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Abstract
In single-particle reconstruction methods, projections of macromolecules at random orientations
are collected. Often, several classes of conformations or binding states coexist in a biological
sample, which requires classification, so that each conformation can be reconstructed separately.
In this work, we examine bootstrap techniques for classifying the projection data. When these
techniques are applied to variance estimation, the projection images (particles) are randomly
sampled with replacement from the data set and a bootstrap volume is reconstructed from each
sample. In a recent extension of the bootstrap technique to classification, each particle is assigned
to a volume in the space spanned by the bootstrap volumes, such that the projection of the
assigned volume best matches the particle. In this work we explain the rationale of these
techniques by discussing the nature of the bootstrap volumes and provide some statistical
analyses.
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1. INTRODUCTION
In single-particle reconstruction methods [1], projections of macromolecules at randomly
unknown orientations are collected by a transmission electron microscope. Often, several
classes of conformations or binding states coexist in a sample. To obtain structures with high
accuracy, it is required to separate the classes before reconstruction of the macromolecule
takes place. In this work, we take a close look at bootstrap techniques for classifying the
projection data. In the bootstrap techniques for variance estimation [2], the projection
images (or particles) are randomly sampled with replacement from the data set and a
bootstrap volume is reconstructed from each sample, assuming the orientations to be known.
In a recent extension of the bootstrap technique to classification [3], each particle is assigned
to a volume in the space spanned by the bootstrap volumes, such that the projection (in the
same orientation as the particle) of the assigned volume best matches the particle. Then, a
clustering algorithm applied to the assigned volumes determines the class to which the
particle belongs. In this work we explain the rationale of these techniques by discussing the
nature of the bootstrap volumes: i.e., how they relate to the underlying structural classes.
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Furthermore, several statistical analyses should become easy to apply in our framework.
Finally, the way the particles are assigned to volumes in the space spanned by the bootstrap
volumes is closely examined, and our proposed solution differs from that given in [3].

In Section 2 we discuss the nature of the bootstrap volumes and the effect of noise, as well
as the classification method based on the analysis of the bootstrap volumes (‘bootstrap
classification’). Section 3 shows the results obtained by bootstrap classification for
simulated and experimental data and a comparison of the bootstrap method with a maximum
likelihood classification approach [4]. Finally, discussion and conclusions are provided in
Section 4.

2. BOOTSTRAPPING IN THE SINGLE PARTICLE METHOD
The aim of the bootstrapping technique [6] is to estimate the sampling distribution of an
estimator by sampling with replacement from a given sample. It is a general-purpose
approach to statistical inference, which circumvents the problem posed by the unavailability
of large sample-size data.

2.1. Variability of classes via the bootstrap method
If we repeatedly sample, with replacement, the projection data and reconstruct a 3D volume
from each sample (assumed the corresponding orientations are known), we obtain an
estimate of the probability distribution that reflects the “variability” in the data. This
variability, which is estimated as variance of the bootstrap volumes, is not only due to the
presence of different conformational or binding states, which is the goal in 3D variance
estimation [2], but it also comes from imperfections in the data collection such as instrument
shot noise, “background” noise, reconstruction artifacts, contrast transfer function effect [1],
alignment error, etc. Two major sources of variance are those due to the coexistence of
different conformational or binding states and instrument noise. Unlike the latter, which is
characteristics for 2D projection data, the former is three-dimensional in nature. Therefore,
care must be taken when relating the two. Here we attempt to establish such a relation, by
describing how the bootstrap volumes relate to the underlying true structures of the classes.

2.2. Bootstrap volumes and the class structures
We show that the bootstrap volumes are in fact approximations to convex combinations of
the true structures. For simplicity in the discussions, we consider the case where the
projection data come from a molecule occurring in M = 2 conformations. The analysis for
more than two conformations follows straightforwardly. Assuming a discrete model, given
the data , the least-squares estimator is a popular criterion1 for finding the true volume

:

(1)

where R is the discrete Radon transform and ∥∥ is the Euclidean norm. Assuming that R’R is
invertible (R’ denotes the transpose of R), the solution to (1) has a closed form

(2)

1For instance, the well known SIRT algorithm can be viewed as a gradient descent algorithm for finding xLSQ [7].
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In bootstrapping, data come from the two structures. Let  and  be the
respective sampled projection data, where Hi is the number of projection images taken from
class i = 1, 2 and I is the number of pixels in a projection image. Let  and

 be the corresponding Radon transforms; i.e., if  are the true
volumes, then in the absence of imperfections in the data

(3)

for i = 1, 2. Without loss of generality, we can set the sampled data to be  and

. Substituting the values of y and R in (2), we obtain an expression for the
reconstructed bootstrap volume, based on the least-square criterion,

(4)

Taking in to account (3) and the fact that , the bootstrap volume can be
viewed as a sum of linear transformations of the true volumes x1 and x2

(5)

whose linear transformations , sum up to the identity matrix of
appropriate size.

We have proved that a bootstrap volume is a sum of linear transformations of the true
classes. In fact, this sum is an approximation to a convex combination of the classes. To see

this, we note that the effect of , is essentially a blurring with a kernel that goes
like 1/r (r is the radial distance; [8]) multiplied by a factor that is proportional to the number
of projection images Hi taken from class i = 1, 2. Thus, the effect of the linear

transformations  is basically a constant multiplication by factor Hi/H, where H is
the total number of projections in a bootstrap sample; i. e.,

(6)

2.3. Profile of the distribution of the bootstrap volumes
It is easy to see that the right hand side of (6) corresponds to summing volumes from
Bernoulli trials with support {x1, x2}, probability p (whose realization is H1/H in this case),
and dividing the sum by the total number of projections H:
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(7)

That is, most of the bootstrap volumes are located near the center of the convex hull with
vertices x1 and x2. A concentration near the vertices would be more desirable from the point
of view of estimating the convex hull.

2.4. Imperfections in the projection data
Imperfections in the data come from the electron optics (astigmatism, spherical aberration,
etc.), background noise, shot noise, alignment error, etc. Let us assume an additive noise
model for the 2D projection data, such that it can be “back-projected,” leading to an additive
noise model for the 3D volumes. That is, in (3) we have that, for i = 1, 2, yi =Ri (xi + gi)=Rixi
+ hi, for some gi and hi = Rigi, which are respectively the 3D and 2D noise component. This
is realizable if, for instance, hi consists of uniform independent Gaussians at the pixels, the
reconstruction region is spherical, and gi are independent Gaussians at the voxels, with
lower variance close the center of the volume than away from the center. Accordingly, (7)

becomes . The variance of xBS is thus composed of two terms: one

that is due to the class difference, which is the signal part (computed as , where dj
is the difference between x1 and x2 at voxel j, for j = 1, …, J) and the other term that is due
to noise. Since both terms are scaled by factor H, the signal-to-noise ratio (SNR) for
detecting class difference will not be improved by increasing H.

2.5. Classification using bootstrap method
An immediate consequence of the fact that the bootstrap volumes are convex combinations
of the class volumes is that the space spanned by the bootstrap volumes approximates that
spanned by the class volumes. Hence, for each projection image we can restrict ourselves in
that space to estimate the volume that generated that projection. Ideally, these estimated
volumes cluster around the true class volumes.

We now proceed to consider the case of M ≥ 2 classes. Suppose we have generated a
sufficient number of bootstrap volumes and H is large enough, so that their principal
directions are close to the principal directions of the space of the class volumes. Let

 be the resulting eigen-volumes and z0 the average volume. Given a projection
image yP, we wish to find an element z (α) in that space (reconstitution problem); i.e.,

, such that the discrepancy between its projection  (in the
same orientation as that of yP) and yP is minimized. For simplicity, in this paper we choose
the discrepancy to be the Euclidean distance

(8)

To avoid shift and scale variabilities, yP and Pzn, 0 ≤ n ≤ N, are replaced by their normalized
(to zero mean and unit variance) version, prior to computing α in (8).
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2.6. Algorithm for classification based on bootstrapping
Algorithm 1 summarizes our proposed approach to classification using bootstrapping, which
is the same as the existing algorithm [3], except for the way in which the coefficients are
determined. In [3], apparently the n are set to be the inner product between Pzn and yP, 1 ≤ n
≤ N. We stress that, due to the space limitation, the description of our algorithm as described
here is rather sketchy. We will treat in a separate communication such issues as the
dependence of the results on the number of bootstrap volumes and particles used, filtering of
the bootstrap volumes, criteria for estimating α, etc., following our framework; though
several useful statistical analyses are already dealt in [9] for variance estimation.

3. RESULTS
We tested our proposed algorithm on experimental and simulated data. The experimental
data set consists of ten thousand 130 × 130 particles randomly chosen from a larger data set,
on which the maximum likelihood (ML) classification method (a popular alternative to ours)
[5] was previously tested, giving rise to two main structures: the 70S E. coli ribosome in the
classical and hybrid state (see Fig. 1). For the simulated data set, we used these two states as
phantoms and generated ten thousand 130 × 130 noisy projections in the exact same manner
as described in [10]; i.e., the SNR was 0.06 and the CTF was applied. To gain computational
speed, we decimated the particles to size 652 in both data sets, aligned them to a library of
reference projections (on a ten-degree angular grid) of a common 3D reference (the density
map of the ribosome in one of the two states), and used SPIDER [11] to generate forty
thousand bootstrap volumes in each case. It was necessary to filter the volumes, and for that
we used a low-pass filter with cut-off 0.1, which was limited to the first lobe of the CTF [9]
(though this value was not optimized). We relied on SPARX [12] to perform the eigen-
decompositions. The clustering of the coefficient vectors α was performed via the k-means
algorithm. To assess the classification performance, we also tested the ML method on the
simulated data set.

3.1. Experimental data
Fig. 2 shows the result of classification using our version of the bootstrapping classification
method. We used five eigen-volumes (N = 5) and looked for two classes (M = 2). One can
immediately recognize the differences of the two structures in the presence/absence of the
EF-G and the position of the L1 stalk. Not visible is the presence/absence of the A-site
tRNA, which is another difference that the algorithm was able to pull out.

3.2. Simulated data
As measured by a classification error score whose minimum is 0% (perfect classification)
and the maximum is 50% (random guess), the bootstrapping method (with N = M = 2) yields
16%±0.2% (see Fig. 1) versus 34%±10% for the ML approach [4] (refinement angle of ten
degrees, two classes, 20 iterations). The confidence interval of the classification error was
obtained by running the respective algorithms ten times. The large dispersion of the figure in
the ML method is likely due to the presence of local maxima (which is not an issue in the
bootstrapping approach, except for the k-means algorithm) and the relatively small data size.

4. DISCUSSION AND CONCLUSIONS
We have explained the rationale of bootstrapping in the context of classification and
proposed an algorithm the differs from the one initially proposed in an important detail.
Through repeated reconstructions from bootstrap samples, we can estimate the space
spanned by the underlying class structures. By searching in this space a volume whose
projection best matches a given particle helps us decide on the class to which the particle
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belongs. We show that the bootstrapping approach offers a competitive alternative to current
popular methods, such as the ML approach: the former does not suffer from local maxima
effect (except for the clustering algorithm, if k-means is used). It is noted that in the
experiments, the angular assignment of the projection data was done only once, at the
beginning, and with respect to one reference volume. An iterative process, in which the
angles are refined with respect to the current reconstructed class volumes, should provide
even better results. Further improvement may also come from alternative ways of finding
the coefficient vector α, since the Euclidean distance in (8) is sensitive to outliers. Finally, it
should be noted that classification becomes more challenging as the variability of the
structure classes competes with noise in the data, both of which are scaled down by the
number of particles used in the sampling. Hence, to reduce the noise, it is necessary to find
ways other than increasing the number of particles; for that, if filtering is used, the loss of
high frequency information can be detrimental for the classification.
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Fig. 1.
70S E. coli ribosome in classical (left) and hybrid (center) states [5], and our classification
(right) of noisy mixed projections of the two structures.
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Fig. 2.
Reconstructions from ten thousand classified particles from the experimental data set,
showing the two classes corresponding to the classical and hybrid states. Differences in the
position of the L1 stalk and the presence/absence of the EF-G are highlighted.
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Algorithm 1

Bootstrap Classification

1. Sample with replacement the projection data

2. Reconstruct bootstrap volume from each sample

3. Compute the eigenvolumes of the set of samples

4. For each particle:

 4a. Project the eigenvolumes in the orientation of the particle

 4b. Compute α in (8)

6. Classify the particles by clustering α, for all the particles
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