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Abstract

Variation in taste perception of different chemical substances is a well-known phenomenon in both humans and animals.
Recent advances in the understanding of sweet taste signaling have identified a number of proteins involved in this signal
transduction. We evaluated the hypothesis that sequence variations occurring in genes encoding taste signaling molecules can
influence sweet taste perception in humans. Our population consisted of unrelated individuals (n = 160) of Caucasian, African–
American, and Asian descent. Threshold and suprathreshold sensitivities of participants for sucrose were estimated using
a sorting test and signal detection analysis that produced cumulative R-index area under the curve (AUC) scores. Genetic
association analysis revealed significant correlation of sucrose AUC scores with genetic variation occurring in the GNAT3 gene
(single point P = 10�3 to 10�4), which encodes the taste-specific Ga protein subunit gustducin. Subsequent sequencing
identified additional GNAT3 variations having significant association with sucrose AUC scores. Collectively, GNAT3
polymorphisms explain 13% of the variation in sucrose perception. Our findings underscore the importance of common
genetic variants influencing human taste perception.
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Introduction

Humans display substantial variation in the perception of
natural and artificial chemical compounds for all known

taste modalities, including sweet, bitter, umami, and sour

tastes (Blakeslee and Salmon 1935; Breslin 2000; Kim

et al. 2003; Chen et al. 2009). Whereas the environment plays

a major role in determining individual differences in recog-

nition thresholds for saltiness (Wise et al. 2007), inherited

factors significantly contribute to the individual differences

in the perceived intensity for bitter substances (Hansen et al.
2006) and recognition thresholds for bitter and sour tastes

(Wise et al. 2007).

There are modest interindividual differences in the detec-

tion and recognition thresholds for sweeteners (Blakeslee

and Salmon 1935; Kahn 1951; Okoro et al. 2000). The re-

sponses to sugars including sucrose tend to be unimodally

distributed in the population (Blakeslee and Salmon 1935;

Fushan et al. 2009). Although studies of sweet food prefer-
ences have revealed heritable differences (Bretz et al. 2006,

Keskitalo et al. 2007), there have been no family studies pub-
lished regarding threshold and perceived intensity measures

of sweet perception, and Mendelian transmission has not

been reported for variation in sweet taste sensitivity. A pre-

vious population-based study using psychophysicalmeasures

revealed that genetic variants at the TAS1R3 locus are

strongly associated with sucrose perception (Fushan et al.

2009). However, these variants explain only 16% of the var-

iation in these measures, and thus, the impact of genetic fac-
tors in human sweet taste variation is not fully understood.

There are a number of reported observations that the phen-

ylthiocarbamide recognition thresholds are closely related

with taste detection and recognition thresholds for sucrose

(Hong et al. 2005; Chang et al. 2006). This could indicate

the existence of partially common mechanisms influencing

the threshold sensitivity variations for these substances be-

cause bitter and sweet taste signaling share common down-
stream pathways.
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Recent advances in the understanding of mammalian taste

transduction mechanisms have identified several signaling

molecules, including gustducin (a G-protein a subunit in-

volved in signal transduction of sweet, bitter, and umami

tastes), G-protein polypeptides beta 3 and gamma 13, phos-
pholipase C-b2, inositol triphosphate receptor, and, most

recently, the transient receptor potential–like channel M5

(TRPM5, Gilbertson et al. 2000; Margolskee 2002). Expres-

sion patterns of these proteins were shown to be predomi-

nantly restricted to the taste sensory epithelium (Zhang

et al. 2003). Thus, functional variations in these genes could

result in phenotypic variation mainly within the chemosen-

sory apparatus, whereas other organ systems would be un-
affected.

We evaluated the hypothesis that common genetic varia-

tions occurring in the genes encoding taste signaling mole-

cules can influence sweet taste perception in humans.

Nucleotide sequence variations at the following gene loci

were tested for the association with sucrose sensitivity:

GNG13 (16p13), GNB3 (12p13), PLC-b2 (15q15), ITPR3

(6p21), TRPM5 (11p15), and GNAT3 (7q21), along with
TAS1R1 (1p36), which encodes the umami-specific compo-

nent of the TAS1R1/TAS1R3 taste receptor (Li et al. 2002).

Materials and methods

Subjects

Participants were enrolled with written informed consent un-

der National Institutes of Health Combined Neuroscience

Institutional Review Board protocol 01-DC-0230 and con-

tained individuals (69 males and 91 females) who identified

themselves as Caucasian (n = 103), Asian (n = 41), or

African–American (n = 16). African–American individuals
had origins in the sub-Saharan racial groups of Africa.

Psychophysical measurements

Measurements of sensitivity to sucrose were performed as de-

scribed previously (Fushan et al. 2009). A series of prelimi-

nary trials empirically determined that solutions of 0,

0.5%, 1%, 2%, 2.4%, 2.8%, 3.2%, 3.6%, and 4% sucrose

(Sigma, dissolved in deionized water) produced the best dis-

crimination curves in a representative subpopulation of our

subjects. Each concentration is used to calculate a detection
threshold for a given sucrose interval (i.e., 0–0.5%, 0.5–1%,

etc.) (see Supplementary Methods for further details). Each

subject participated in 1 experiment that consisted of 6 rep-

lications performed over 3 sessions. Subjects were asked to

complete 2 replications of the ranking test per session with

a mandatory 5-min break between replications. Individual

sessions were separated by at least a 24-h period. Subjects

were presented with 20ml of each of the solutions in random-
ized order and could ask for more at any time during the ex-

periment. Panelistswere asked to sample eachof the solutions

and rank them in order from least tomost sweet. Tominimize

adaptation effects, subjects rinsed with water between each

sample.

Phenotype modeling

Data from the 6 replications were pooled for each subject.

For each pairwise sucrose concentration (0–0.5%, 0.5–1%,

etc.), the R-index (hereafter referred to as Rp-index; see

Supplementary Figure 1) was calculated as described in

O’Mahony et al. (1992). The Rp-index is simply the R-index

calculated between solutions p and p + 1; it ranges from 0.5
to 1 and reflects discrimination performance of a subject by

accounting for individual differences in decision-making

criteria. As such, it is an estimate of the magnitude of differ-

ence between 2 difficult to discriminate stimuli. Thus, the

higher theRp-index the greater the taste sensitivity as reflected

by better performance on a sweetness discrimination task.

Rp-indices were then used to derive the cumulative R-index

(Rc) by summing the Rp-indices derived at each concentration
step according to the equation below:

Rcj = 0:5 +
Xj

1

�
Rp – 0:5

�
;

where 0.5 = chance detection for comparing 0% sucrose

against itself and j {1, 2 . . . 8} and p = 1, 2, . . . j.
Rcj is a quantitative measure of ability to detect a signal in

a background of noise and across a number of different

intensities of the signal (after subtracting a chance level).
Rc reflects the cumulative sensitivity of a subject across

a given sucrose concentration range, and it can be used to

estimate the theoretical suprathreshold sensitivity at each

concentration across the range because it is derived from

the summing of the Rp calculated at each concentration in-

terval. For example, for the 2 given concentration intervals

(i.e., 0–0.5% and 0.5–1%), we can calculate 2 pairwise

R-indices, Rp1 and Rp2. Thus, the Rc-index for the second
interval will be (Rp1 – 0.5) + (Rp2 – 0.5). Because Rc is ob-

tained by summing Rp1 and Rp2, it also reflects a subject’s

ability to discriminate the 1% stimulus from 0%. For each

subject, all Rc-indices across the range were then plotted.

The format of the resulting graph is equivalent to a concen-

tration response curve with increasing sucrose concentra-

tions receiving larger Rc scores (see Supplementary Figure

1). The area under the Rc curve (AUC) was then calculated
for each individual. The AUC is a unitary measure of overall

discriminability across the full concentration range tested.

The AUC was used as the dependent variable for assessing

the association of genotype with phenotype.

Single nucleotide polymorphism marker selection

Our goal was to evaluate genes likely to be involved in the
human sweet taste transduction pathway, including discov-

ery of new functional polymorphisms and assessment of the

phenotypic impact of known variants. For selected genes, we
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first surveyed recent reviews for known polymorphisms re-

ported to be related to functional variations. In addition,

we searched the dbSNP database (www.ncbi.nlm.nih.gov/

sites/entrez?db=snp) for single nucleotide polymorphisms

(SNPs) in transcribed regions of these genes with minor allele
frequency (MAF) > 0.05, which allowed us to capture the

main haplotypes in these genes and to exclude rare geno-

types. Such SNPs from dbSNP were frequent and had been

validated in multiple research projects, such as the HapMap

project (www.hapmap.org). The following additional crite-

ria were used for selection of tag SNPs: location in untrans-

lated regions putatively important for gene regulation, exon/

intron boundaries which could be associated with multiple
messenger RNA (mRNA) isoforms producing exonic varia-

tions, or amino acid alterations in proteins.

Overall, 233 SNP markers were selected: 12 for TAS1R1,

30 for GNG13, 19 for GNB3, 10 for PLC-b2, 18 for ITPR3,

17 for TRPM5, and a total of 127 SNPs for the GNAT3 and

CD36 loci. Detailed description of these SNPs can be found

in Supplementary Tables 1–11.

Genotyping

SNPs were genotyped using the Applied Biosystem SNPlex

Technology using an Applied Biosystems 3130xl DNA An-

alyzer and the GeneMapper 4.0 software (Applied Biosys-

tems). Random individuals (n = 96) were genotyped in

duplicate to assess genotyping accuracy.

Quality control for individual genotyping

For quality control, the following sequential criteria were ap-

plied: SNPs were omitted from analysis if poor genotype

clusters prevented GeneMapper 4.0 (Applied Biosystems)

software from making calls. For each SNP, low peak height

genotypes (<25% of the average peak height) were removed

because poor-quality samples often exhibit high background

that SNPlex can mistake as heterozygotes. It is important to
control for this as an excess of heterozygotes will artificially

inflate the type-I error rate in Hardy–Weinberg equilibrium

(HWE) tests. Any SNPs with less than 95% of the samples

auto-called by the software were then either rescored man-

ually or discarded if clustering confidence was low. Only gen-

otypes with a GeneMapper Quality Score greater than 98%

were subsequently used for analysis. In the DNA samples in

this study, the call rate was 99%, the reproducibility rate was
100%, and the concordance rate was 99.8%. Reproducibility

was determined by comparing blinded replicates on plates

and by rerunning entire plates.

SNP imputation

Imputation of additional SNP markers was done for each

subject population using information on SNP variations
in the HapMap samples (HapMap release 23) to infer miss-

ing genotypes ‘‘in silico.’’ HapMap data were used from the

following 4 human populations: Centre d’Etude du Poly-

morphisme Humain (Utah residents with ancestry from

northern and western Europe) (CEU, 90 samples), Japanese

in Tokyo, Japan (JPT, 45 samples), Han Chinese in Beijing,

China (CHB, 45 samples), and Yoruba in Ibadan, Nigeria

(YRI, 90 samples). Imputation of additional SNP markers
was done for each subject population using genetic variation

data from the corresponding HapMap population: CEU

genetic variation data set for the Caucasian subject popula-

tion, combined JPT and CHB genetic variation data set for

the Asian subject population, andYRI genetic variation data

set for the African–American subjects.

Model parameters were estimated using MACH v1.0.15

(Li et al. 2009), prioritized for high call rate (>99%) and ab-
sence of deviations fromHWE (P> 0.001), MAF> 0.05, and

non-outlier status in EIGENSTRAT principal component

analysis (Price et al. 2006). With these model parameters,

we used a hidden Markov model as implemented in MACH

1.0.15 to impute allele dosage, defined as the expected num-

ber of copies of the minor allele (a fractional value between

0 and 2) of autosomal SNPs. The average posterior proba-

bilities for the most likely genotypes were reported as quality
scores.

Statistical analysis

Before statistical analysis, all SNP markers were examined

for the departure from HWE using a permutation version

of the exact test implemented in PowerMarker 3.25 software
(Liu and Muse 2005). Technical reasons, such as assay non-

specificity resulting in genotyping errors, and natural selec-

tion can inflate the type-I error rate, reducing the power of

association analyses (Hosking et al. 2004). Therefore, HWE

coefficients were calculated for the whole subject population

(see above) and for each subject population separately in or-

der to identify potential population substructure. No SNP

markers with strong deviations from HWE (P < 0.001) were
identified in these tests. SNP markers with MAF < 0.05 were

excluded from subsequent statistical analysis.

The significance of association between each genotyped or

imputed SNP and AUC scores was assessed using the Wald

parametrical statistical test as implemented in PLINK v1.07

software (Purcell et al. 2007). SNP markers with strong de-

viations from HWE (P < 0.001) or with MAF < 0.05 were

excluded from the statistical analysis. A permutation version
of the exact test implemented in PowerMarker 3.25 software

(Liu and Muse 2005) was used to examine deviations from

HWE. Pointwise significance of association was then calcu-

lated using permutation procedure with 106 simulations. De-

viations from the line of equality indicated either that the

theoretical distribution was incorrect or that the sample con-

tained values generated in some other manner (e.g., by a true

association). The 233 observed SNP markers used for the as-
sociation analysis represent 7 gene loci and cannot be con-

sidered independent from each other. The Bonferroni

method was used to control the level of type-I error for
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multiple testing correction; however, the Bonferroni method

assumes independence of individual tests. Thus, a type-I er-

ror value of 0.0002 (0.05/233) was too conservative in our

analysis because it fails to include information about linkage

disequilibrium (LD) relationships between the markers.
Therefore, we evaluated LD relationships between SNP

markers within the individual gene loci (data not shown)

and identified 11 LD blocks across the whole data set. Be-

cause these LD blocks are essentially independent of each

other, we reduced the level of type-I error threshold to a nom-

inal value of 0.005 (0.05/11 � 0.005). Also, we used a Q–Q

plot to identify the level of P value at the point where the

empirical distribution starts to deviate from the theoretical
values (P � 0.005). Deviations from the line of equality in-

dicated either that the theoretical distribution was incorrect

or that the empirical distribution contained values generated

in some other manner (e.g., by a true association). Thus,

SNPs with permutated P values < 0.005 were considered

as significant in our association analysis. The fraction of ge-

netic variance explained by the SNPs was assessed through

the standard coefficient of determination (R2).
Haploview4.1 (Barrett et al. 2005)was used to computepair-

wise LD statistics for the SNP markers. The values of the

standardized disequilibrium coefficient (D# = D/D max, pro-

portion of observed LD out of maximum possible LD) and

correlation coefficient (r2) were calculated. The genetic struc-

ture of the populations and basic parameters of molecular

diversitywere calculatedusing thePowerMarker 3.25 software

(Liu and Muse 2005). Median-joining network was con-
structed using software Network (www.fluxus-engineering

.com).

The effect of haplotypes on sucrose perception was evalu-

ated using linear regression analysis with AUC scores as the

dependent variable and haplotypes as the independent vari-

able. Inferring of haplotype phases was performed using

a Bayesian statistical method and recombination model as

implemented in the PHASE v2.1 software (Stephens et al.
2001). An omnibus test implemented in PLINK v1.07 soft-

ware was performed comparing the alternate (each particu-

lar haplotype has a unique effect) versus the null (all other

haplotypes combined without significant effect).

The proportions of variance in the outcome explained by

the regressionmodel were estimated based on the value of de-

termination coefficient (R2) and F-test statistics. Two-way

SNP–SNP interactions were investigated using multivariate
logistic models as implemented in PLINK v1.07 software.

Sequencing

The sequence region of chromosome 7 (79934373–79992564

bp) containing 13386 bp sequence upstream of the GNAT3

ATG site and 44806 bp downstream was polymerase chain
reaction (PCR) amplified from the genomic DNA using 6

overlapping primer pairs (Supplementary Table 13). PCR re-

actions were done using LA TaqDNA polymerase (TaKaRa

Bio USA) under conditions as follows: 98 �C for 10 s and

68 �C for 20 min for a total of 30 cycles. PCR products were

completely sequenced using BigDye Terminator v3.1 chemis-

try and a 3130xl Genetic Analyzer (Applied Biosystems).

Cell culture

NCI-H716 cells (CCL-251, American Type Culture Collec-

tion [ATCC]) were grown as a suspension in RPMI 1640 me-
dium (ATCC) supplemented with 10% fetal bovine serum

(Invitrogen) at 37 �C with 5% CO2.

5# rapid amplification of cDNA ends

Total RNA was extracted from the NCI-H716 cells using

RNAeasy kit (Qiagen) according to the manufacturer’s in-

structions. To determine the 5# end of the GNAT3 mRNA,

5# rapid amplification of cDNA ends (RACE) was per-

formed using an Invitrogen 5# RACE System (catalog no.

18374-058) with modifications. The first-strand complemen-
tary DNA (cDNA) was synthesized from 1 lg of total RNA

from the NCI-H716 cells using a gene-specific primer GSP1

(Supplementary Table 13) followed by RNase treatment ac-

cording the manufacturer’s specifications. The resulting

cDNA was purified using a Simple Nucleic Acid Purification

column and tailed with deoxycytidine triphosphate and ter-

minal deoxynucleotidyl transferase. PCR was used to am-

plify the dC-tailed cDNA using the abridged anchor
primer and the GSP2 primer (Supplementary Table 13).

The PCR product was reamplified by using abridged univer-

sal amplification primer and the nested gene-specific primer

GSP3. The final PCR products were purified with a QIAquik

PCR purification kit (Qiagen), double digested with NheI

and HindIII, and individually inserted into NheI/HindIII-

linearized pGL4.10 vector (Promega).

Bioinformatic analyses

TRANSFAC 7.0 database (Matys et al. 2003) was used to

search for the potential cis-regulatory elements within the
GNAT3 noncoding regions. The cutoff selection level for

the matrix group was set at 0.85. Multiple sequence align-

ments were performed using CLUSTAL W program

(Thompson et al. 1994). Manual correction of alignments

was carried out using Geneious software (http://www

.geneious.com/).

Results and discussion

Sample population and sucrose phenotypic data

The objective of this study was to evaluate the impact of ge-

netic variations in genes encoding sweet taste signaling mol-

ecules on human sucrose perception. The subject population
included 160 normal unrelated individuals of Caucasian (n =

103), Asian (n = 41), and African–American (n = 16) descent.

Peri- and suprathreshold sensitivities of these individuals to
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sucrose were evaluated using sensory signal detection theory

utilizing R-index measures (O’Mahony 1992).

Application of signal detection theory provided detailed

information about subjects’ perception abilities in compar-

ison to other testing methodologies. Signal detection theory
views the detection of a stimulus (threshold measurement)

as the outcome of a decision-making process dependent on

both the degree of confidence the individual has in their

judgment as well as the accuracy of the decision (Delwiche

and O’Mahony 1996). The signal detection approach treats

taste threshold measurements as both a perceptual and

a cognitive process and thereby controls for individual

differences in decision-making criteria (Delwiche and
O’Mahony 1996).

Participants were asked to rank 9 sucrose solutions ranging

from 0% to 4% sucrose in order from least to most sweet. The

concentration step between 2 close solutions represented

a detection threshold potentially recognizable by the major-

ity of subjects (see Supplementary Methods for the further

details). Eight pairwise R-indices (Rp) were calculated for

each subject based on the data from 6 replications of this test.
Rp-index reflects a subject’s discrimination performance of 2

stimuli (Brown 1974; O’Mahony 1992). Although we gener-

ated data at 8 concentration differences across the range, we

summarized each subject’s cumulative performance across

the entire concentration range by calculating a cumulative

R-index (Rc). The Rc at a given concentration is derived

by summing all Rps (after controlling for chance detection)

derived across the range of solutions preceding that concen-
tration. Thus, the value of Rc reflects the cumulative sensi-

tivity across a given concentration range.

The AUC produced statistically reproducible measures for

the taste sensitivities and reflects discrimination performance

of these subjects across the whole concentration range. Phys-

iologically, AUC is a more broad measure than a single

R-index. Individual Rp-indices do not reflect the unequal

weight of errors made by subjects at threshold versus supra-
threshold concentrations (i.e., a failure to distinguish 0.5%

from 1% sucrose interval is quite different than the failure

to discriminate 0.5% from 4% sucrose). CumulativeRc-indices,

and hence AUC scores, will do so. For example, a subject

having difficulties in discriminating 1% versus 0.5% sucrose

solutions may have perfect performance over the other

sucrose intervals. In this case, the AUC score of this subject

will be relatively high. On the other hand, a discrimination
error made between solutions of large difference (i.e., 0.5%

vs. 4% sucrose) means that this subject will demonstrate poor

performance at any of the other concentration intervals

across this range. This will dramatically affect the AUC

score. Thus, 2 subjects with equal individual Rp-indices at

a particular sucrose interval can have quite different AUC

values over the full concentration range tested. Therefore,

the AUC is a quantitative measure that reflects psychophys-
ical abilities to discriminate stimuli at threshold and also

suprathreshold concentrations.

Figure 1A demonstrates examples of Rc-indices plotted as

a function of concentration for the 2 representative subjects

with different discrimination abilities. The AUCs produced

statistically reproducible measures for the taste sensitivities

and reflects discrimination performance of these subjects
across the whole concentration range. AUC scores followed

a Gaussian distribution in our subject population (data not

shown) and were used as the dependent variable in paramet-

rical statistical analysis for assessing the correlation between

genotypes and phenotype.

Results of single-SNP association analysis

A total of 233 SNPs residing at the 7 candidate gene loci were

genotyped and analyzed for the association with sucrose

AUC scores. The detailed characteristics of these SNPs

and data on statistical tests are listed in Supplementary

Tables 1–7. For some of these variants, human genetic asso-

ciation studies have already suggested or confirmed func-

tional effects on various phenotypes. For example, it has
been shown thatGNB3 genetic variations are associated with

essential hypertension (Benjafield et al. 1998; Wang et al.

2004) (Supplementary Table 1), whereas ITPR3 SNPs were

found to correlate with type 1 diabetes (Roach et al. 2006; Qu

et al. 2008) (Supplementary Table 3). Therefore, the purpose

of our study was to discover new potentially functional poly-

morphisms and to assess the physiological impact of both

known and newly discovered polymorphisms on sweet taste
sensitivity.

Using information on observed SNP markers, we also in-

ferred other common SNPs from the HapMap database in

our genetic variation data set. Imputation resulted in an ad-

ditional 190 SNP polymorphisms withMAF> 0.05 (data not

shown), which potentially increased the discovery power of

our genotyping panel.

A total of 423 SNPs thatwere directly genotyped or imputed
were tested for the correlation with AUC score variance un-

der the general genetic model. The graphical representation

of the results of the statistical analysis is shown in Figure 1.

We failed to observe statistically significant correlation

of genotyped or imputed SNP alleles with sucrose AUC

score variance at the TAS1R1, GNB3, GNG13, PLC-b2,
ITPR3, or TRPM5 gene loci (Figure 1B–H, Supplementary

Tables 1–6).
Eleven genotyped SNPs residing at the GNAT3 locus,

which encodes the taste-specific Ga protein subunit gustdu-

cin, displayed significant association with AUC score varia-

tion (P < 0.005) (Figure 1H). The results of the statistical

analyses for these SNPs are listed in Table 1 and Supplemen-

tary Table 7. In addition, we observed significant correlation

of several imputed markers with sucrose AUC scores (Sup-

plementary Table 8, see below).
Figure 1I shows the quantile–quantile plot of the P values

for association. Under the null hypothesis of no association,

P values should follow a uniform distribution. However, the
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quantile–quantile plot of the logarithms of P values showed

a strong deviation from the null distribution, likely owing to

strong association observed within the GNAT3 locus. After

removal of all SNPs from the GNAT3 gene region, the dis-
tribution of the logarithms of the P values fits the null dis-

tribution except at the tail of distribution (P � 0.005) where

the observedP values are smaller than the expected under the

null hypothesis.

Gustducin is believed to be an essential component of the

mammalian sweet taste transduction pathway (Huang et al.

1999; Ruiz-Avila et al. 2001; Clapp et al. 2008). Gustducin-

deficient mouse knockout models have diminished or com-
plete loss of behavioral and electrophysiological responses to

sweet substances, indicating the importance of this gene for

mammalian sweet taste transduction (He et al. 2002; Glen-

dinning et al. 2005). The role of gustducin in human sweet

taste signaling is less studied; however, histochemical and

biochemical studies suggest that the function of this protein
is very similar to that in animal orthologs (Takami et al.

1994).

Association of significant GNAT3 SNPs with sucrose AUC

scores

The results of association analysis for the 11 significant SNPs
are shown in Table 1. The SNP with the highest association,

rs7792845 (permuted P = 1 · 10–4), is located 10 kb upstream

of the GNAT3 coding sequence (CDS) and explains 9.5% of

Figure 1 The results of single-SNP association analysis. (A) Cumulative Rc-indices of 2 subjects plotted as a function of sucrose concentrations. Gray inverted
triangles, subject with perfect discrimination abilities; red triangles, subject with low discrimination abilities. The vertical axis is the cumulative R-index, the
horizontal axis shows sucrose concentration intervals. (B–H) Association results for SNPs from 7 candidate gene loci (indicated on the top of each graph).
Statistical significance of SNPs at each locus is shown on the �log (P) scale as a function of chromosomal position (NCBI build 36). Genotyped SNPs at each
locus are shown in red rhombs. Imputed SNPs indicated by blue triangles. Bottom panel shows genes at each locus as annotated in the University of
California–San Cruz Genome Browser Annotation Database as of 16 December 2008. (I) Quantile–quantile plot of tails of the P value distribution for the
sucrose AUC scores. Scatter plot of the observed ordered �log P values versus the �log expected ordered P values under the complete null. Dashed lines and
gray area indicate the 0.025 and 0.975 pointwise quantiles of the ordered P value under the complete null distribution. The percentiles depicted with dashed
lines were calculated using a beta approximation for the distribution of ordered statistics of uniform variates and assuming independence across tests. The
gray area was obtained with 1000 permutations. The plot in red is for the P values for all genotyped SNPs, whereas the plot in black is for P values excluding
all SNPs within the GNAT3 region.
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the phenotypic variance. Of the 10 other SNPs, 3 (rs940541,

rs1107660, and rs1107657) were located 8–9 kb upstream of

the GNAT3 ATG translation start site, 4 (rs1524600,

rs6467217, rs6970109, and rs6975345) were situated in intron

1, and the remaining 3 SNPs (rs10242727, rs6467192, and
rs6961082) were located in introns 2, 4, and 5, respectively

(Table 1, Supplementary Table 7). Statistical analysis failed

to identify significant association of markers located in cod-

ing regions ofGNAT3with sucrose AUC scores (Supplemen-

tary Table 7).

InFigure 2,we have plotted theAUCscores as a function of

significant SNP genotypes. Each additional copy of the var-

iant alleles is associated with a difference in the mean pheno-
type.Forexample, themeanAUCvalue forthers7792845C/C

genotype is 5.9,which is significantlydifferent fromthatof the

T/T genotype, which is 7.2. The heterozygote C/T geno-

type resulted in an intermediate average AUC value of 6.8

(Table 1). This trend suggests additivity of allele effects under

the assumption of HWE in this subject population. We ob-

served this effect inCaucasian,Asian, andAfrican–American
subjectpopulations (SupplementaryTables 8–10) and inmale

and female subjects in these populations separately (Supple-

mentary Tables 12 and 13). Thus, the associations between

GNAT3 genetic variations and sucrose AUC scores were re-

producible between subjects of different ancestry and gender.

LD relationships between significant SNPs

The significant SNPs listed in Table 1 span an;55-kb region

at the GNAT3 locus. To better understand the relationship

Table 1 GNAT3 SNP polymorphisms having significant association with sucrose AUC scores

dbSNP Coordinates of SNP Trait means (genotype: mean � standard deviation) Wald test P R2

Chromosome 7a ATGb Gene

rs7792845 79989304 �10127 Upstream CC/CT/TT: 5.9 � 1.4 f 6.8 � 1.6 f 7.2 � 1.0 1.00 · 10�4 0.095

rs940541 79988529 �9352 Upstream CC/CT/TT: 6.2 � 1.5 f 6.6 � 1.4 f 7.5 � 1.0 3.50 · 10�3 0.058

rs1107660 79988067 �8889 Upstream GG/GT/TT: 6.2 � 1.6 f 6.6 � 1.4 f 7.5 � 1.0 1.51 · 10�3 0.068

rs1107657 79987954 �8776 Upstream CC/CT/TT: 6.1 � 1.6 f 6.7 � 1.4 f 7.5 � 1.0 1.11 · 10�3 0.072

rs1524600 79976239 2940 Intron 1 TT/TC/CC: 4.5 � 1.4 f 6.1 � 1.5 f 6.8 � 1.5 1.40 · 10�3 0.072

rs6467217 79976114 3065 Intron 1 CC/CT/TT: 5.1 � 1.0 f 6.0 � 1.5 f 6.8 � 1.5 3.40 · 10�3 0.061

rs6970109 79976010 3169 Intron 1 AA/AC/CC: 5.1 � 1.0 f 6.0 � 1.5 f 6.8 � 1.5 2.70 · 10�3 0.062

rs6975345 79961935 17244 Intron 1 CC/CT/TT: 5.0 � 1.5 f 6.2 � 1.4 f 6.7 � 1.5 3.00 · 10�3 0.063

rs10242727 79957666 21513 Intron 2 GG/AG/AA: 5.0 � 1.6 f 6.2 � 1.4 f 6.8 � 1.5 1.50 · 10�3 0.071

rs6467192 79945734 33445 Intron 4 AA/AG/GG: 5.1 � 1.5 f 6.2 � 1.5 f 6.7 � 1.5 3.26 · 10�3 0.061

rs6961082 79938905 40374 Intron 5 AA/AC/CC: 5.0 � 1.3 f 6.0 � 1.4 f 6.7 � 1.5 2.40 · 10�3 0.064

aMarch 2006 human reference sequence (NCBI build 36.1).
bGene coordinates of SNPs relative to known translation start site.

Figure 2 Box–Whisker plots showing the distributions of AUC scores among genotypic groups of the 14 significant SNPs (indicated above each plot).
Genotypes are listed at the bottom of each plot. Empty bars correspond to 25% and 75% percentiles and vertical lines outside of the bars indicate value
range. Black lines inside of bars are statistical medians. Asterisks indicate outliers. Circles show rare observations. Vertical axis is the AUC score.
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between the AUC score–associated SNPs at the GNAT3 lo-

cus, LD analysis was assessed in our subject population. LD

analysis was performed with Haploview (Barrett et al. 2005)

using the block definition proposed by Gabriel and cow-

orkers (Gabriel et al. 2002). With the combined genotype
data set, we generated 2 measures of LD: the square of cor-

relation coefficient (r2) and D prime (D#). Our LD analysis

revealed several LD blocks within the GNAT3 gene region

(Supplementary Figure 3).

SNPs rs2012380 and rs7792845, which are located in the

region 10–13 kb upstream of the ATG translation start site

and were in LD with each other (r2 = 89, D# = 97), repre-

sented a separate LD block (Supplementary Figure 3).
Strong LD also existed between SNPs rs940541,

rs1107660, and rs1107657 (r2 = 81–90, D# = 94–100), which

are situated in the 8–9 kb upstream gene region. The LD

block represented by these 3 SNPs demonstrated a moderate

correlation with the LD block harboring SNPs rs2012380

and rs7792845 (mean r2 = 0.43; Supplementary Figure 3).

Thus, these 2 LD blocks were not completely independent

from each other. In addition, the high- and low-sensitivity
alleles of rs2012380, rs7792845, rs940541, rs1107660, and

rs1107657 demonstrated a similar distribution in the sample

population, indicating that these SNPs may underlie the

same functional effect.

Another group of markers in nearly complete LD included

SNPs rs1524600, rs6467217, rs6970109, rs6979450, rs7776757,

rs7808426, rs6975345, rs10242727, rs6467192, and rs6961082

(r2= 86–97,D#= 100).Thus, all thesemarkers representeda sep-
arate;38-kbLDblock(from+2543to+40274bp) that includes

exons 2–5 and corresponding intronic sequences of theGNAT3

gene (Supplementary Figure 3). This LD block was in nearly

complete linkage equilibrium with LD blocks harboring SNPs

rs2012380, rs7792845, rs940541, rs1107660, and rs1107657

(mean r2 = 0–0.07; Supplementary Figure 5).

Examination of the GNAT3 neighboring regions for

association with sucrose AUC scores

A region on chromosome 7q was recently linked to compo-

nents of metabolic syndrome (MetS) in several genome-wide

linkage studies (Arya et al. 2002; An et al. 2005). Within this

region is the geneCD36, which encodes amembrane receptor

for long-chain fatty acids and lipoproteins which can impact
a variety of conditions linked withMetS, including insulin re-

sistance, inflammation, and atherosclerosis and may be in-

volved in the etiology of type 2 diabetes mellitus (Ma et al.

2004; Corpeleijn et al. 2006; Love-Gregory et al. 2008).

CD36 is located ;90 kb upstream of the GNAT3 CDS and

spans 76 kb. The influence of natural selection has resulted

in high CD36 genetic variability in populations of different

ancestry (Sabeti et al. 2006; Ayodo et al. 2007).CD36 has sev-
eral documented alternative promoters that result in the pro-

duction of at least 3 different mRNA isoforms (Andersen

et al. 2006). SNP polymorphisms located in these regulatory

regions were demonstrated to predict clinical outcomes (Sup-

plementary Table 11).

We genotyped a set of polymorphisms across a 140-kb re-

gion on chromosome 7q centered around CD36 to evaluate

the effect of genetic variation occurring in this region on su-
crose AUC scores. These additional markers included 15

SNPs located in the intergenic region between GNAT3

and CD36 and 80 SNPs located within the CD36 locus. Al-

though only 53 of these 80 SNPs were polymorphic in our

sample population (Supplementary Table 11), these SNPs

represented all main haplotype blocks in this chromosomal

region (data not shown). We also included functional CD36

SNPs having known associations with clinical outcomes as
described in the literature (Supplementary Table 11).

The results of association analysis for this region are shown

in Figure 3. These SNPs had no correlation with sucrose

AUC scores, suggesting that the variance observed in this

phenotype is unlikely to be due to effects of variation in

neighboring genes.

Identification of additional GNAT3 sequence variants

having significant correlation with sucrose AUC scores

Imputation analysis provided the ability to test the hypoth-

esis that other genetic variation also may have significant

correlation with phenotype. Association analysis revealed

a number of imputed SNPs located upstream of the

GNAT3 locus having significant correlation with AUC
score variance (Supplementary Table 8). This indicated

the possibility that other genetic variations residing at

the GNAT3 locus also may have significant association

with phenotype. At the same time, we did not identify ob-

served or imputed SNPs located beyond the 18-kb up-

stream sequence region that had a significant correlation

with phenotype (Figure 3).

To verify the results of imputation analysis (Supplemen-
tary Table 8) and to identify other genetic variants that

may have significant correlation with phenotype, we se-

quenced the GNAT3 gene region extending from –18 to

+40 kb in our entire subject population. This included nucle-

otide sequence extending from;18 kb upstream of the ATG

translation start site, the region containing the putative pro-

moter, all the exons 1–5 as well as introns 1–4, and part of

intron 5. The results of this sequencing allowed us to validate
the results of our association analysis for the previously gen-

otyped SNPs. No genotyping errors were detected for the ob-

served SNPs residing in this sequence region.

We identified 38 additional SNPs with MAF > 0.05 absent

from our initial genotyping panel (data not shown). No

frequent sequence variations were identified in the GNAT3

protein coding regions. The subsequent statistical analysis

showed that only 1 of the 7 imputed SNPs, rs2012380,
had significant correlation with phenotype (permuted P =

2.73 · 10–4), whereas the others failed (Supplementary

Table 8). SNP rs2012380 is located 12772 bp upstream of
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the start of the GNAT3 CDS and was in strong LD with

rs7792845 (r2 = 89, D# = 97).

Among the other SNPs identified by sequencing, 3 demon-

strated significant correlation with AUC score variance:

rs6979450 (P = 4.31 · 10–3), rs7776757 (P = 3.21 · 10–3),
and rs7808426 (P = 3.42 · 10–3) (Table 1, Supplementary

Table 7). All 3 SNPs were located in intron 1 of GNAT3

and demonstrated strong LD with other SNPs from the

38-kb LD block (D# = 1) (Supplementary Figure 3).

Associations between race and gender with AUC scores

In order to elucidate the influence of ethnicity and gender on

sucrose sensitivities in our sample population, we compared

the distribution of AUC scores in subjects based on their an-

cestral origin and/or sex. The results are shown in Supple-

mentary Figure 2. No significant difference in distribution

of AUC scores was observed for subjects of Caucasian
and Asian ancestries (Supplementary Figure 2A,B,C). The

distribution of AUC scores in the African–American subject

population was slightly different from those observed in

Caucasian and Asian subject populations (P = 0.05). This

could indicate that African–American subjects perceive su-

crose at higher concentration thresholds than subjects

of Caucasian and Asian ancestries. However, the number

of African–American subjects was relatively small (n =

16), and this suggestive observation will require further in-

vestigation. No statistically significant differences in AUC

score variations were observed betweenmale and female sub-

jects in the combined sample population (Supplementary

Figure 2D) and in the Caucasian and Asian sample popu-

lationsindividually(SupplementaryFigure2E,F,respectively).

Thus, gender and racial origin had no statistically significant

associationswith the distribution ofAUC scores in our sample
population.

Haplotype association analysis

The use of haploytpes defined by tagging SNPs provides po-

tentially greater power to detect association compared with

individual SNPs themselves (Liu et al. 2008). However, the

statistical power of haplotype-based association analysis is

challenged by a trade-off between the benefits of modeling

abundant variation and the cost of the extra degrees of free-

dom for modeling the multimarker variations (Liu et al.

2008).

SNPs that were significantly correlated with sucrose AUC

scores (Table 1) represented 3 distinct LD blocks spanning

much of the GNAT3 sequence region (Figure 4A and see

above). We further evaluated the hypothesis that haplotypes

defined by particular combinations of high- and low-

sensitivity alleles display an additional association with

phenotype.

Haplotype inference utilizing the variation patterns of the

15 significant SNPs resulted in the identification of a total of

24 unique GNAT3 haplotypes in our subject population

(data not shown). However, many of these occurred at very

low frequency. To avoid the analytical problems associated

with dimensionality in our data set and to capture the com-

mon diversity of the GNAT3 haplotypes, we selected 2 tag

SNPs (rs7792845 and rs1524600, sequenced in all individu-

als) from 2 independent LD blocks (see above) using an

association-based criterion and the highest regressionR2 val-

ues. Thus, rs7792845 represented SNPs rs2012380, rs940541,

rs1107660, and rs1107657, whereas SNP rs1524600 repre-

sented all the other significant SNP markers from the other

LD block (Figure 4A). In addition, we checked variation

patterns of significant SNPs in the 4 HapMap populations

to avoid the possibility of stratification of the selected SNPs

(Figure 4B).

The basis of this design is that even when individual hap-

lotypes defined by specific SNPs do not correlate perfectly

with tagged SNPs, haplotype combinations might do so,

and these combinations can be identified by selection of

the appropriate coefficients in a linear regression. Such

a strategy reduces the number of tests and thus false-positive

results. SNPs rs7792845 and rs1524600 had the strongest as-

sociation with sucrose AUC scores, had no significant strat-

ification in the worldwide human populations, and better

explained phenotypic variance in comparison to other

Figure 3 The results of single-SNP association analyses for chromosomal region 7q. Statistical significance values of SNPs are shown on the �log (P) scale as
a function of chromosomal position (NCBI build 36). Genotyped SNPs are shown in red rhombs. Imputed SNPs indicated by colored triangles. Genes and the
position of exons, as well as the direction of transcription, are noted below the plot (data from University of California–Santa Cruz genome browser). The
most significant SNPs are green diamonds. Estimated recombination rate is plotted in cyan to reflect the local LD structure (data from HapMap).
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markers from the corresponding LD blocks. Thus, we con-

cluded that these tag SNPs were sufficient to represent all the

other significant SNPs.

We used these 2 SNPs to infer haplotypes and their respec-

tive frequencies by a Bayesian statistical method under the

general recombination model (Stephens et al. 2001). Bayes-

ian predictions depicted a total of 4 different haplotypes in

the sample population (Figure 4C). Two of these haplotypes
were common (H1 and H3) in non-African sample popula-

tions, with frequencies greater than 30% (Table 2). The re-

maining haplotypes (H2 and H4) had frequencies of less

than 10% in the entire sample population (Figure 4C). H1

represented a combination of the alleles of rs7792845 T

and rs1524600 C that were associated with high sensitivity

to sucrose (Table 2, Figure 4C). Conversely, in the H4 hap-

lotype, both rs7792845 C and rs1524600 T alleles were asso-
ciated with low AUC scores. H2 and H3 defined alternative

combinations of high- and low-sensitivity alleles (Figure 4C).

It is interesting to note that low-sensitivity H4 was much

more frequent in the African–American subject population

than in the Caucasian and Asian sample populations (Figure

4C, Table 2).

To test whether these haplotypes display a significant as-

sociation with sucrose AUC scores, we incorporated each
GNAT3 haplotype as an explanatory factor in a linear

Figure 4 The results of haplotype association analysis. (A) A graphical presentation of the LD block structure of a 79-kb region across the 7q21 (79.925–
80.004 Mb) in Caucasian and Asian sample populations and in 4 HapMap populations (indicated on the left). Individual LD blocks are in gray and yellow. The
bottom plot shows the locations of the GNAT3 exons and introns. The positions of 15 significant SNPs identified in this study are indicated by red lines below
their rs numbers. (B) Allele frequencies of significant SNPs in 4 HapMap populations (indicated on the left). Individual alleles are represented by colored
rectangles. The heights of 2 rectangles indicate relative allele frequencies in population. Red, allele associated with high AUC scores; blue, allele associated
with low AUC scores. (C) Median-joining network of 4 haplotypes, color coded according to regions of origin. Haplotypes are indicated by numbers 1–4. The
sizes of colored circles correspond to the frequency of haplotype in the entire population (also indicated on the top of each circle). Tag SNPs used for
haplotype inference are also indicated. (D) Box–Whisker plots demonstrate distributions of AUC scores as a function of haplotype combinations. Haplotype
combinations are indicated on the bottom of the plot. Upper scheme indicates presence of high- (red) and low (blue)-sensitivity alleles in the particular
haplotypes. Number of subjects with particular haplotype combinations (n) is also indicated on the top. Empty bars correspond to 25% and 75% percentiles
and vertical lines outside of the bars indicate value range. Red lines inside of bars are statistical medians. Asterisks indicate outliers. Circles show rare
observations. Vertical axis is the AUC score. (E) The fraction of genetic variance explained by 4 haplotypes. Vertical log axis is a coefficient of determination
(regression R2). Haplotypes are indicted on the bottom.

Table 2 Association analysis of common GNAT3 haplotypes

Characteristics Haplotype

1 2 3 4

rs7792845 allele T T C C

rs1524600 allele C T C T

Frequency (%)

Caucasian 38 4 54 4

Asian 41 1 45 13

African 16 4 38 42

F statistic

F 15 0.05 2.5 17

P 1 · 10�5 0.8 0.1 6 · 10�6

Regression R2 0.08 — — 0.09
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regression model and carried out an omnibus test (Liu et al.

2008). The synthetic haplotypes served as a baseline haplo-

type in our regression model because the heterogeneous

group is not biologically meaningful. By assuming additive

effects for all the haplotypes, we fitted a full haplotype model
for the 4 haplotypes using the combined haplogroup as base-

line. Under these conditions, H1 and H4 demonstrated sig-

nificant association with sucrose AUC scores (P = 1 · 10–5 and

6 · 10–6, respectively) (Table 2). However, there was no evi-

dence for correlation of H2 and H3 with phenotype (P =

0.8 and 0.1, respectively). A global regression test statistic

had 3 degrees of freedom and was highly significant (P =

4.75 · 10–6). We estimated that haplotypes H1 and H4 explain
roughly 13%ofAUC score variations in the sample population

(Figure 4E).

Figure 4D and Supplementary Figure 4 demonstrate the

effect of different diplotypes on sucrose AUC scores in

the subject populations. Subjects carrying 1 or 2 copies of

the high-sensitivity haplotype H1 (combinations H1/H1

and H1/H2) had highest sensitivities to sucrose. In contrast,

subjects carrying a copy of the low-sensitivity haplotype
(combinations H4/H4, H2/H4, and H3/H4) had reduced

AUC scores. Interestingly, subgroups of individuals carrying

combinations H1/H4 and H3/H3 demonstrated similar dis-

tributions of AUC scores. H1/H4 represents a combination

of high- and low-sensitivity haplotypes, whereas haplotype

H3 is presumably derived from recombination between

H1 and H4. Together these results suggest that although

the GNAT3 locus harbors variants that contribute to taste
perception, the relationships are complex.

As a whole, our analysis identified 2 ‘‘risk’’ haplotypes of

the GNAT3. The presence of a copy of one of them (which

consists of a combination of high-sensitivity alleles of

rs7792845 and rs1524600) is associated with higher sensitivity

to sucrose. The alternative haplotype represented by a combi-

nation of low-sensitivity alleles of both SNPs is associated

with reduced sensitivity to sucrose. In addition, haplotypes
represented by other combinations of alleles of tagging SNPs

(‘‘low–high’’ and ‘‘high–low’’) had no significant effect on

phenotype. However, the number of homozygote subjects

carrying identical copies of these variant haplotypes was in-

sufficient for adequate statistical analysis. Thus, it remains

unclear whether the effect of a particular haplotype is due

to additive effect of alleles residing at different LD blocks

or is due to specific combinations of alleles at these blocks.

Putative mechanisms underlying GNAT3 SNP associations

Gustducin is believed to be an essential component involved

in the mammalian sweet taste transduction pathway (Huang

et al. 1999; Ruiz-Avila et al. 2001; Clapp et al. 2008). Gust-

ducin-deficient mouse knockout models have diminished or

complete loss of behavioral and electrophysiological re-
sponses to sweet substances, indicating the importance of this

protein for mammalian sweet taste transduction (He et al.

2002; Glendinning et al. 2005). Even single amino acid mu-

tations in gustducin can result in significant loss of respon-

siveness to sweetness in the laboratory animal (Ruiz-Avila

et al. 2001). The role of gustducin in human sweet taste sig-

naling is less studied; however, histochemical and biochem-

ical studies suggest that the function of this protein is very

similar to that in animal orthologs (Takami et al. 1994).

Our sequencing analysis failed to identify sequence varia-
tions in the known protein coding regions of the human gust-

ducin gene. The most significantly associated SNPs,

including rs7792845 and rs2012380, were located more than

8 kb upstream of the GNAT3 CDS (Table 1). Eukaryotic

core and proximal promoters typically lie upstream of the

gene and can have regulatory elements several kilobases

away from the transcriptional start site (TSS) (Heintzman

and Ren 2007; Venters and Pugh 2009). Thus, the results

of association analysis may indicate a regulatory role for

the nucleotide sequences harboring SNPs rs7792845 and

rs2012380 as well as other SNPs residing in this region (Table
1). The available literature does not provide information

about the location of transcription initiation site for the hu-

man gustducin mRNA. Thus, a 5#UTR of the mRNA (and,

therefore, the core promoter) or alternative protein coding

exons may be located in this sequence region.

To better understand this, we examined GNAT3 mRNA

isolated from NCI-H716 cells by 5# RACE analysis. The

NCI-H716 cell line was derived from enteroendocrine L cells

of the human colon. It was previously shown that enteroen-

docrine L cells express sweet taste receptors and other com-
ponents of the taste transduction pathway (including

gustducin), indicating a role for chemical sensation in these

tissues (Rozengurt et al. 2006; Jang et al. 2007).

The results of the 5# RACE analysis are summarized in

Supplementary Table 12. The RACE product included first

462 nt (exons 1–4) from a total of 1065 nt of the cDNA listed

in the National Center for Biotechnology Information

(NCBI) database (accession numbers BC147016 and

BC147017). Within this region, no sequence variations were

detected in the NCI-H716 cDNA in comparison to the re-
ported cDNA sequence. RACE identified 8 alternative

TSS within the 150-bp sequence located upstream of the

ATG translation start site. A TSS located at nucleotide

–125 was identified in 31% of cDNA clones and thus can

be considered as a strong transcription initiator in NCI-

H716 cells (Supplementary Table 12). No additional UTRs

beyond this 150-bp sequence were detected in 24 RACE

products. This suggests that GNAT3 mRNA contains nei-

ther an unknown 5# UTR in the cDNA nor alternative pro-

tein CDSs in NCI-H716 cells. Also, these data suggest that

the location of core GNAT3 promoter resides close to this
150-bp upstream sequence.

Therefore, we hypothesize that the distal sequence region

harboring SNPs rs7792845, rs2012380, or any other signifi-

cant SNPs (Table 1) located in this region may contain reg-

ulatory elements interacting with the proximal promoter

elements, at least in NCI-H716 cells.
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Supplementary Figures 6 and 7 show patterns of evolution-

ary conservation between the human 70-kb region of chro-

mosome 7 containing GNAT3 and the corresponding

nucleotide sequences from the genomes of other vertebrates.

No large evolutionarily conserved elements (>350 bp long,
identity >77%) occur at the location of the human SNPs that

are significantly associated with phenotype. However, mul-

tiple alignment of nucleotide sequences surrounding SNPs

rs7792845, rs1524600, rs6467217, rs6970109, rs6975345,

rs10242727, rs6467192, rs6979450, and rs6961082 with those

from the other vertebrates demonstrated a high degree of in-

terspecies sequence similarity (identity >80% across the 100

bp) (data not shown). This is consistent with a conservation
of genomic function in these regions. We hypothesize that

SNPs residing at these sequence regions can result in changes

in mRNA expression.

Concluding remarks

Our experiments tested for association between genetic var-
iations at the genes encoding taste signaling molecules and

human sucrose sensitivity in vivo. Our data show that genetic

variations occurring at the GNAT3 locus are significantly

correlated with sucrose sensitivity as measured by AUC

scores. Fifteen significant SNPs were identified in the non-

coding regions of theGNAT3 gene, including 5 SNPs located

within the region 9–13 kb upstream of the CDS. In addition,

we evaluated multiple polymorphisms across this 140-kb re-
gion of chromosome 7q but did not identify any additional

associations. Genetic variations in GNAT3 gene region may

be associated with promoter activity of the GNAT3 gene and

therefore with variations inGNAT3mRNA levels in humans

carrying different alleles.

Accurate and properly regulated transcription of eukary-

otic genes requires a complex system that involves promoter

and enhancer sequences which interact with a large number
of different proteins, both near the transcription initiation

site and at more distant sites (Venters and Pugh 2009).

Sequence regions harboring significantly associated GNAT3

SNPs could bind accessory proteins that may facilitate inter-

actions between activators and coactivators during GNAT3

gene transcription initiation. In support of this hypothesis,

we identified evidence of an interaction (P < 0.05) between

SNPs located upstream of the CDS (rs1107657, rs1107660,
and to a less extent rs940541) and intronic SNPs (Figure 5).

This could indicate functional interaction and synergism be-

tween the corresponding sequence regions in the transcrip-

tion of the GNAT3 gene. We hypothesize that alleles of

SNPs associated with high sensitivity to sucrose lead to nor-

mal formation of accessory complex and transcription initi-

ation. On the other hand, low-sensitivity alleles may prevent

binding of accessory proteins, which result in a reduced level
of GNAT3 gene transcription.

Genetic variations occurring in the GNAT3 explain 13% of

the variation in sucrose perception in our subject population,

which has representation from worldwide human popula-

tions. Therefore, this could explain an additional substantial

fraction of the genetic contribution to differences in sweet

taste perception in different human populations (Fushan

et al. 2009). In addition, gustducin is an essential component
involved in the signal transduction of both bitter and umami

tastes (Spielman 1998; He et al. 2004). Thus, we hypothesize

that these genetic variations in this gene may also influence

these tastes among different individuals.

Supplementary material

Supplementary material can be found at http://www.chemse

.oxfordjournals.org/
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Figure 5 Matrix plot demonstrating the results of SNP-SNP association
SNP-SNP interaction analyses. Upper triangle shows P values of association
for pairwise combinations of significant GNAT3 SNPs. Each square
represents the magnitude of P value for a single pair of markers, with
a red color indicating highest level of significance and white color indicating
lowest level of significance (scale on the right). The squares on the medial
diagonal correspond to P values of a single-SNP association analysis. Lower
triangle shows probability of interactions between significant SNPs. Each
square represents the magnitude of P value for a pair of markers, with
a green color indicating highest level of significance and white color
indicating lowest level of significance (scale on the bottom).
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