Skip to main content
. 2010 Aug 19;6(8):e1001064. doi: 10.1371/journal.pgen.1001064

Figure 3. Olfactory expression of IRs in Aplysia molluscs.

Figure 3

(A) Top: Schematic representation of Aplysia, illustrating the location of selected sensory, neuronal and reproductive tissues used for RNA isolation and RT-PCR (adapted from [21]). The central nervous system samples comprised pooled cerebral, pleural, buccal, pedal and abdominal ganglia. The skin samples were taken from the side of the head. Bottom: RT-PCR analysis of Aplysia IR gene expression from the indicated species and tissues. Only rhinophores from A. californica (Acal) were tested due to limited availability of animals, while rhinophore and other tissues were examined for the closely related species A. dactylomela (Adac) [92]. Nucleotide sequence identity of IR orthologues between these species is >85%. Control RT-PCR corresponds to β-actin. (B) Schematic of Aplysia rhinophore showing the approximate location of the field of views of the rhinophore groove olfactory tissue in (C–E). (C,D) RNA in situ hybridisation on A. dactylomela rhinophore sections using a digoxigenin-labelled antisense RNA probe for AdacIR25a. Micrographs reveal IR25a expression (blue) in small clusters of cells of a characteristic neuronal morphology close to the sensory epithelial surface. Higher magnifications of specific cellular staining (arrowhead) are shown in the insets. The scale bars represent 100 µm. (E) Control RNA in situ hybridisation on an A. dactylomela rhinophore section with a digoxigenin-labelled sense riboprobe for AdacIR25a. No signal is apparent. The scale bar represents 100 µm.