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Abstract
Robust oscillations have recently been observed in a synthetic gene network composed of coupled
positive and negative feedback loops. Here we use deterministic and stochastic modeling to
investigate how a small time delay in such regulatory networks can lead to strongly nonlinear
oscillations that can be characterized by “degrade and fire” dynamics. We show that the period of
the oscillations can be significantly greater than the delay time, provided the circuit components
possess strong activation and tight repression. The variability of the period is strongly influenced
by fluctuations near the oscillatory minima, when the number of regulatory molecules is small. We
explore the effect of the positive feedback loop on the robustness of these oscillations.

Recently, we constructed a synthetic two-gene oscillator which exhibited highly robust and
tunable oscillations [1]. The design of the oscillator was motivated by the original
theoretical proposal [2] in which oscillations were due to the interplay of positive and
negative feedback loops operating at different time scales. However, experimental results
suggested that the core of the oscillator was a single multi-stage NFB circuit (Fig. 1), while
the PFB loop helped to increase the robustness and tunability of oscillations. In that study
[1] we also developed a detailed biochemical model of this circuit, which explicitly
incorporated multiple steps leading from gene transcription to formation of mature protein
multimers and protein-DNA interactions. Such models are useful for making testable
predictions, however they are not transparent enough to permit analytical investigation and
thus gaining qualitative insights into the mechanisms controlling the circuit dynamics. In
particular, it was not clear how relatively small (3-5 min) delays caused by the intermediate
steps in protein synthesis can lead to rather long-period (20-60 min) oscillations. In this
Letter, we replace the feedback cascade (Fig. 1) by a single reaction with a fixed
deterministic delay time. It is well known that delayed auto-repression can lead to
oscillatory gene expression [3-8]. Here we demonstrate analytically that in a strongly
nonlinear regime this system exhibits what we term degrade-and-fire (DF) oscillations, in
analogy with integrate-and-fire models [9]. An essential feature of this regime is that the
period of oscillations can be arbitrary long compared to the delay time. In this regime, we
are able to derive analytic estimates for the mean period and its variance.

While the results are mostly presented for the NFB-only case, we also address the role of an
additional PFB loop, which was present in the experimental realization of the oscillator [1].
Details of these calculations can be found in the Supplementary Information (SI) [10].
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NFB-only system
We consider a system with only two reactions: production of a repressor protein and its
degradation. These reactions are characterized by the rates  and  to produce or
degrade repressor, respectively. The production rate is negatively regulated by the repressor
itself, and this reaction is assumed to take a finite time τ from the start to completion of a
mature repressor protein, , where r(t) is the number of repressor molecules at
time t, rτ(t) ≡ r(t − τ),  is a Hill function governing NFB [11]. Repressor
is degraded enzymatically at a maximum rate γr, and we also assume a small first-order
degradation due to dilution with rate β,  with R0
characterizing the concentration of the enzyme.

We simulated these two stochastic reactions using the extension of the Gillespie algorithm
[12] proposed in [7] to treat delayed reactions. For sufficiently large α ≳ γr ≫ C0/τ > R0/τ
[13] the system exhibits strongly nonlinear degrade-and-fire oscillations in which the
number of protein molecules rises rapidly from zero, and then slowly decays back to zero,
after which the process repeats. Figure 2a shows a typical trajectory r(t).

DF oscillations consist of two main phases. Each oscillation begins with a “production”
phase. During this phase the existing repressor concentration is too small to preclude
transcription and nascent repressor is produced (to become active a time τ later). The second
phase, which we call the “degradation” phase, primarily consists of the degradation of
functional repressor. For the majority of the degradation phase, production is tightly
repressed, and transcription begins only when the level of the repressor falls near the
threshold value C0. The onset of the production phase can be associated with time ton
defined by condition F(ron) = γr (Fig. 2b). However, due to production delay, new repressor
molecules do not appear en masse until time ton + τ. This causes a rapid rise of the repressor
level. Once the repressor level significantly exceeds C0 again, production of new repressor
ceases, and the concentration of repressor reaches a maximum within a time τ later, after
which a new decay phase commences, and so on. Because of the stochasticity of the
biochemical reactions, the amplitudes of individual pulses vary, but their shapes are similar.
The properties of DF oscillations can be analyzed in terms of these alternating degradation
and production phases.

Deterministic analysis
In the deterministic limit, the mass-action kinetics of delayed production and degradation
can be expressed by a delay-differential equation

(1)

This equation describes a sequence of nearly triangular pulses of repressor similar to that of
Fig. 2a, however with a constant amplitude and duration. The key to analytically solving Eq.
(1) is to recognize that, in this strongly nonlinear regime of large-amplitude pulses, the
production of repressor is negligibly small during most of the degradation phase. For
simplicity of analysis, we further assume R0 → 0 and β = 0, in which case the decay
becomes a zeroth-order reaction. While this assumption is not essential, it greatly simplifies
the subsequent analysis. Note that in this approximation we have to augment the
corresponding simplified model by the natural condition r(t) ≥ 0. In this case the solution
during the degradation phase is linear in time,
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(2)

Here t0 is the time at which r first reaches zero (see Fig. 2b). This law for linear decay is
essentially independent of the amplitude of the previous pulse. Thus, individual pulses are
decoupled from each other.

The structure of the pulse at t > t0 can be reconstructed iteratively based on the knowledge
of the decay phase solution (2) at t < t0. In the integral form

(3)

for some times t, ti. Eq. (3) advances the repressor trajectory in intervals of time duration τ,
except when r(t) = 0, which should be treated separately. With this expression, we can first
determine the trajectory for ton + τ < t < ton + 2τ using ti = ton + τ and then in a similar
manner compute the trajectory at ton + 2τ < t < ton+3τ. During this second iteration, the
solution reaches a maximum at which r(t) is sufficiently large to neglect the production
term, and the new degradation phase commences. Thus, only two iterations of Eq. (3) from
time t = ton + τ are sufficient to determine the magnitude P for a pulse of repressor.

The degradation of a burst of repressor takes an approximate time TD = P/γr and is typically
the dominant contribution to the oscillation period. A simple, but useful, estimate for P is
the production P0 that occurs during t0 < t < ton + τ when r(t) = 0, i.e. when the production
rate is maximal. P0 is given by

(4)

As seen from this expression, the period of oscillations can be arbitrarily large compared
with the delay time τ, depending on the production and decay rates of the protein. This
estimate for the period has a maximum at a certain γr and becomes zero when γr → α, ron/τ.
A more accurate period estimate can be obtained using the integral expression (3), see SI.
Fig. 3a compares both these estimates to the results of stochastic simulations and direct
integration of the deterministic Eq. (1).

The case of nonzero but small β (βτ ≪ 1) can also be analyzed. Production bursts of
repressor are only slightly perturbed in this case. However, if the number of produced
proteins P ≫ γr/β, the initial degradation of the burst is exponential rather than linear, and so
the time TD(β) to degrade repressor to zero can be significantly less than for β = 0. It is easy
to show that βTD(β) ≈ ln (1 + βTD(0)), where TD(0) ≈ P/γr. Thus, the period of oscillations
in growing cells cannot be much larger than the dilution time β−1. On the other hand, the β-
correction is small for βTD(0) ≪ 1.

Stochastic analysis
Stochasticity in gene networks may arise due to randomness of discrete, molecular reactions
(intrinsic noise) and randomness associated with fluctuating environments (extrinsic noise)
[14-16]; here we only address the former. Enhanced variability, e.g. due to transcriptional or
translational bursting [17], is also not treated here but can be included readily.
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Stochastic DF oscillations can be approximated by a rapid burst of repressor with random
magnitude P that is subsequently degraded through a zeroth-order reaction with rate γr
(again, we assume β = 0 and R0 → 0). The random time for degradation to zero of P
repressor molecules satisfies a gamma distribution. Allowing the time to complete a burst of
repressor (magnitude P) to be sharply-defined (e.g. 3τ + ton − t0), the period variance can be
shown to consist of two parts (see SI)

(5)

where 〈P〉 and 〈ΔP2〉 denote mean and variance of the burst amplitude. The first term in Eq.
(5) is due to production variability and the second term is due to stochasticity of the
degradation process.

Analogous to the deterministic case, the statistics of the burst amplitude can be found by
integrating birth and death events for r(t) from time ton + τ to some later time, e.g. ton + 3τ,
assuming that the statistics of trajectories for earlier times are known. Assuming that the
probability of r = 0 for t > ton + τ is small, the equations for the evolution of the mean
repressor concentration 〈r(t)〉 and the correlation k (r(t2), r(t1)) read

(6)

(7)

with ti + τ ≥ t2 ≥ t1 ≥ ti, υ(r) = F(r) − γr, B(r) = F(r) + γr, and k(x1,x2) ≡ 〈x1x2〉 − 〈x1〉〈x2〉
(see SI for details). The RHS of Eq. 7 comprises two parts. The integral over B(rτ) is a
diffusive contribution to correlations due to uncorrelated production and degradation events
[18,19]. The remaining terms reflect variability due to the amplification of the randomness
in past repressor trajectories in the course of new repressor synthesis.

For very small ron, the production rate is effectively binary: it is zero when rτ > 0 and α
when rτ = 0. In this case the amplified variability is negligible, and the diffusive fluctuations
are dominant. It is easy to see in this case that P obeys Poisson statistics (assuming α + γr ≈

α), i.e. 〈ΔP2〉 ≈ 〈P〉, such that . This Poisson-like period variability
becomes relatively small for large P and is independent of the details of how the pulse of
repressor rises. However, for finite ron, the amplified history fluctuations can lead to a
significant period variability even when P is very large. In fact, simulations show that in
many cases the variability is much larger than the Poisson contribution (see Fig. 3b,d).

Equations (6), (7) can be solved perturbatively by writing r(t) = 〈r(t)〉 + δr(t), with δr(t)
being a small stochastic correction with zero mean. This approximation is used to
investigate oscillations in the limit γrτ ≫ ron [20]. After substituting Taylor expansions of
v(r) and B(r) in Eqs. (6), (7), we can compute correlation functions and variances
sequentially based on the knowledge of correlation functions and variances at earlier times
(see SI). These analytical results are compared to numerical results in Fig. 3b,d. As seen
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from the figure, at sufficiently large γr, the analytical theory agrees well with numerics.
Furthermore at large γr, the main contribution to the period variability is provided by the
Poisson-like fluctuations. However, for moderate and small γr (or for large α), the main
contribution to period variability is provided by amplified history fluctuations. Note that the
period variance has a maximum near the value of γr where repressor first fails to consistently
reach zero.

Coupled positive-negative feedback oscillator
The genetic oscillator built in [1] featured two coupled feedback loops, one negative and
another positive. The two proteins are encoded by two genes which are under the control of
identical hybrid promoters. These promoters are activated by one of the proteins (activator)
and repressed by the other (repressor). It was demonstrated experimentally that the dual
feedback loop design provided enhanced robustness and tunability of oscillations as
compared with a NFB-only design. To address this issue theoretically, we extend our
delayed model system to include two additional reactions of production and degradation of
activator a. Following the experiment, we assume that transcription of r and a genes is
controlled by identical promoters, but the delay in producing mature activator proteins τa is
different from τ, so repressor and activator production rates are, respectively,

 with F(r, a) ≡ α(f−1 + a/C1)/[(1 + a/C1)(1 + r/C0)2]. Here k is
the ratio of the production rates for activator and repressor, and f is the relative activation
strength (f = 1 corresponds to the NFB-only circuit). Repressor and activator degradation
occur independently with zero-order rates γr and γa, respectively. In the deterministic limit,
the dual feedback system is described by a pair of delay-differential equations (see SI).

In the DF limit, the inclusion of the PFB does not drastically alter the basic staging of phases
in NFB oscillations in Fig. 2b. PFB with high f and low τa can produce robust and large
amplitude oscillations that maintain a relatively low coefficient of variation (C.V.), i.e. with
C.V. similar to the NFB-only case with basal rate α/f (Fig. 4). Oscillation amplitude and
period tend to decrease as the activator delay becomes comparable to repressor delay, since
late-arriving activator allows repressor to be produced at the low basal rate α/f during most
of the production phase, but the C.V. can be remarkably insensitive to τa. However, for other
choices of parameters, the presence of PFB can actually lead to the increased C.V. as
compared to the NFB-only case (see SI).

Closing remarks
Synthetic gene circuits designed around a core delayed NFB circuit offer a promising
strategy for generating robust genetic oscillations. Here we have presented an analysis of a
simple model for such oscillators. A NFB-only system with strong tightly repressible
promoter and slow degradation can produce degrade-and-fire oscillations with a period
much larger than the delay time and with relatively small period variability. The main source
of oscillation variability is the short protein production phase when the number of repressor
molecules is low. An additional fast PFB loop in this model was found to be able to increase
the mean period and maintain low C.V. compared to an analogous NFB-only system. This
result is similar to recent findings regarding the role of positive feedback in biological
oscillations [21]. However, it should be noted that while other coupled positive and negative
feedback biological oscillator models [2,22] rely on a separation of time scales between the
two components to create relaxation oscillations, here the mechanism is based on the
presence of delay in the negative feedback loop and can function even in the absence of
PFB. Note that a different mechanism of long-period oscillations in cell dynamics have been
recently investigated in [8].
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We believe that the results presented here are also relevant for many naturally occurring
gene oscillators, such as circadian clocks and Hes1 system [23-25]. While they are generally
made up of many interdependent genes and proteins, one can often identify a core NFB loop
similar to Fig. 1.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIG. 1.
An auto-repressor genetic oscillator described in Ref. [1]. Transcriptional activity of the
gene is regulated by the concentration of the repressor protein through several sequential
kinetic steps. In this work, these steps are replaced by an explicitly delayed production of the
repressor.
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FIG. 2.
(a) DF oscillations in the stochastic NFB-only system, with parameters α = 300, γr = 80, C0
= 10, τ = 1, β = 0.1, R0 = 1. (b) A magnified view of the deterministic trajectory near the
production phase in the limit β = 0, R0 → 0.
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FIG. 3.
(a) Stochastic mean period (diamonds), deterministic period (dash-dot line) and two analytic
approximations, T0 = 2τ + P0/γr (Eq. (4), dashed line) and an analytic estimate based on Eq.
(2) (solid line), vs. γr for the NFB-only system with α = 10000, τ = 1, C0 = 50, β = 0. (b)
Coefficient of variation (diamonds), the Poisson-like contribution (dashed line), and more
accurate analytic prediction (solid line). (c) Mean period vs. α with γr = 800, for β = 0, 0.1,
0.2 as diamonds, circles, and crosses, respectively. (d) C.V. as a function of α for the same
three values of β as above. Analytic approximations as in (a) and (b) are also shown in (c)
and (d), respectively. Each symbol represents the average over 1000 samples.
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FIG. 4.
Mean period (a) and coefficient of variation (b) of the stochastic coupled positive-negative
feedback system vs. 1/f, with different values of τa (labeled) and fixed α averaged over 5000
samples. These results are compared with the NFB-only system with the production rate set
to the basal rate α/f. Repressor oscillations stay above zero approximately when 1/f > 0.6.
Parameters are α = 20000, γr = 400, γa = 1200, k = 2, τr = 1, C0 = C1 = 50.
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