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Abstract
Despite the importance of gene-environment (G×E) interactions in the etiology of common
diseases, little work has been done to develop methods for detecting these types of interactions in
genome-wide association study data. This was the focus of Genetic Analysis Workshop 16 Group
10 contributions, which introduced a variety of new methods for the detection of G×E interactions
in both case-control and family-based data using both cross-sectional and longitudinal study
designs. Many of these contributions detected significant G×E interactions. Although these
interactions have not yet been confirmed, the results suggest the importance of testing for
interactions. Issues of sample size, quantifying the environmental exposure, longitudinal data
analysis, family-based analysis, selection of the most powerful analysis method, population
stratification, and computational expense with respect to testing G×E interactions are discussed.
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INTRODUCTION
Most common diseases are believed to be a result of the combined effect of genes,
environmental factors, and their interactions. However, current genome-wide association
studies (GWAS) are designed to detect the main effect, that is, the direct association of a
single-nucleotide polymorphism (SNP) or cluster of SNPs with disease [Browning and
Browning, 2007; Zhao et al., 2006]. Investigators may therefore miss important genetic
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variants that are specific to subgroups of the population defined by some environmental
exposure. In fact, main effect tests will have no power to detect variants that have effects in
opposite directions within subgroups (crossing interaction). Despite the potential importance
of gene-environment (G×E) interactions in the etiology of common diseases, little work has
been done to develop methods for detecting these types of interactions in GWAS data.

The Group 10 contributions to the Genetic Analysis Workshop 16 (GAW16) used both the
Framingham Heart Study (FHS) and the North American Rheumatoid Arthritis Consortium
(NARAC) data to develop and/or test methods for detecting G×E interactions in GWAS
data. The methods used include regression models, latent components (factor) analysis, and
machine learning approaches.

METHODS AND RESULTS
Table I shows the study population, research design, and statistical methods used by each
contribution to Group 10. Following is a brief description of each contribution, organized
according to the GAW16 data set they analyzed.

NARAC: Problem 1
Three groups analyzed the NARAC data. Rheumatoid arthritis (RA) affection status was
their primary phenotype. Unless otherwise stated, the groups analyzed all 545,080 SNPs
genotyped using the Illumina 550k platform. Following are the specific methods and results
for each group.

Arya et al [2009] used a logistic regression approach implemented in PLINK to assess the
effects of covariates and genotype×sex interactions on the GWAS analysis of RA after
accounting for the effects of population stratification. In the single-SNP analysis, only two
non-HLA SNPs, on chromosomes 4 and 20, were significant after Bonferroni correction;
neither of these SNPs showed a significant genotype×sex interaction. In the genotype×sex
interaction analysis, 30 SNP×sex interactions were significant at the uncorrected
p<1.0×10−4 level, although none of these survived the stringent Bonferroni correction.

Chiu et al. [2009] used an extension of a generalized estimating equations approach to
conduct linkage disequilibrium (LD) mapping with a sliding window of 100 SNPs in a
region containing 1,561 SNPs located between 28,000 and 40,000 cM on 6p21. They also
tested for interactions between these SNPs and both shared epitope (SE) alleles and sex. In
the single-SNP analysis, 251 out of 1,561 SNPs had a p-value ≤3.2×10−5 (the Bonferroni
corrected significance level). There was a significant interaction between the SE allele
number and the estimated disease locus at 32.6 cM. However, there was no interaction
between sex and the estimated disease locus.

Zhuang and Morris [2009] compared a standard test of association between RA and
genotype, using an additive genetic model and adjusting for covariates, to a sex-
differentiated test [Kraft et al., 2007], and to a test of interaction with sex using a logistic
regression framework. They found that signals of association in the major histocompatibility
complex (MHC), which are now well established for RA, demonstrated strong effects in
both sexes. However, they also identified eight novel SNPs that demonstrated genetic effects
in only one sex, or reciprocal effects on risk in males and females. These SNPs were not
significant in the standard main effect test of association that ignores possible heterogeneity
of effect between sexes.
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FHS: Problem 2
Three groups analyzed the FHS data, using several different phenotypes as their outcome.
Unless otherwise stated, the groups analyzed all 550,000 SNPs genotyped using the
Affymetrix GeneChip® Human Mapping 500k Array Set and the 50k Human Gene Focused
Panel. Following are the specific methods and results for each group.

Gu et al. [2009] used a type of latent components (factor) analysis called supervised
statistical learning approach for multivariate analysis (SLAM) for longitudinal data and
generalized estimating equations to account for familial correlation. They used data from the
Offspring Cohort at Exams 1, 3, 5, and 7. The primary phenotype of interest was coronary
heart disease (CHD) status, and the data on ten variables including CHD endophenotypes
(body mass index, total cholesterol, high-density lipoprotein cholesterol, triglycerides,
systolic blood pressure (SBP), diastolic blood pressures, and fasting glucose) and
environmental covariates (age at visit, cigarette smoking, and alcohol use) were used for the
latent-component analysis. They identified several genes, including two well known CHD
candidate genes (SCNN1B and PKP2) with potential time-dependent G×E interactions, and
several others including a novel cardiac-specific kinase gene (TNNI3K), with potential G×E
interactions independent of time and marginal effects.

Joubert et al. [2009] used a novel variance component method for the estimation of age-
dependent genetic effects on longitudinal SBP using 57,837 SNPs on chromosomes 17–22
genotyped in the Offspring Cohort. Three SNPs reached genome-wide statistical
significance for association with longitudinal SBP using a Bonferroni corrected p-value of
8.6×10−7. Of these three SNPs, one corresponded to the main genetic effects, and the
remaining two were for the 2 degrees of freedom (df) test, which simultaneously estimated
the main genetic effect and genotype×age interactions for each SNP. There were no
significant genotype×age interactions for SBP in these data.

Maenner et al. [2009] used a case-only study design and the random forests (RF) algorithm,
a type of machine learning, to identify SNPs that may be involved in gene×smoking
interactions related to the age at onset of CHD. They used data from the Original and
Offspring Cohorts. After ranking the covariate importance score in each of four runs of RF
using 500 trees each, one SNP (rs2011345) ranked as the most important SNP and was
within the top ten of all ranked covariates in three of the four runs. Using generalized
estimating equations to adjust for sex and account for familial correlation, there was
significant evidence of a main effect for both the SNP and smoking status, as well as
significant evidence of an interaction between the two.

FHS simulated data: Problem 3
Shi et al. [2009] applied a three-level hierarchical linear mixed-effects model for testing
genetic main effects and gene×age interactions affecting coronary artery calcification, while
accounting for correlation due to the family-based longitudinal data. Genome-wide
association analyses using the 50k chip were conducted based on cross-sectional data (i.e.,
each of the three single visit data sets separately) and also on the longitudinal data (i.e.,
using data from all three visits simultaneously). They had prior knowledge of the simulation
schema and answers. Results showed that the association tests using longitudinal data were
more powerful than those using cross-sectional data. Out of the five simulated major gene
SNPs of coronary artery calcification, association with rs17714718 (τ2) was detected only
when using the longitudinal data. SNP rs213952 (τ5) was found to be significant with both
longitudinal and cross-sectional data, but the former yielded a more significant result. None
of the other major gene SNPs were found to be significant. No significant gene×age
interactions were observed.
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SUMMARY AND CONCLUSIONS
The contributions from Group 10 introduced a variety of new methods for the detection of
G×E interactions in both case-control and family-based data using both cross-sectional and
longitudinal study designs. These contributions also illustrated a number of challenges that
arise when considering G×E interactions in a GWAS.

One of the most difficult challenges of GWAS is how to deal with the large p, small n
problem that arises when the number of variables considered (p) is much larger than the
number of subjects (n). The problem becomes even more pronounced when one seeks to test
interactions between SNPs and one or more environmental exposures in addition to
determining the main effect of each SNP. One approach commonly used to reduce the
number of tests performed is to select a subset of SNPs to be tested for interactions with
known or hypothesized environmental predictors of the phenotype. This can be done by first
conducting a single-SNP analysis for each SNP in the genome-wide data, in which one SNP
at a time, along with relevant covariates, is tested for association with the phenotype, and
then only the most significant SNPs are followed up in G×E interaction testing. Several
Group 10 contributions showed that the use of this strategy may miss potentially important
SNPs that have a very small main effect, but a significant G×E effect. For example, Arya et
al. [2009] tested genotype×sex interactions for association with RA and found 30 SNP×sex
interactions that were nominally significant (p<1.0×10−4), but none of these were significant
in the single-SNP analysis. Similarly, Zhuang and Morris [2009] also tested genotype×sex
interactions for association with RA and identified eight novel SNPs that demonstrated
genetic effects in only one sex, or reciprocal effects on risk in males and females, but these
SNPs were not significant in the single-SNP analysis. In the FHS, Maenner et al. [2009]
found significant evidence for an interaction between smoking and a SNP selected by a RF
algorithm as the most important, but this SNP ranked as only the 2,111th smallest p-value in
the single-SNP analysis (out of 355,649 SNPs).

The inability of many of the groups to detect a G×E interaction that reached a genome-wide
level of significance is likely to be due to inadequate sample sizes. To explore the power to
detect an interaction in a GWAS, we adopt a standard logistic model framework for a
disease outcome (D), with form logit[Pr(D=1|G,E)] = β0 + βg G + βe E + βge G×E. This
model parameterizes the baseline disease prevalence (β0), the main effects of G (βg) and E
(βe), and the G×E interaction (βge). The quantity of interest is the interaction ORge =
exp(βge) = ORG | E=1 / ORG | E=0, or, in other words, the odds ratio for a given SNP (G) in
exposed (E=1) individuals divided by the odds ratio for G in unexposed (E=0) individuals.
The epidemiologist may want to adopt the alternative exposure-based interpretation for
ORge, specifically ORE | G=1 / ORE | G=0. Table II shows the required number of case-control
pairs required to achieve 80% power for detecting an interaction, for various underlying
values of ORge, minor allele frequencies, and exposure prevalences. The range of exposure
prevalences represents that of many common environmental exposures, including physical
inactivity, obesity, and smoking. An exposure prevalence of 0.1 is representative of physical
inactivity in non-Hispanic whites (10.9% according to Centers for Disease Control (CDC)
statistics for 2007) and that of 0.5 is representative of obesity in non-Hispanic black women
(53% according to National Health and Nutrition Examination Survey (NHANES) statistics
from 2003–2006). The prevalence of physical inactivity in other racial/ethnic groups,
obesity in other racial/ethnic/sex groups, and smoking (19.8% according to CDC statistics
for 2007) falls between 0.1 and 0.5. The required sample size to detect a significant G×E
interaction of reasonable magnitude in a GWAS at p<10−7 is approximately two to three
times larger than that needed to test a single variant at p<0.05 due to the correction for
multiple testing.
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High as the sample sizes are in Table II, they are underestimates because in reality both G
and E are likely measured with error. As discussed below, accurate measurement of
environmental exposures is the exception rather than the rule. Genotypes are also subject to
measurement errors but these are generally small compared with errors in environmental
exposures. However, in GWAS, the vast majority of the common SNPs are not measured
directly but rather are captured through tag SNPs. When testing for SNP main effects, it is
well known that imperfect tagging inflates the required sample size by a factor of
approximately 1/r2 [Pritchard and Przeworski, 2001]. Under certain assumptions, this
applies more generally to covariates measured with error, specifically the required sample is
inflated by the reciprocal of the square of the correlation coefficient between the true value

of the covariate and its measurement [Devine and Smith, 1998]. Thus, if  is the LD

between a tag SNP and the causal SNP, and  is the squared correlation coefficient between
the true exposure and the measured exposure, we can expect an approximate sample size

inflation of . For example, if , then the required sample size to detect
a G×E interaction with a given power will be 39% higher than the required sample size if
both G and E were measured without error.

Unfortunately, given the realities of epidemiological research and the desire to continue to
use valuable existing studies (e.g., FHS), the required sample sizes are often not practical.
Moreover, recent discussions have pointed out that corrections for multiple testing, such as
the Bonferroni correction, are too conservative because they do not take into account
correlations between the tests due to LD [Rice et al., 2008]. Rice et al. point out that the
effect sizes of susceptibility alleles (and G×E interactions) will rarely reach the required
level of significance in GWAS if a Bonferroni correction is used. Although the Bonferroni
correction is easy and straightforward to calculate, less conservative methods, such as
permutation testing, false-discovery rate, and sequential methods (splitting the data into a
test set and replication set), may need to be applied to balance the type I and type II errors
(false positives and false negatives, respectively). Alternately, Maenner et al. [2009] initially
used a machine learning approach, which is not based on p-values so a Bonferroni correction
is not applicable. Machine learning approaches can screen large amounts of data and take
into account interaction effects as well as main effects without requiring model
specification. They then selected a very small number of variables with the highest variable
importance scores and tested these for interactions using traditional regression approaches.

Accurately quantifying environmental exposures at the individual level is a challenge that is
widely recognized and the topic of the NIH Genes, Environment and Health Initiative. The
difficulty of this task, however, may be most evident when contrasted with the detail and
volume of information obtained from genetic samples. In all three data sets, measures of
environmental variables were comparatively crude, if available at all. Although the FHS
data includes a variable for cigarettes smoked per day at each visit, missing data and the lack
of information about smoking before and between visits make it difficult to quantify
smoking behavior. Given the structure of smoking data, a choice has to be made between
creating crude categories of exposure (e.g., ever or never smoked) and basing the
ascertainment of exposure on a limited time period (e.g., average number of cigarettes
smoked per day across visits, or last known smoking status). More complete measurements
of environmental exposures across time would not only better represent the exposure of
interest, but would also allow greater flexibility to replicate findings and to compare with
other studies in which exposures are computed differently. Several groups selected sex as an
“environmental” variable of interest, which could represent a proxy for different
environmental exposures [Arya et al., 2009]. While the measurement of sex is certainly
more straightforward than smoking or alcohol consumption, it does not necessarily provide
more insight into the causal pathways of specific environmental exposures. Because many
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health outcomes are thought to be a complex combination of environmental and genetic
factors, future studies should strive to create new methods for the collection of meaningful
environmental information that is as reliable and comprehensive as the genotype data.

The FHS presented additional challenges beyond that of multiple comparisons and
measurement of environmental exposures when testing for G×E interactions. The
longitudinal, family-based design resulted in data that were correlated in two ways: repeated
measurements taken in the same individual at multiple time points and measurements taken
in members of the same family. Shi et al. [2009] addressed both types of correlation by
applying a three-level hierarchical linear mixed-effects model to account for correlation due
to the family-based longitudinal data. Using the simulated data, they found this model to be
generally more powerful than using a cross-sectional model that accounted for familial
correlation. Joubert et al. [2009] used a novel variance-component method to account for
both repeated measures and familial correlation. Maenner et al. [2009] utilized the
longitudinal data by analyzing age at onset of CHD as the outcome. Gu et al. [2009] used a
two-level factor analysis for longitudinal data. Maenner et al. and Gu et al. used a
generalized estimating equations model to confirm the results from their primary analysis
while accounting for familial correlation. The use of longitudinal data in studies of G×E
interactions is particularly appealing because it may help overcome some of the pitfalls
discussed above. Specifically, some of the power lost by conducting a G×E analysis using
GWA data may be recaptured by the use of longitudinal data and having multiple
measurements of the environmental exposure may lessen the problem of measurement error.

As discussed previously, because tests for G×E interaction are generally less powerful than
those to detect main effects and current GWAS are typically only powered to detect main
effects, it is important for investigators to choose an analysis method that has the most
power to detect G×E interactions. Group 10 has investigated the use of many different
methods, including traditional logistic regression [Arya et al., 2009; Zhuang and Morris,
2009], latent components analysis [Gu et al., 2009], machine learning algorithms [Maenner
et al., 2009], an extended generalized estimating equations approach [Chiu et al., 2009], and
hierarchical modeling [Shi et al. 2009]. As discussed previously, many of these analyses
identified markers involved in G×E interactions that would have been missed if tested for
main effects alone. Zhuang and Morris [2009] and Joubert et al. [2009] applied a two degree
of freedom test that has been shown to be a more robust choice to detect markers involved in
disease risk because it jointly tests for main effect and interaction [Kraft et al., 2007]. The
case-only analysis has been shown to be a powerful alternative to test for G×E [Khoury and
Flanders, 1996; Piegorsch et al., 1994]. However, in a genome-wide setting, the assumption
of G×E independence in the population is untenable across the large number of markers.
Recently, Murcray et al. [2009] developed a two-step method that uses a case-only style
screening step on the combined case-control sample to reduce the number of markers tested
formally for interaction. They show that their two-step test is more powerful than a
traditional logistic regression model for interaction under a wide range of scenarios, even in
the presence of an association between gene and environment in the population. Mukherjee
and Chatterjee [2008] developed an empirical Bayes-type shrinkage estimator to model G×E
interactions with the efficiency of the case-only design and unbiasedness of a case-control
design. By combining case-control and case-only analysis, Li and Conti [2009] developed a
Bayes model averaging approach to obtain a single estimate of the interaction effect.
Through simulation, their Bayes model averaging approach was shown to be more powerful
and robust to violations of independence than traditional approaches. Although complex
disease is likely to be more complicated than can be defined by simple two-way interaction
models, the development of powerful tools that incorporate the joint effects of genes and
environment is an important step toward understanding disease outcomes.
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Although only one of the Group 10 contributions tested for population stratification [Arya et
al., 2009], it should be considered in all studies of G×E interaction. Population stratification
can occur when systematic differences in allele frequencies exist between subgroups of a
population, often corresponding to distinct genetic ancestry. This is an issue for GWAS
because it can result in erroneous associations with the outcome. For analyses including
G×E interactions, population stratification is an issue if population membership is associated
with the outcome, the genetic effect, and the environmental exposure. One way to determine
this is first to test for population stratification, i.e., by employing principal-components
analyses using the software EIGENSTRAT [Patterson et al., 2006; Price et al., 2006]. If
distinct populations are found, then population membership can be tested for association
with the environmental variable as well as with the outcome. A priori criteria for a measure
of association should be determined by the investigator. In this scenario, it is assumed that
the association with the genetic effect is established through the principal-components
analysis. If population membership is also found to be associated with the environmental
exposure and the outcome, then the final analyses should adjust for population stratification.

Finally, analyzing G×E interactions can be computationally intensive. For dichotomous
traits, testing G×E interaction under a logistic regression framework requires maximizing
the likelihood function numerically; for quantitative traits, testing the interaction with
family-based longitudinal data using a mixed-effects model also relies on numerical
optimization, both of which are computationally much more extensive than contingency
table or regular regression approaches. Bayesian methods are, inherently, computationally
demanding as well, but may allow consideration of more complex models. When scaling up
to genome-wide data with hundreds of thousands of SNPs, care should be taken to choose an
appropriate statistical model, analysis software, and necessary computing hardware. As
demonstrated by Shi et al. [2009], mixed-effects models with Kronecker and hierarchical
structures yielded comparable model fitness. However, the Kronecker analysis required
about 5 minutes for a single model fitting, while the hierarchical model required only 3
seconds, both using SAS PROC MIXED. Due to the parallel nature of the genome-wide
scan, cluster computing with tens or hundreds of computing units working simultaneously
can significantly reduce the overall computation time. SAS Grid computing enables SAS
applications to automatically utilize grid resources. PLINK version 1.05 [Purcell et al.,
2007] provides an R interface, which allows the use of abundant analytical resources
developed under R and also offers an option for cluster computing at no cost.

The analysis of G×E interaction is likely to be of increasing importance as researchers
attempt to unravel the etiology of complex diseases using high-volume genetic data. A
researcher primarily interested in environmental risk factors may be interested in identifying
genes that modify the effect of a target environmental risk factor for a disease, while a
researcher primarily interested in genetic risk factors may want to know how an
environmental factor affects the penetrance of a gene on a disease. Either situation can be
viewed as G×E interaction, and for both, the researcher will be charged with conducting the
most efficient analysis possible. At a minimum, this will include consideration of sample
size and power, potential population stratification, and the best way to measure the
environmental exposure. The Group 10 contributions have provided examples of several
approaches one might take in testing G×E interactions, for example, jointly testing for a
main and interaction effect, testing for population stratification, and the use of longitudinal
data with multiple measurements of the environmental exposure to lessen the problem of
measurement error. Although several new issues arise when one analyzes G×E interactions
in a GWAS, Group 10 demonstrated that such analysis may hold the promise of uncovering
new genes that might not otherwise be detected.
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TABLE II

Required number of case-control pairs to detect a G×E interaction

Interaction
effect ORG×E

Exposure
prevalence

Minor allele frequency*

0.05 0.40

2.0 0.1 6,238 / 12,110 1,364 / 2,748

0.5 2,515 / 4,946 547 / 1,325

5.0 0.1 1,001 / 1,293 245 / 386

0.5 459 / 657 113 / 320

*
Required N assuming a SNP-specific significance level of α=0.05 / α =10−7, the latter corresponding to a GWA scan with Bonferroni adjustment

for 500,000 tests.
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