitution rate across all residue pairs. This is easily improved on

by a random model which assigns non-synonymous substitutions

randomly to one of 5 rate classes. At the other extreme lies the

general time reversible models with 75 estimated rates. Since we

have no a priori reason to believe that any two non-synonymous

substitution rates will be exactly the same, REV is the most

biologically realistic of the models which assume time-reversibility

and only single nucleotide substitutions. However, fitting the

parameter rich REV model to limited data is statistically unsound.

The GA-approach, instead, searches for the best (in an infor-

mation theoretic sense) step-wise smoothing of the biological

distribution given the data available (Figure 2).

The ‘‘generalist’’ ECM model sacrifices gene-level resolution, in

some cases so dramatically that it underperforms the single-rate

model, even with the correction factor v (Table 4). For instance,

ECM appears to be ill suited for the analysis of viral genes. LCAP,

on the other hand, performs poorly for highly divergent data sets;

indeed the original validation of LCAP took place on relatively

closely related yeast species [18], and the mechanistic properties

assumed by the model may be insufficient in alignments spanning

multiple genera and taxonomic groups. To test whether GA

structured models are generalizable, we estimated two viral

Figure 2. Evolutionary rate estimation as ‘‘curve fitting.’’ An example from HIV-1 polymerase gene alignment for which the GA inferred 7
non-synonymous rate classes. The idealized biological rate distribution (unobservable) is depicted by the dashed line. The goodness of fit, the
complexity of the models, and the range of maximum likelihood parameter estimates are listed in the table.
doi:10.1371/journal.pcbi.1000885.g002

Table 4. Comparison of empirical model fits using BIC.

S+F61 ECM+F61 ECM+F61+v LCAP+F61 GAs+F61 REV+F61

ATP cone* 42176.4 (5) 41563.4 (3) 41329.6 (2) 49049 (6) 41214.6 (1) 41831.6 (4)

NADH5 C* 69057.9 (3) 69148.1 (5) 69099 (4) 72329.4 (6) 68086.3 (2) 67211.8 (1)

Transketolase C* 63509.4 (5) 61436.2 (2) 61443.7 (3) 67819.7 (6) 61227.8 (1) 61469.4 (4)

Rhodopsin * 27918.7 (5) 28583.3 (6) 27769.6 (3) 27614.7 (2) 27322.7 (1) 27781.3 (4)

Yeast Protein YAL038W* 21219.1 (5) 22246.1 (6) 20988.8 (2) 21098.2 (3) 20822.7 (1) 21142.7 (4)

HIV-1 pol Group M* 148650 (4) 158788 (6) 156792 (5) 146381 (3) 145338 (2) 145209 (1)

HIV-1 pol subtype B 113583 (4) 119721 (6) 119196 (5) 111249 (3) 108251 (1) 110113 (2)

HIV-1 pol subtype C 127143 (4) 134719 (6) 133794 (5) 125407 (3) 124434 (2) 123346 (1)

Influenza A HA* 17803.9 (3) 19479.7 (6) 18883.3 (5) 17750.6 (2) 17558.8 (1) 18110.3 (4)

Influenza A HA H5N1 28326.2 (1) 28987.1 (6) 28911.7 (5) 28382.8 (3) 28347.2 (2) 28904.2 (4)

Influenza A HA H3N2 7527.03 (1) 7649.29 (4) 7658.29 (5) 7562.29 (3) 7546.24 (2) 8096.39 (6)

The best model (with smallest BIC) is shown in boldface and the rank of each model is provided in parentheses.
*Reference alignments from which GA models were estimated.
doi:10.1371/journal.pcbi.1000885.t004
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models: one for HIV-1 polymerase and one for human IAV

hemagglutinin. We then applied each of these models (holding the

inferred class structure fixed) to two additional samples of

sequences from the same gene, obtained independently from the

training sample. In all 4 cases GAs outperformed ECM, ECM+v
and LCAP by wide margins, lending credence to the claim that

data-driven structured models recover substitutional biases that

are shared by other samples shaped by similar evolutionary

parameters. Curiously, for very low divergence (and low infor-

mation content) intra-serotype IAV alignments, the single rate

model was preferred to all other models by BIC, suggesting that

there are biologically interesting alignments, which do not contain

sufficient amino-acid variability to indicate the use of a multi-rate

model.

As a test of protein-specificity of GAs models, we randomly

selected four Pandit data sets to assess how well GAs models

inferred from unrelated proteins fitted these data (Table S2). Not

surprisingly, ECM was the best model in 3=4 cases, because it was

derived as the best ‘‘average’’ protein model. LCAP topped the list

in one case, but placed outside the top three in the other three

cases. The GA structured models, being tailored to specific

proteins, tended to differ from each other (Table S3) and did not

perform well on proteins from different families. However, the GA

structured models for ATP cone and Transketolase C did

outperform the LCAP model in 3=4 cases, which suggests some

similarity between the respective protein families in those cases.

This indicates the GA models fitted to different proteins may be

generalizable, with the degree limited by taxonomy, protein

function or both. The generalizability of GA models could further

be quantified by evolutionary fingerprinting of genes [27]; see also

Figure 3(b).

Further analysis of GA multi-rate models
A GA search run typically examines between two- and a

hundred-thousand potential models, e.g. 28770 models with 1 to 8
rate classes for the HIV-1 group M pol dataset. GAs, which we

compared to existing models in the previous section, is simply the

single ‘‘best’’ model, i.e. the model that minimized the mBIC
criterion among all those examined during the run. Further, we

estimate the credible set of models as those models whose evidence

ratio versus the best model is sufficiently large (see methods).

Among 28770 models fitted to HIV-1 pol by the GA, 567
belonged to the credible set. Given sufficient data and knowing

that the true model is in the set examined by the GA, e.g. in the

long 2-sequence simulations discussed above, the size of the

credible set frequently shrinks to 1 (the true model). These

structured (GAs) and model-averaged (GAr) models can be

analyzed further to draw inferences of the substitution process.

For instance, the structured GAs model identifies which residue

pairs are exchanged rarely, relative to the baseline synonymous

rate. In Figures 4 and 5 we cluster the pairs of residues which have

the same rate of non-synonymous substitution; residues are

labelled by Stanfel class and physicochemical properties. Note

that the same residue can be present as a node in multiple clusters

because the GA partitions residue pairs (i.e. the rates between

them), not the residues themselves. The model reveals a startling

heterogeneity of substitution rates in HIV-1 pol: the single rate

dN=dS estimate of 0:15 is resolved into 7 rate classes (Figure 4),

with relative non-synonymous substitution rates ranging from

0:047 (20 residue pairs) to 1:561 (3 residue pairs); a similar range is

revealed for other datasets (Table 3). It is remarkable that some of

the non-synonymous substitutions occur at rates matching or

exceeding the gene-average rate of synonymous substitutions. This

can be interpreted, for instance, as lack of selective constraint on

particular residue substitutions gene-wide, or evidence of direc-

tional selection when some residues are preferentially replaced

with others. Regardless of how this result is interpreted, a

remarkable complexity of substitution patterns is revealed by the

analysis. We hypothesize that such patterns reflect complex

dynamics of substitutional preferences that may be shared by

multiple samples of the same genes. This hypothesis is supported

(by the goodness-of-fit of GAs vs other models) on HIV-1 and IAV

samples in this study (Table 4), and we are currently undertaking

the GA analysis of several thousand alignments to confirm this

finding.

One of the benefits of using the GAs model instead of REV or

other models is that the former model automatically classifies all

substitutions into similarity groups, supplying a data-driven analog

of ‘‘conservative’’ or ‘‘radical’’ substitutions, previously defined a

priori based on chemical properties of the residues, or a more

sophisticated multi-property basis defined in the LCAP model. For

example, the 75 substitution rates are partitioned into seven classes

in the GAs model inferred from HIV-1 pol, and into 4 rate classes

Figure 3. Neighbor-joining [57] trees built from matrices of pairwise substitution spectrum distances (Eq. 2) computed between
different models fitted to the HIV-1 group M pol alignment, and between GAs models inferred from different alignments.
doi:10.1371/journal.pcbi.1000885.g003
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for the GAs model fitted to a smaller, but more divergent

vertebrate rhodopsin alignment (Figure 5).

Multi-model inference is instrumental in assessing how robust

the clustering assignment made by GAs is. In Figures 4 and 5, we

present this information by labeling individual substitution rates

with their model averaged values. An examination of the

numerical differences between rate estimates (for a particular

amino-acid pair) obtained under GAs and GAr can reveal

ambiguities in assigning a particular rate to a class. More formally,

we can compute a model averaged support for the probability that

rates R1<R2 and R3<R4 (for residues R1=R2, R3=R4) are in

the same class, as described above, or that the corresponding edges

e12 and e34 are in the same component of the rate graph (Figure 4).

If C is a cluster defined by G As (with the number of nodes in C,

DCD§2), we define the cluster affinity of an edge e [ C as the mean of

the model averaged estimates of the probabilities that edge e and

other edges in C belong to the same cluster:

A(e, C)~(DCD{1){1
X

h[C

h=e

Prfh and e cluster togetherg

If A(e, C) is below a certain threshold, for instance 0:5 for

majority rule, then cluster membership of edge e is ambiguous. For

example, the S<Y substitution pair with a model-averaged non-

synonymous rate of 0:16 is one of two rate pairs with low (v50%)

cluster affinity for HIV-1 (Figure 4). Two of the inferred GAs rate

classes have non-synonymous rates of 0:113 and 0:212, respec-

tively, and the placement of model-averaged rate for S<Y
between the two values is indicative of the alternate assignment of

this substitution pair to these two rate classes among models of the

credible set. A larger training data set may be able to infer an

additional intermediate rate class between 0:113 and 0:212. While

GAr yields more robust numeric estimates of substitution rates for

a single data set, GAs has better BIC fit on validation HIV and

IAV alignments (results not shown).

The relationship between substitution rates and residue
properties

The expectation that substitutions which preserve amino acid

physicochemical properties occur at a lower rate than property-

altering substitutions has previously been evaluated in the

maximum likelihood codon model context [20,47]. However, in

published work, property-altering and property-conserving amino

acid classes are defined a priori, whereas in the GA approach amino

acid substitution pairs are first partitioned into classes based on

rate similarity, and thereafter property preserving versus property-

altering rates can be compared. The increased substitution rate of

property preserving substitutions, holds largely – but not

universally – for GAs and GAr rates, as evidenced in Figures 6

and 7. For example, in the vertebrate rhodopsin sample, the

median rate of charge-changing substitutions is significantly lower

than the charge-preserving substitutions, but the two medians are

not significantly different in the HIV-1 pol sample. The rates

were negatively correlated (pv0:05, one-sided Pearson product

moment test, no multiple test correction) with 4 out of 5 property-

based distances (polarity, volume, isoelectric point and hydropa-

thy) that form the basis of the LCAP model. However, while the

broad pattern follows the expectation, the consistently better fit of

GA-based models, and the presence of strong outliers, such as

H<Q and M<R in the 0:532 cluster of HIV-1 rates (Figure 4),

suggests that our data driven approach detects significant

deviations from purely biochemical rate expectation. These

deviations could be attributed to selective pressures which promote

property changes, or could arise because not all biologically

relevant important properties have been included into structured

models.

One benefit of our approach over the ‘‘amino acid class’’

models [20,47] is that transitivity of rates (i.e. the requirement that

if X<Y , and Y<Z are in the same rate class, then so is X<Z) is

not enforced by the GA models. Because we focus on modeling

single-nucleotide substitution rates only, the structure of the

genetic code itself contradicts transitivity. For instance both E
(encoded by GAR) < G(GGN) and G<R(AGR) are one-step

substitutions, but E?R is not. Further, since amino acid class

models only estimate two non-synonymous rates (within and

between classes), it is a necessary condition that non-synonymous

rates which change amino acid property be shared irrespective of

how much the property is being changed. For instance,

substitution rates which change charge from negative to positive

will be the same as those which change charge from negative/

positive to uncharged. If amino acid substitutions that result in a

positive charge are favored, then these transitive conditions are not

representative of the substitution process. Furthermore, the amino

acid class models assume all substitutions within classes occur at

the same rate. This is a very strong assumption since some amino

acids with the same physicochemical property class are separated

by more than one nucleotide substitution, e.g. positively charged

amino acids H(CAY ) and K(AAR). Although we do not account

for multiple nucleotide substitutions in the GA model directly (but

see below), previous work has demonstrated that these occur at

lower rates than single-nucleotide substitutions [9,10,48].

Model clustering
Using the substitution spectrum distance defined in Equation

(2), it is easy to construct a hierarchical clustering of several models

fitted to the same dataset, as well as between models fitted to

different datasets. The former is useful to interpret how much

difference in predicted substitution patterns over a unit of

evolutionary time there is between different descriptions of the

same data, whilst the latter naturally extends the concept of

evolutionary fingerprinting of non-homologous genes [27]. For

HIV-1 pol (Figure 3), GAs and GAr models both clustered closely

with the rate substitution pattern predicted by the REV model,

followed by LCAP, ECM+F+v, and finally – distant single rate

models. The similarity between REV and GA models was

especially strong for the MG parameterization, under which the

GA models were inferred. In a between-genes model comparison

(Figure 3), the two viral alignments clustered together, as did the

two most divergent alignments (ATP-cone and Transketolase C).

Effects of substitution models on statistical inference
Statistical inference procedures based on phylogenetic models

have varying degrees of robustness with respect to the substitution

rate matrix used in the analysis. For a multi-rate model, it is

Figure 4. Evolutionary rate clusters in structured GA models (GAs) inferred from the HIV-1 group M pol alignment. Each cluster is
labeled with the maximum likelihood estimate of its rate inferred under GAs. The residues (nodes) are annotated by their biochemical properties and
Stanfel class, and the rates (edges) are labeled with model-averaged (GAr) rate estimates. The style of an edge is determined by its cluster affinity,
where high cluster affinities indicate that a large proportion of models in the credible set were consistent with the structured GAs model.
doi:10.1371/journal.pcbi.1000885.g004
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intuitively clear that the types of inference that rely on ‘‘mean’’

rates should be minimally affected, whereas those that depend on

the individual residue rates can be affected significantly. We

examine several such measures inferred from two of the datasets in

this study.

Branch length estimates are essentially unchanged when moving

from the single-rate (SR) model to a GAs model. On the example

HIV-1 pol dataset, the total tree length changed from to 5:29 (SR)

expected substitutions/nucleotide to 5:41 (GAs), and the lengths of

individual branches were nearly perfectly linearly correlated with

Figure 5. Evolutionary rate clusters in structured GA models (GAs) inferred from the vertebrate rhodopsin protein alignment. Each
cluster is labeled with the maximum likelihood estimate of its rate inferred under GAs. The residues (nodes) are annotated by their biochemical
properties and Stanfel class, and the rates (edges) are labeled with model-averaged (GAr) rate estimates. The style of an edge is determined by its
cluster affinity, where high cluster affinities indicate that a large proportion of models in the credible set were consistent with the structured GAs

model.
doi:10.1371/journal.pcbi.1000885.g005

Figure 6. Correlations of lower substitution rates and property preservation in the HIV-1 group M pol alignment. Model-averaged GAr

rates were stratified by whether or not they involved a change in polarity, charge or Stanfel class, the medians of two rate distributions were
compared using a one sided Wilcoxon rank-sum test. We further correlated the magnitude of substitution rates with one of five property-based
distances between the corresponding residues (defined in [18]) using a one-sided (negative correlation) Pearson product-moment correlation test.
doi:10.1371/journal.pcbi.1000885.g006
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linear regression slope of 0:97, intercept of 0:0002 and

R2~0:9996.

Ancestral character reconstruction is considerably more sensi-

tive to the substitution model. In the vertebrate rhodopsin data set,

for example, the joint maximum likelihood ancestral reconstruc-

tion [49] under SR and GAs models differed in the number of

inferred non-synonymous substitutions at 10=330 sites, with more

non-synonymous substitutions in 7 cases under GAs. At 20=330
sites substitutions were mapped to a different set of branches.

Site-specific diversifying selection screens are likely to be

profoundly affected by a switch from single- to multi-rate models.

Consider the FEL method [50], where the SR model is fitted site-

by-site and a likelihood ratio test (LRT) is used to test whether

v=1. First, because GAs defines multiple substitution classes, one

can now apply a variety of tests to see which non-synonymous rates

at a given site exceed the baseline synonymous rate. To explore

this approach for a 4{rate GAs multi-class model applied to the

vertebrate rhodopsin alignment, we performed 4 LRT tests, where

we independently constrained each non-synonymous rate param-

eter (Ck, k~1 . . . 4, Table 1) to be equal to 1 at a site (neutral

evolution in class k), vs an unconstrained 4{parameter alter-

native. This is analogous to performing a test for selection at a site

by constraining the non-synonymous rate to be equal to the

synonymous rate, and comparing the fit to the unconstrained

model (FEL), except that we only place the constraint on one rate

class at a time. At p~0:05, the standard (SR) FEL reported 1=330

Figure 7. Correlations of lower substitution rates and property preservation in the vertebrate rhodopsin alignment. Model-averaged
GAr rates were stratified by whether or not they involved a change in polarity, charge or Stanfel class, the medians of two rate distributions were
compared using a one sided Wilcoxon rank-sum test. We further correlated the magnitude of substitution rates with one of five property-based
distances between the corresponding residues (defined in [18]) using a one-sided (negative correlation) Pearson product-moment correlation test.
doi:10.1371/journal.pcbi.1000885.g007

Codon Model Selection

PLoS Computational Biology | www.ploscompbiol.org 14 August 2010 | Volume 6 | Issue 8 | e1000885



(codon 54) sites as being under diversifying selection (positively

selected). However, for the GAs model, there were 0, 1, 8 and 8
positively selected sites for the four substitution classes (Figure 5,

increasing rate magnitude), respectively at the Bonferroni

corrected p of 0:0125. Codon 54 was selected only with the

fastest rate class (r~0:72), because the signal of selection is driven

by a large number of I<V substitutions. Only one codon (198)

was selected with two or more different tests (rate classes 0:116 and

0:72).

The effect of site-to-site rate variation
We remark that the effects of site-to-site rate variation and

multiple non-synonymous rates appear to be largely additive, and

not confounded. This is a critical observation: if the effects are

confounded, then we cannot justify inferring the multi-rate model

independently assuming no site-to-site rate variation, as is done in

this manuscript for computational expedience. To illustrate, we

fitted both a constant rate model and the general bivariate

distribution [27], with and without accounting for multiple non-

synonymous rate classes (Table 5). The constant rate model

assumes all sites share the same rate of substitution, whereas a

general bivariate distribution infers the number of site-to-site

variation classes from the data [27]. These models were fitted to

the vertebrate rhodopsin alignment, which exhibits extensive site

to site rate heterogeneity. The GAs inferred 4 non-synonymous

rate classes for the rhodopsin alignment, whereas the single v has

one, resulting in three degrees of freedom for the comparison of

these models. When the general bivariate model was fitted with a

single v or GAs, 6 and 7 site classes were inferred, respectively,

resulting in 4 degrees of freedom for the comparison of single v
and GAs models (3 rate and 1 site class are added to the GAs

model). The important observation is that the addition of site-to-

site rate variation component resulted in a significant improve-

ment in log likelihood scores, regardless of the underlying

substitution model (single v or GAs). This suggests that by

allowing multiple rate classes, we are not merely fitting variability

in site-to-site selective constraints. However, as the cost of

computing cores in clusters decreases, we expect that it will

become practical to infer GAs models with the site-to-site rate

variation component included directly in the search procedure.

The effect of allowing multiple instantaneous nucleotide
substitutions

Recent extensions of codon models which permit multiple

instantaneous nucleotide substitutions [9,10,48] tend to fit the data

better than their traditionally parameterized counterparts. We

explored whether this observation held for GAs models using a

straightforward extension of the rate matrix in Equation (1),

following the ideas of [9]. We introduce four new independently

estimated parameters to model the relative rates of synonymous

(a2, a3) and non-synonymous (b2, b3) substitutions which replace

two or three nucleotides, and modulate them by the product of the

corresponding nucleotide rates hij and the target codon frequency

p (assuming the GY parameterization with the F61 estimator). For

instance the rate of synonymous substitution (Serine) from AGT to

TCT is a2hAT hCGpTCT , while the rate of non-synonymous

substitution AAA?CCC (Lysine to Proline) is b3h3
ACpCCC .

Table 6 summarizes the effect of adding multi-step substitutions

to SR and GAs models for the vertebrate rhodopsin alignment.

Much as was the case for site-to-site rate variation, the effects of

multiple single-step non-synonymous rates and the non-zero rates

of two or three nucleotide substitutions are additive at the log L
level, and the estimates of single-step substitution rates were

minimally influenced by the presence of the multi-step component

(results not shown). The GAs model augmented to allow multi-step

substitutions can be directly compared to the Mechanistic-

Empirical codon (MEC) model [9] coupled with the LG

[51]empirical amino-acid substitution model (selected as the best

fitting empirical model using the procedure implemented on

http://www.datamonkey.org. Assuming no site-to-site rate varia-

tion, BIC of the MEC model is 27393:4, while that of the

GAs+multi-step model using the HKY85 nucleotide component (a

direct analog to the MEC model) is 26800:6, once again

highlighting how strongly the substitution process in an individual

gene appears to deviate from the ‘‘average’’ encoded by empirical

protein models.

The GA could be modified to search for optimal partitions

among all 190 pairs of rates, for example using the above

parameterization, but as the rhodopsin example indicates, the

single-step and multi-step rate rate components appear to be

effectively independent. We will explore this option in future

versions of the model selection GA.

Discussion

In this manuscript we have developed, validated and bench-

marked a procedure to quickly and reliably infer a multi-rate

model from the combinatorially large class of general time-

reversible codon substitution models. Using extensive simulations,

we demonstrated that our conservative mBIC model selection

criterion controls over-fitting and has excellent power on data sets

of biologically realistic size, inferring the exact model simulated

given sufficient sequence divergence and length. We have

previously argued against using the single rate model as a

Table 5. The effects of modeling site-to-site rate variation
and multiple non-synonymous rates in the vertebrate
rhodopsin alignment using the MG frequency
parameterization.

Single v GAs (+3 df) D log L

Constant rates 213382.6 212954.2 428.4

General bivariate rates (+4 df) 212780.8 212500.4 280.4

D log L 601.8 453.8

The entry for joint effect was obtained by running the general bivariate model
fit using the GAs model obtained under the assumption of constant site-to-site
rates. df = degrees of freedom.
doi:10.1371/journal.pcbi.1000885.t005

Table 6. The effects of modeling multi-nucleotide
instantaneous substitutions and multiple non-synonymous
rates in the vertebrate rhodopsin alignment using the F61
frequency parameterization.

Single v GAs (+3 df) D log L

Single-nucleotide substitutions only 213317.6 213005.5 312.1

Single and multi-nucleotide
substitutions (+4 df)

213033.4 212712.5 320.9

D log L 284.2 293

The entry for joint effect was obtained by augmenting the GAs model with
non-zero rates for substitutions requiring two or three nucleotide changes.
df = degrees of freedom.
doi:10.1371/journal.pcbi.1000885.t006
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benchmark against which multi-rate models should be compared,

since it is trivial to improve upon using a random assignment of

substitutions to rate classes [19]. We reiterate this argument here,

and suggest we should rather consider how well a multi-rate model

approximates the REV model (Figure 2), given the limitations

posed by the information content in an alignment. On a diverse

collection of biological data, GAs models consistently outperform

the best-in-class empirical and mechanistic models, and match the

performance of fully parameterized general time reversible models

with only a few biologically relevant rate parameters (Table 4).

Therefore, the GAs provides goodness of fit matching or exceeding

that of REV, with substantially fewer parameters and is thus

computationally and statistically feasible for downstream analyses.

ModelTest [22] has been universally adopted to mitigate the

effect of model misspecification on statistical inference from

nucleotide data, and we posit that a robust codon model selection

procedure, for example the one offered in this paper, will play a

similar role for codon data. In the same vein as ModelTest, we

infer the best model (which we term the GAs) for an alignment,

and also utilize model averaging [26] to achieve more robust

estimates of biologically relevant parameters. Certain applications

of codon models, such as divergence estimation, appear unaffected

by the gross biological over-simplification of single-rate models,

because they are only influenced by the mean of substitution rates.

Others, including ancestral sequence reconstruction (e.g. for

guided site directed mutagenesis, [38]), substitution mapping

(e.g. for co-evolutionary analysis, [52]) and character sampling

(e.g. for data augmentation modeling approaches, [53]) can see

moderate effects. Applications which are tightly integrated with

the substitution model and the interpretation of its parameters,

such as site-by-site positive selection detection (e.g. [50,54]), will be

profoundly affected by the introduction of multiple rates. Our

results strongly argue against the prospect of deriving a single

‘‘generalist’’ model of codon evolution, that is capable of fitting

most protein alignments well. Hence we should strive to fit both

gene and taxonomy specific models of codon evolution. We

further hypothesize that independent alignments representing a

gene or a protein family will share most of the model structure and

confirm this with HIV-1 polymerase and Influenza A virus

hemagglutinin examples. While significant further validation is

required and is currently underway, we assert that a collection of

substitution models inferred from carefully selected training

datasets can provide a useful library of organism and gene-specific

models to be used in inference on codon sequences. This is

conceptually similar to a library of Hidden Markov profile models,

inferred from seed alignments, used for detecting protein domain

homology in the Pfam database [55]. In order to facilitate the

process of generating gene and taxonomic specific multi-rate

codon models we have implemented the GA on our free analysis

webserver (http://www.datamonkey.org, [46]), and have begun to

assemble a library of representative multi-rate substitution models

that are needed to reduce biases in those procedures that are

sensitive to model misspecification.

The inference of the multi-rate codon models should be

considered more than just a necessary step for downstream

applications. By examining the structure of inferred rate classes,

we argue that the GA captures the a priori expectation that radical

changes in one or more biochemical properties of a residue

happen relatively infrequently, but also that a mere reliance on

such data-abstract mechanistic properties misses out important

gene and organism specific peculiarities of the evolutionary

process. For instance the elevation of substitution rates between

amino acids that do not preserve physicochemical properties may

be indicative of selective pressures which promote property

changes. These selective pressures are of crucial importance in

understanding evolution in viruses, such as HIV-1, known to

evade host immune response [56]. We anticipate that considering

specific substitution types when estimating selective pressures will

improve power, as demonstrated with our multi-rate FEL analysis

of vertebrate rhodopsin. However, this may also increase the rate

of false positives, a conjecture that can be evaluated with

straightforward, but laborious simulations.

Finally, we demonstrate how simple metrics on GAs models

inferred from different (e.g. non-homologous) alignments can be

used to obtain an objective measure of similarity and disparity in

substitutional preferences in different proteins and thus improve

the resolution in evolutionary fingerprinting of genes [27].

Supporting Information

Table S1 Difference in mean (standard deviation) model mBIC

scores for multi-taxon simulations. D is the average pairwise

divergence; mBICn is the difference in model mBIC score between

the model with n21 rates and a more complex with n rates; P is the

proportion of correctly identified models for 100 simulations.

Positive mBIC scores indicate preference for the more complex

model with n rates, i.e. mBICn = mBICn212mBICn.

Found at: doi:10.1371/journal.pcbi.1000885.s001 (0.04 MB PDF)

Table S2 Randomly selected Pandit data model comparisons

using BIC. In each case we fitted the ECM, LCAP and GAs models

to each of four randomly selected Pandit datasets. Model ranks

(BIC/difference in BIC score relative to the best model) are

shown.

Found at: doi:10.1371/journal.pcbi.1000885.s002 (0.03 MB PDF)

Table S3 Qualitative comparison of structured GA models.

Found at: doi:10.1371/journal.pcbi.1000885.s003 (0.02 MB PDF)
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