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Abstract

Mitochondrial dysfunction and oxidative damage are at the origin of numerous neurodegenerative diseases like
Friedreich ataxia and Alzheimer and Parkinson diseases. Friedreich ataxia (FRDA) is the most common he-
reditary ataxia, with one individual affected in 50,000. This disease is characterized by progressive degeneration
of the central and peripheral nervous systems, cardiomyopathy, and increased incidence of diabetes mellitus.
FRDA is caused by a dynamic mutation, a GAA trinucleotide repeat expansion, in the first intron of the FXN
gene. Fewer than 5% of the patients are heterozygous and carry point mutations in the other allele. The
molecular consequences of the GAA triplet expansion is transcription silencing and reduced expression of the
encoded mitochondrial protein, frataxin. The precise cellular role of frataxin is not known; however, it is clear
now that several mitochondrial functions are not performed correctly in patient cells. The affected functions
include respiration, iron–sulfur cluster assembly, iron homeostasis, and maintenance of the redox status. This
review highlights the molecular mechanisms that underlie the disease phenotypes and the different hypothesis
about the function of frataxin. In addition, we present an overview of the most recent therapeutic approaches for
this severe disease that actually has no efficient treatment. Antioxid. Redox Signal. 13, 651–690.
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I. Introduction and History

Friedreich ataxia (FRDA) was first described in 1863 by
Nikolaus Friedreich (107–109) and generally was accepted

as a new disease after his publications in 1877 (110, 111).
Friedreich described the fundamental clinical and pathologic
features of the most common hereditary ataxia, which are age
at onset around puberty; degenerative atrophy of the poste-
rior columns of the spinal cord, leading to progressive ataxia,
sensory loss, and muscle weakness; and also often observed,
scoliosis, foot deformity, and cardiac symptoms. The eponym
was proposed for this disease by Brousse in 1882 (233). Eight
years later, Ladame (175) published the description of 165
cases. However, the degree of variability in the clinical fea-
tures of FRDA made controversial the diagnosis and the de-
scription of new cases for the next 100 years. Since the
description of the disease by Friedreich, a disagreement ex-
isted about the distinct nature of FRDA and Charcot-Marie-
Tooth disease, and misdiagnosis were frequent (141, 229, 271).
Therefore, a clear definition of FRDA was needed, and the
Québec Collaborative Group in 1976, based on a clinical study
of 50 cases, proposed several criteria essential for diagnosis
(123). In a study of 150 cases, Harding (140) agreed with the
Québec classification stating that ataxia of all limbs and ab-
sence of tendon reflexes were obligatory features, but found
these criteria too rigid and difficult to apply in early child-
hood. She thus proposed a list of criteria for the diagnosis of
FRDA shown in Fig. 1. A later clinical review of 12 children
confirmed that the Québec criteria were not appropriate in
such cases and supported the use of Harding’s criteria for
early diagnosis (1). Recessive inheritance of the disease was
widely accepted at this time, even though occasional reports
of pseudodominant cases continue to appear in the literature
(153, 230, 318). Nevertheless, the failure to diagnose atypical
cases with an overall FRDA-like phenotype, but missing some
of the essential diagnostic features, persisted. Whether these
cases represented extreme patterns of the disease or different
diseases was determined only once the genetic mutation un-
derlying FRDA had been identified.

Given that such clinical variability is unusual for a recessive
disorder, several authors suggested that FRDA was caused
by mutations in several different genes, with one mutation
playing a predominant role (19, 140, 324). In 1988, the gene
mutated in FRDA patients was mapped to chromosome 9 by
linkage analysis with restriction length polymorphism (RFLP)

markers (57). The meticulous work of several research groups
allowed the chromosome region to be narrowed to 150 kb at
9q13 (113, 212, 260, 291, 295). Cloning the gene proved prob-
lematic because of the reduced level of recombination events
occurring close to the FRDA locus and the proximity of this
locus to the variable heterochromatic region near the centro-
mere. In 1996, an international collaborative effort successfully
identified the X25 gene (now named FXN gene according to the
HUGO Gene Nomenclature Committee) and the mutations
responsible for FRDA (51). The majority of FRDA patients

FIG. 1. Diagnostic criteria for typical FRDA according to
Harding (140).
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(96%) were homozygous for an unstable GAA trinucleotide
repeat expansion in the first intron of the FXN gene, but a few
patients were heterozygous, with point mutations found on the
other allele (51, 70). The identification of the FXN gene and of
the most frequent mutation provided a valuable tool for the
diagnosis of FRDA. Additionally, it demonstrated that the
typical and atypical phenotypes of the disease were caused by
mutations in the same gene (58, 78, 93, 164).

Before the identification of the gene involved, FRDA was
suggested to be an inherited metabolic disease; however,
despite the large number of investigations carried out, the
findings were contradictory, with no precise biochemical de-
ficiency detected (250). Nevertheless, the mitochondrial na-
ture of the pathology was anticipated before the discovery of
the gene (17). The identification of the gene allowed the bio-
chemical defect underlying the disease to be clarified. The
expanded GAA repeats cause an abnormal conformation of
DNA and a decrease in transcription. The consequence is a
reduction in the expression of the FXN gene and a decrease in
the encoded protein, frataxin (51). Frataxin localizes to the
mitochondria, but its function remains unclear. It is involved
in iron homeostasis (iron–sulfur cluster and heme synthesis),
respiratory control, and resistance to oxidative stress (15, 40,
183, 215, 262).

A link to oxidative stress was anticipated because of the
similarity of phenotypes between FRDA and ataxia with vi-
tamin E deficiency (AVED) (126). The importance of oxidative
damage in the pathogenesis of FRDA was further confirmed
by the treatment of three patients with idebenone, a free-
radical scavenger, and the resulting reduction in myocardial
hypertrophy (266). Idebenone remains the best drug for the
treatment of FRDA.

Here, we provide a comprehensive review of the clinical
features and pathogenesis of Friedreich ataxia, the mutations
in the FXN gene causing the disease, the various findings and
hypotheses concerning the function of frataxin and an update
on therapeutic solutions.

II. Clinical Features and Pathogenesis
of Friedreich Ataxia

A. Epidemiology and clinical features

Friedreich ataxia (MIM 229300) is the most common in-
herited recessive ataxia. It is an autosomal recessive disease
with an estimated prevalence in the order of 1:50,000 in white
populations (51, 140). The carrier rate has been estimated at
1:120–1:60 (51, 85, 141). The incidence of the disease may be
higher in certain populations because of founder effects (35,
80) or consanguineous marriages (261). This disease is found
only in individuals of European, North African, Middle
Eastern, or Indian origin and is very rare, or inexistent, in sub-
Saharan Africans, Amerindians, and Asians (173).

The first symptoms usually appear around puberty, but the
age at onset can vary from infancy (2–3 years) to adulthood
(after 25 years old). Gait instability and generalized clumsi-
ness are typical presenting symptoms. As described by Frie-
dreich, the main feature of this disease is the progressive and
unremitting ataxia. On average, patients lose the ability to
walk 10 to 15 years after onset of the disease and need a
wheelchair to accomplish daily activities (93, 140, 211). Other
main neurologic features of FRDA include dysarthria, tendon
areflexia, sensory loss, and pyramidal signs (Fig. 1, Table 1).

Two thirds of patients have cardiac symptoms (left ventricu-
lar hypertrophy), which contribute to disability and cause
premature death (93). Cardiomyopathy is the most frequent
cause of death among FRDA patients. Only in some patients
do skeletal deformation (such as scoliosis and pes cavus),
ocular abnormalities (such as nystagmus, optic atrophy, or
fixation instability) and hearing loss develop. Diabetes mel-
litus is found in 14–19% of patients, and glucose intolerance,
in 24–40% (99, 100, 288). Diabetes usually develops at a late
stage of the disease, after a mean disease duration of 15 years
(97, 140).

The variability in clinical signs observed in FRDA cases is
very extensive and includes age at onset, rate of progression,
severity, and duration of the disease. Several atypical FRDA
variants [as opposed to ‘‘typical’’ or ‘‘classic’’ FRDA cases that
have all the clinical features described by Harding (140)], with
an overall FRDA-like phenotype but missing at least one es-
sential diagnostic criterion, are well characterized. Atypical
variants thus include the Acadian type, late-onset FRDA
(LOFA), and FRDA with retained reflexes (FARR). The Aca-
dian type is observed in a population of French origin living in
North America and in their descendants, living in Louisiana,
and now called Cajuns. The age at onset is slightly later, and
the disease has a milder course of degeneration than does
classic FRDA (19, 209). In addition, several clinical signs, in-
cluding scoliosis, pes cavus, and cardiomyopathy, are fre-
quently less severe in the Acadian type (19, 209).

LOFA cases have all the features of typical FRDA, but
disease onset is after 25 years of age (77, 211). Disease pro-
gression, as indicated by years from onset to becoming con-
fined to a wheelchair, is slower in LOFA. Comparative studies
of patients with LOFA and typical FRDA show an increased
occurrence of lower-limb spasticity and retained reflexes and
decreased skeletal abnormalities in LOFA patients (27, 67). In
some reported cases, age at onset occurs after 40 or even after
60 years old (very late-onset FRDA) (122, 299).

FARR is a variant in which tendon reflexes in the lower limbs
are preserved, and the clinical features are generally present
but less pronounced (139, 164, 228). FARR cases frequently
arise in siblings of patients with typical FRDA cases (98).

B. Pathophysiology

The neuropathology of FRDA shows marked differences in
comparison with other hereditary ataxias, and major changes
occur in the spinal cord, peripheral nerves, and cerebellum
[for a recent review, see (232)]. Neurodegeneration occurs first
in the dorsal root ganglia (DRG), with loss of large sensory
neurons, followed by degeneration of posterior columns,
corticospinal tracts and spinocerebellar tracts of the spinal
cord, and the dentate nucleus in the cerebellum.

Sural nerve biopsies of FRDA patients show axonal neu-
ropathy with a profound reduction in the density of large
myelinated fibers (152, 259, 267). The density of small mye-
linated fibers may be normal (267) or moderately reduced
(334). The fine unmyelinated fibers are generally well pre-
served. Onion-bulb complexes may also be present (20, 259).
Electrophysiologic abnormalities in peripheral nerves include
severe reduction or complete loss of sensory nerve action
potentials and slightly decreased nerve-conduction velocities
(334). The cellular events leading to the loss of the large my-
elinated fibers remain unclear, but could include axonal
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degeneration and demyelination, involving both neurons and
Schwann cells (194).

Magnetic resonance imaging of the cervical spinal cord
of FRDA patients showed thinning consistent with
degeneration of posterior and lateral columns (197). Loss of
myelinated fibers and gliosis are characteristic of these re-
gions of the spinal cord (152, 167, 176). Severe neuronal loss
also is observed in the Clarke column, with atrophy in the
spinocerebellar tracts. The Clarke column is a major relay
center for unconscious proprioception, while sensory infor-
mation is passed to the cerebellar cortex by the spinocer-
ebellar tracts. Neuronal degeneration in these regions leads
to the loss of position and vibration senses and abolishes
reflexes in FRDA patients. Atrophy also is observed in the
corticospinal motor tracts. The pattern of atrophy of the
long-tract fibers, severely affected in the distal portions,
suggests a ‘‘dying back’’ process (267). The degeneration of
corticospinal and pyramidal tracts leads to muscle weakness
and extensor plantar responses. In the cerebellum, the
dentate nucleus is severely affected, but the cortex is spared
during the beginning stages of the disease, until Purkinje
cell loss can be observed (166). Progressive atrophy of sen-
sory and cerebellar pathways causes ataxia, dysarthria, gait
instability, and profound sensory loss.

Other organs affected in FRDA patients include heart,
pancreas, and skeleton. The heart is affected in the majority of
patients, the most common cardiac lesion being hypertrophic

cardiomyopathy, in which ventricular and interventricular
septum walls are thickened. Iron deposition in the myocar-
dium also has been reported (177, 272). In FRDA patients, loss
of islet cells causes diabetes, but the signs of autoimmune
attack associated with type I diabetes are not observed in
these patients (281).

III. Mutations in the FXN Gene Cause FRDA

A. Mapping and cloning of the FXN gene

The gene responsible for FRDA was identified by positional
cloning. To map the locus, Chamberlain and colleagues (57)
examined 22 European and American families with at least
three affected siblings, diagnosed by using the criteria of the
Québec Collaborative Group to minimize clinical heteroge-
neity (123). They mapped the locus to chromosome 9 by ge-
netic linkage to an anonymous marker D9S15 (MCT112
probe) and an interferon-b gene probe (IFNB) and proposed a
regional localization in the proximal short arm (9p22-CEN).
Genetic linkage to D9S15 was confirmed by the study of an-
other 33 French families, and an additional unmapped RFLP
marker was found closely linked to the FRDA locus, D9S5
(112). However, close linkage to the IFNB probe localized to
9p22 was not confirmed (112, 138). The analysis of allelic as-
sociation to D9S5 and D9S15 revealed linkage disequilibrium
between the FRDA locus and the D9S15 RFLP probe (138). In
situ hybridization by using D9S5 and D9S15 probes physically

Table 1. Frequency of Clinical Signs (Percentage of Patients) Observed in Harding’s Study

and in Genetically Confirmed, Homozygous, and Heterozygous, FRDA Patients

Clinical sign
Harding (140)

1981a

Dürr
et al. (93)

1996b

Schöls
et al. (282)

1997c

Lamont
et al. (179)

1997d

Delatycki
et al. (84)

1999e

Cossée
et al. (70)

1999f

Cossée
et al. (70)

1999g

Gait ataxia – 100 100 – 100 100 96h

Limb ataxia 99 99 100 100 100 – –
Lower-limb areflexia 99 87 84 87 98 88 74
Decreased vibration

sense
73 78 83 87 88 88 84

Extensor plantar
response

89 79 95 96 74 91 86

Axonal neuropathy 96 98 100 – – – –
Dysarthria 97 91 100 91 95 90 58
Scoliosis 79 60 84 – 78 61 75
Cardiomyopathy 66 63 89 77 65 70 68
Nystagmus 20 – 39 – – 38 35
Decreased visual

acuity=Optic atrophy
18 13 9 – – 5i 33i

Hearing loss 8 13 39 – – – –
Amyotrophy 40 – 50 – – – –
Pes cavus 55 55 82 – 74 54 73
Diabetes or glucose

intolerance
10 32 6 – 8 20 9

Percentage atypical 0 24 25 14 8 – 36

aCohort of 150 patients.
bCohort of 140 patients homozygous for GAA expansions (120 to 1,700 GAA repeats).
cCohort of 36 patients homozygous for GAA expansions (66 to 1,360 GAA repeats) and two compound heterozygotes with a typical

phenotype (point mutations not identified).
dCohort of 56 patients homozygous for GAA expansions (*200 to 1,200 GAA repeats).
eCohort of 51 patients homozygous for GAA expansions (300 to 1,345 GAA repeats).
fCohort of 196 patients homozygous for GAA expansions (640� 221 GAA repeats).
gCohort of 25 compound heterozygotes (14 different point mutations; see Table 2).
hOne patient with a spastic cerebellar gait.
iOptic disk pallor.
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assigned these markers to the 9q13-9q21.1 region. The FRDA
locus was thus mapped to the proximal long arm of chro-
mosome 9, close to the heterochromatic region (138, 291).
These results and others (58) were in favor of locus homoge-
neity, at least in typical cases of FRDA. The distance between
the FRDA locus and D9S5=D9S15 markers was estimated to
be< 1 cM, but the absence of recombination between the three
loci prevented further genetic ordering. Therefore, a 1-Mb
physical map was constructed by PFGE by using YAC and
cosmid cloning in the region encompassing D9S5 and D9S15
(114, 115, 320). This map showed that the distance between
D9S5 and D9S15 markers was < 260 kb (114). Finally, a mei-
otic recombination event was found in three large inbred
Tunisian families, and by using additional polymorphic
markers, D9S15 was excluded (22). The position of the locus
was further refined, and the gene order determined, by the
discovery of other recombination events. The gene order was
thus found to be cen-FRDA-D9S5-D9S15-tel (56). The genomic
region containing the FRDA locus was progressively nar-
rowed, by using new polymorphic microsatellite markers, to a
150-kb interval between FR2 and F8101 (212, 260). The only
gene within the minimum candidate region was X25 (subse-
quently named FRDA and now FXN), and the FRDA locus
was at last identified (51).

Two reports have shown evidence of genetic heterogeneity
in FRDA (62, 168). The patients included in these studies had
typical FRDA but did not have mutations in the FXN gene. A
second locus, FRDA2, mapping to chromosome 9p23-p11,
was thus proposed (62). No other studies have confirmed
these observations, but occasional reports appear in the lit-
erature of patients who clinically have FRDA symptoms but
in whom a mutation in the FXN gene cannot be detected (70,
75, 199, 336).

B. Structure and regulation of the FXN gene

The sequence of the FXN gene was reported by Campu-
zano and co-workers in 1996 (51). They described a gene
composed of seven exons (exons 1–4, 5a, 5b, and 6) encom-
passing 85 kb of genomic DNA (Fig. 2). The 50 end of the gene,
including the first exon, enclosed an unmethylated CpG is-
land containing several rare restriction-enzyme sites. North-

ern blot analysis, RNase protection assays, and cDNA cloning
showed a major 1.3-kb transcript composed of five exons, 1 to
5a (51). This transcript encoded a protein of 210 amino acids,
frataxin (isoform 1, Figs. 2 and 3). A minor alternative tran-
script, containing exon 5b instead of 5a, followed or not by
noncoding exon 6, was also described (51). Exon 5b was lo-
cated 40 kb downstream of exon 5a. Exon 5b carried an in-
frame stop codon, resulting in a transcript that encoded a
shorter protein of 171 amino acids and differed in the 11
amino acids of the C-terminus [isoform 1a, Figs. 2 and 3; re-
ferred as isoform 2 by Campuzano and associates (51)]. This
transcript is very rare, and the expression pattern of frataxin
isoform 1a was not studied further. The functional signifi-
cance of this shorter isoform is questionable, the most con-
served domains of frataxin being encoded by exons 4 and 5a.

In an attempt to clone the full-length frataxin cDNA by PCR
by using primers targeting the extremities of FXN isoform 1
coding sequence, Pianese and co-workers (242) isolated a
third transcript. This transcript is generated by alternative
splicing at a second donor splice site in intron 4, resulting in an
8-bp insertion between exons 4 and 5a. This splicing intro-
duces a frameshift with the appearance of a new stop codon in
exon 5a. The transcript thus encodes a putative 196-amino
acid protein that differs from isoform 1 after residue 160
(isoform 2, Figs. 2 and 3). This transcript is produced at lower
levels than isoform 1 and was found in brain, cerebellum,
spinal cord, heart, and skeletal muscle (242). No functional
data have been reported regarding the potential function of
this transcript and of frataxin isoform 2.

The 1,255-bp region extending 50 from the human FXN
open reading frame contains the promoter region (136). This
promoter does not contain a TATA sequence but is rich in
repetitive elements of different origins; retroelements (AluJb,
AluY, and L2), and mammalian-wide interspersed repeats
(MIR). The Alu and MIR elements significantly enhance the
activity of the promoter, and the 221-bp sequence containing
the L2-like element is required to drive the luciferase activity
of reporter constructs (136). Additionally, an E-box element in
the first intron of the gene modulates the activity of the pro-
moter because its deletion causes a significant reduction in
reporter detection (137). Comparison of promoter sequences
between unaffected individuals, three patients with classic

b5a54321noxE

9cen 9qterGAA

FXN gene

1 2 3 4 5a

Transcripts

isoform 1

isoform 2

isoform 1a

1 2 3 5a4'

1 2 3 4 5b

FIG. 2. Structure of the FXN gene and transcription maps. The structures of the FXN gene, except for the nontranslated
exon 6, and of the three transcripts, are depicted. Transcript encoding isoform 2 results from an alternative splicing at exon
40). Transcript encoding isoform 1a uses the exon 5b that is located 40 kb downstream of exon 5a. The GAA-repeat expansion
in the first intron is indicated. The gray regions are not translated. Exons and introns are represented in different scales.

FRIEDREICH ATAXIA DISEASE AND FRATAXIN FUNCTION 655



FRDA, and three Acadian-descendent patients did not show
any significant differences that could explain the variation in
clinical presentation (136).

Little is known about the regulation of the human FXN
gene. The E-box sequence binds transcriptional factors be-
longing to the basic helix-loop-helix family. One protein that
may bind to this sequence is the muscle-specific factor Mt,
although its biologic importance is not known (137). Recent
findings have shown that frataxin expression is iron regu-
lated. The addition of the iron chelator deferoxamine to var-
ious human cell lines and to FRDA patient fibroblasts and
lymphoblasts leads to a reduced steady-state level of frataxin
mRNA and protein (187). Conversely, addition of ferric am-
monium citrate or hemin increases frataxin expression (187,
276). Studies based on the use of promoter-luciferase con-
structs have shown that iron acts on transcriptional regula-
tion, but the key regulators remain to be determined (187).

The mouse FXN gene was reported to be directly regulated
by the transcription factor hypoxia-inducible factor 2a (HIF-2a
encoded by the Epas1 gene) (227). The frataxin protein and
mRNA levels are reduced to < 50% in the liver of knockout
Epas-=- mice compared with control mice. However, it is not
known whether the human FXN gene is also regulated by
HIF-2a.

C. Developmental expression of the FXN gene

FXN gene expression and production of the protein, fra-
taxin, are ubiquitous. However, the levels of mRNA and
protein show tissue specificity that partially correlates with
the main sites of disease. In humans, adults show the highest
levels of expression in the heart and spinal cord, with inter-
mediate levels observed in the cerebellum, liver, skeletal
muscle, and pancreas and very low levels in the cerebral
cortex (51).

Northern blot analysis and RNA in situ hybridization of
mouse adult tissues showed that the FXN gene is expressed
in the heart, liver, skeletal muscle, kidney, spleen, and thy-
mus, and, to a lesser extent, in the brain and lungs (169). In
addition, transcript-distribution studies in mouse embryos
have demonstrated that the frataxin gene is developmentally
regulated. Expression is not detectable at E8.5, is weak at
E12.5, and increases until E16.5, when no further change is
observed until the neonatal period (158, 169). At E14.5, ex-
pression is high in the ventricular zone of the brain, the an-
terior horns of the spinal cord, the large neuronal cells in the

DRG, and in the granular layer of the cerebellum. In non-
neural tissues, FXN mRNA is found in the heart, kidney, and
brown fat (158, 169). The major sites of frataxin gene ex-
pression in the developing mouse embryo correlate with the
major sites of disease, with a few exceptions. In FRDA pa-
tients, for example, the posterior columns of the spinal cord
are affected, whereas, in the mouse embryo, the major site of
expression is observed in the anterior columns (158). Another
example is the substantially higher level of frataxin gene
expression found in the mouse cortex (158) than in the hu-
man brain (51). Additionally, whereas expression levels are
high in the adult and fetal mouse kidney, they are very low in
the human adult kidney, which is not an organ affected in
FRDA (51, 169). In summary, the distribution of frataxin
mRNA in mouse and human tissues shows a broader dis-
tribution of sites with frataxin gene expression than of sites
affected in FRDA disease. The reason for only certain tissues
being affected may be that neurons, cardiomyocytes and
pancreatic b-cells are particularly highly dependent on mi-
tochondrial metabolism and, being nondividing cells, are not
replaced when they die (233). Alternatively, this tissue
specificity could be due to somatic instability and accumu-
lation of larger trinucleotide repeat expansions in these cell
types, at least for DRG neurons (73).

D. Molecular mechanism of GAA
triplet-repeat expansion

FRDA is caused by a distinctive mutation not found in any
other disease. In 98% of patient chromosomes, a GAA trinu-
cleotide repeat expansion has been detected in the first intron
of the gene (51). GAA repeats are normally found in the
human FXN gene and are derived from a poly(A) expansion
of the canonic A5TACA6 sequence at the center of an AluSx
sequence flanked by a 13-bp direct repeat (AAAATGG
ATTTCC) (Fig. 4) (51, 72, 209). Because Alu retrotransposons
are primate-genome specific, GAA triplet expansions are
thought to have appeared in the primate lineage (159).

Studies of populations from different parts of the world
have shown that half of normal alleles carry nine GAA repeats
(72, 159, 209). Two studies (72, 209), composed mainly of
European individuals, showed that the GAA motif in normal
alleles is polymorphic with a bimodal distribution, 83% hav-
ing six to 12 repeats (small normal, SN) and 17% having 13 to
34 repeats (large normal, LN). This was confirmed for African
American, African, and Syrian populations (159). Interest-

FIG. 3. Amino acid sequence comparison of the three human frataxin isoforms. The mature forms are represented in
bold, and the C-terminal variant region is boxed (isoform 1, 210 amino acids; isoform 1a, 171 amino acids; and isoform 2, 196
amino acids). Clustal W software was used for sequence alignment.
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ingly, no alleles with > 10 GAA repeats were found in Papua
New Guineans, and only one was found in the Asian popu-
lation (159), correlating with the absence of disease in these
regions (173). A small proportion (<1%) of LN alleles have
> 34 GAA repeats, which can be interrupted by a hex-
anucleotide repeat (GAGGAA) or another sequence in some
cases or are continuous in other cases (72, 209). Occasionally,
LN alleles containing �34 uninterrupted GAA repeats un-
dergo hyperexpansion to produce hundreds of triplets in one
generation (72, 209, 282), indicating meiotic instability.
However, alleles with interrupted GAA expansions are stable,
even those containing >100 GAA repeats (72). LN alleles
carrying between 44 and 66 uninterrupted repeats are bor-
derline, having been associated both with healthy carriers and
with FRDA symptoms (Fig. 5A) (290). Analysis of intergen-
erational variability of GAA-repeat number in parent–child
transmission to affected and carrier offspring showed that
paternal transmission is most often accompanied by a con-
traction of the repeats, and maternal transmission may result
in further expansion or contraction (76, 82, 208, 241, 282).
Reversion of the expansion to a normal number of repeats is
very rare but has been reported for three different cases (30,
76, 289). Expansion of the triplet repeat in FRDA patient
chromosomes ranges from 44 to 1,700 repeats, this number
being between 600 and 900 for the majority of chromosomes
(Fig. 5A) (51, 93, 96, 97, 211, 290).

The analysis of normal alleles is fundamental to our un-
derstanding of the major mechanisms involved, first, in
driving GAA triplet-repeat expansion and, second, in deter-
mining the pathogenicity of such expansion. Linkage dis-
equilibrium analysis and haplotype data suggest that SN
alleles evolved into expanded alleles through a two-step
process (Fig. 5B) (72, 209). LN and expanded alleles are as-
sociated frequently with the same haplotypes and rarely with

the major haplotypes found in SN alleles, suggesting that LN
alleles are derived from one or a small number of ancestral
founder mutations (72). The mutation was probably caused
by the slipping of DNA polymerase III. Conversely, de novo
hyperexpansion from the pool of LN alleles (34 to 60 GAA)
carrying uninterrupted rows of repeats (premutation) may
represent a reservoir for pathogenic expansion (72, 209, 289).
Thus, the overall tendency for contraction of the expanded
alleles, which could lead to their disappearance in the popu-
lation, is compensated for by expansion of the premutation.

Expanded GAA triplet repeats show extensive instability in
cultured cells, in the blood, in the central nervous system, in
the DRG, the spinal cord, and the heart (30, 73, 74, 210, 211).
This leads to somatic mosaicism for expansion sizes when
single-cell analysis is performed. Small-pool PCR experiments
have shown that expanded GAA triplet repeats are very un-
stable in the peripheral leukocytes of patients, giving *65%
variability in size compared with the results obtained with
classic PCR (289). The threshold expansion length for the
initiation of somatic variability is between 26 and 44 unin-
terrupted GAA repeats (289), or even just between 40 and 44
repeats (244). DRG degeneration is the primary cause of
neurologic problems in FRDA patients. These neurons are
highly sensitive to frataxin deficiency, as observed in neuron-
specific conditional frataxin-knockout mice (294). In addition,
De Biase et al. (73, 74) demonstrated that, specifically in DRG,
somatic instability starts after early embryonic development
and continues after birth throughout life, resulting in pro-
gressive, age-dependent accumulation of larger GAA triplet-
repeat expansions. In this study, the DRG was the only tissue
analyzed in which long expansions arose more frequently
than did contractions of a similar length (73). It is thus possible
that DRG somatic instability contributes to disease progres-
sion. This was not seen in other regions of the central nervous

FIG. 4. Comparison between the nucleotide sequences of the FXN Alu element and the AluSx consensus. The human
FXN Alu element contains an expanded A5TACA5 sequence (A6TACA16, bold) followed by the GAA repeats (underlined).
The most frequent number of GAA triplets (nine repeats) is represented. The flanking direct repeat is boxed.

FRIEDREICH ATAXIA DISEASE AND FRATAXIN FUNCTION 657



system, in which disease progression seems to be related to
frataxin gene expression rather than to somatic mosaicism
(210).

Expanded alleles lead to the inhibition of FXN expression,
resulting in decreased levels of frataxin (51, 121). By using
RNase protection assays, Bidichandani et al. (29) were able to
show a reduced steady-state level of FXN mRNA. They also
reported that GAA expanded repeats adopt unusual struc-
tures (they predicted triplex) and hindrance of in vitro tran-
scription for sequences containing 79 and 100 GAA repeats,
but not for those containing 45 repeats (29). In a study of long
tracts of GAA·TTC (150 and 270 repeats), Sakamoto et al. (269)
discovered a novel DNA structure, sticky DNA, which results
from intramolecular association of triplexes. The other types
of non-B DNA structures characterized for the GAA triplet
repeats include hairpins and parallel DNA (146, 182).

The transcription silencing caused by pathologic expan-
sions is due to the formation of non-B DNA structures (pri-
marily triplexes and sticky DNA), persistent RNA·DNA
hybrids, or heterochromatin formation [for recent review, see
(319)]. The molecular mechanism underlying the inhibition of
transcription by sticky DNA involves the sequestration of
RNA polymerase by its direct binding to the complex DNA
structure (270). Transcription of a GAA·TTC template (88 re-
peats) by using T7 DNA polymerase showed that the poly-
merase paused at the distal end of the repeat (134), and that
this was tightly linked to RNA·DNA hybrid formation (132).
These in vitro studies demonstrated that RNA polymerase is
arrested by triplex structures, preventing transcription elon-
gation. Further studies, searching for epigenetic changes in

the promoter and intron regions flanking the GAA-repeat
expansion, showed increased methylation of specific CpG
sites in lymphoblasts (137), peripheral blood (53), and brain
and heart tissues (7) from FRDA patients. Additionally, hall-
mark features of heterochromatin formation, an overall re-
duction of histone H3 and H4 acetylation levels and increased
H3K9 methylation, have all been observed in cell lines and
brain tissues from patients (7, 137, 147). Interestingly, histone
hypoacetylation was observed only in the vicinity of the GAA
expanded repeat but not in the promoter region (147). By
using competitive nucleosome-reconstitution assays, Ruan
and Wang (265) showed that GAA·TTC duplex and triplex
structures reduced the efficiency of nucleosome assem-
bly. Thus, the non-B structures adopted by long tracts of
GAA repeats may cause heterochromatin-dependent and
-independent gene silencing. Given that all patients carry this
mutation, any drug that destabilizes these DNA structures or
prevents heterochromatin formation could be a good thera-
peutic candidate.

The triplex and sticky DNA structures of GAA triplet re-
peats also affect DNA replication, recombination, and repair
(319). It is possible that the genetic instability associated with
these trinucleotide expansions occurs during DNA replica-
tion. Studies carried out in Escherichia coli and Saccharomyces
cerevisiae demonstrated that the presence of a GAA-repeat
sequence in the lagging strand of the replication fork led to
attenuation of replication, to the occurrence of small slippage
events, and to large contractions (146, 171, 244). The mini-
mum number of GAA repeats required for replication stalling
in yeast (40 repeats) and the appearance of contractions=
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deletions in plasmid replication in E. coli (48 repeats) were
compatible with the threshold of somatic instability observed
in human FRDA patient cells (40–44 repeats) (244, 289).
However, these findings did not account for the fact that ex-
pansions in borderline and expanded alleles have been ob-
served in carrier and affected individuals. Replication assays
of plasmids in COS-1 cells confirmed the increased instability
of GAA repeats in the lagging strand previously observed in
E. coli and S. cerevisiae (257). Furthermore, depending on the
orientation of replication and distance between the origin of
replication and the GAA-repeat sequence, no instability,
predominant expansion, or both expansion and contraction
were observed in these mammalian cells. The somatic insta-
bility observed in postmitotic neurons suggests that other
mechanisms than replication, such as transcription and
postreplicative DNA repair, could be responsible for the
triplet-repeat expansions observed in FRDA patients. Re-
cently, Ditch et al. (89) developed a new model for the study of
GAA-repeat expansion in human cells and found that tran-
scription through the repeat tracts is a major contributor for
expansions. Other uninterrupted sequences of (GAA)44 were
found in the human and mouse genomes, but only the FXN
alleles carrying GAA expansions of the same size showed a
high mutation load, suggesting that somatic instability is
locus specific (257).

E. Genotype–phenotype correlations

Several studies described a relation between the size of the
GAA-repeat expansion and the presence and timing of several
features of the disease. An inverse correlation was found be-
tween the size of the smaller expansion and both the age at
onset and rate of disease progression, measured as the time
until wheelchair confinement (84, 93, 97, 211, 282). The two
major complications of the disease are cardiomyopathy and
diabetes. Cardiomyopathy frequently arises in patients with
large expansions in the smaller allele and is independent of
the duration of the disease (84, 93, 97, 211). Diabetes does not
appear to be associated with either the number of GAA re-
peats or the duration of disease (84, 93), but develops during
the late stages of disease (97). Other clinical manifestations,
such as dysarthria, skeletal deformities, optic atrophy, and
hearing loss, show direct correlation to GAA-expansion size
(93, 211). Additionally, expansion size has been shown to be
associated with the severity of sensory neuropathy (273). Loss
of large myelinated fibers (>7 mm) is directly correlated to the
duration of disease and is inversely correlated to the GAA-
repeat expansion size in the smaller allele. The methylation of
two CpG sites in the genome has been directly correlated to
the size of the smaller allele and indirectly correlated to the
age at onset (53). Residual levels of frataxin vary according to
the expansion and cell type. In peripheral blood leukocytes,
frataxin levels in patients range from 5 to 30% of normal (121).
The size of the smaller allele is inversely correlated to the
amount of residual frataxin, providing a potential biochemi-
cal basis for the genotype–phenotype correlation with this
allele.

Only 37 to 50% of the variation in age at onset is accounted
for by the size of the smaller allele (84, 93, 97, 282). Variability
among individuals is very high, and it is not possible to pre-
dict the clinical severity based only on the GAA mutation. For
example, LOFA is the only atypical form of FRDA to be as-

sociated with a reduced number of GAA repeats in both al-
leles; all the other atypical FRDA presentations including,
Acadian and FARR, did not show any statistical difference in
GAA-expansion size compared with typical cases (211). Sev-
eral factors may explain the clinical variability observed
among individuals with almost identical numbers of repeats.
One such factor could be mitotic instability, causing somatic
mosaicism of expansion size (210, 211, 289). Mitochondrial
haplotype may also affect FRDA phenotype, as described for
a population from southern Italy (125).

Mitochondrial oxidative stress is involved in the patho-
genesis of several neurodegenerative diseases, including
FRDA (198). It is generally accepted that mitochondria-driven
reactive oxygen species (ROS) induce mutations in mtDNA
(116). The contribution of mtDNA mutations to the FRDA
phenotype is poorly documented (145, 149). However, it is
possible that these mutations could account for some of the
variability observed among individuals carrying similar GAA
expansions. A study screening for mutations in the mtDNA
noncoding displacement loop (D-loop) in 25 Iranian patients
from 12 unrelated families revealed a significantly higher
mutation rate (single nucleotide substitutions, mostly transi-
tions) in patients than in controls (149). Additionally, whereas
76% of the patients had deletions of 8.6–10 kb, no deletions
were observed in the mtDNA of healthy controls (149). An-
other study showed that mutations in the genes encoding
NADH dehydrogenase subunits were more frequent in pa-
tients than in controls and that the number of mutations
present in these genes was inversely correlated with the age at
onset of the disease (145). Even though many of these muta-
tions are not harmful, the resultant instability of mtDNA
demonstrated in these studies may be a predisposing factor
and may, in addition to other genetic or environmental risk
factors, affect the age at onset and progression of FRDA
disease.

In a few cases, a second mutation could not be detected in
patients who are heterozygous for GAA expansions and
presenting a typical FRDA phenotype (70, 75, 199, 282, 336).
Such cases are indicative of locus heterogeneity. However,
alternative explanations may be linked to the technical limi-
tations of single-strand conformation polymorphism analysis
used to detect point mutations or to the fact that only the
coding regions, and not the FXN regulatory region, were
searched for mutations. AVED disease caused by mutations in
the a-tocopherol transfer protein result in a FRDA-like phe-
notype in patients, and misdiagnosis can occur if serum levels
of vitamin E are not determined (26). It also is possible, in
populations in which carrier frequency is high, that the pa-
tient has another disease and coincidently is the carrier of a
mutation in the FXN gene (283). Another explanation, al-
though unlikely, could be the complete reversion of GAA
expansion in one allele to normal size in blood leukocytes,
which would have led to a heterozygous diagnosis (30).

The gene causing FRDA was identified in 1996, and data
gathered since then have demonstrated that the clinical
spectrum is even larger than expected. Among the essential
criteria defined by Harding (140), only the progressive limb
and gait ataxia has proved to be a consistent feature for all
patients, without exception. The recessive autosomal nature
of transmission can be difficult to prove, because most cases
are sporadic and occur in non-consanguineous families. Of
the patients who carry a GAA mutation, �25% do not fulfill
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all of Harding’s mandatory criteria, having atypical presen-
tations (93, 199, 282). Patients carrying point mutations
also frequently have atypical presentation. Nevertheless,
Harding’s criteria for diagnosis (140) are the most useful di-
agnostic tool for clinicians, and >80% of patients presenting
all essential FRDA features have homozygous GAA expan-
sion (93, 199). FRDA is a progressive disease, and thus, full
clinical presentation is observed only several years after onset,
making it difficult to diagnose in the early stages. Delayed or
erroneous diagnosis hampers genetic counseling and thera-
peutic solutions. FRDA should be considered in the differ-
ential diagnosis of all types of nondominant ataxias. For these
reasons, molecular diagnosis of FRDA should be performed
for all patients with not only typical FRDA, but in all cases of
idiopathic recessive ataxia.

F. Point mutations

Approximately 2% of the mutations described in FRDA
patients are point mutations (51, 70). To date, 43 mutations
(missense, nonsense, frameshift, splice-site, and one 2.8-kb
deletion) have been detected in the FXN gene of FRDA pa-
tients (Table 2, Fig. 6). All patients carrying point mutations
are compound heterozygotes with an expanded GAA repeat
on the other allele. The lack of patients homozygous for point
mutations may be due to the rare occurrence of mutations
[estimated as 1:100 million individuals (85) or 1:2,500 FRDA
patients (70)]. Conversely, inactivation of the frataxin-encod-
ing gene in mice causes embryonic lethality (71), suggesting
that null mutations in humans may also result in a very severe
or lethal phenotype.

The effects of genomic mutations on transcript abundance
or on the specific protein defect have been addressed in only a
few studies. The consequences of mutations on protein se-
quence can therefore only be speculated on. Half of the mu-
tations identified so far are predicted to lead to the absence or
a truncated form of frataxin (Table 2). Five of these mutations
affect the translation-initiation codon. It is possible that a
second ATG codon located in exon 2 (226 nt downstream) is
used in the translation of these mutants. This would result in a
translated protein lacking the mitochondrial targeting se-
quence and the first 20 amino acids encoded by exon 2. Six
mutations affect splice-site donors, and one mutation, a splice
acceptor site, leading to aberrant splicing and predicted exon
skipping. The product resulting from one of these mutations
(c.381_384 delTGGGþ c.384þ 1_þ 9 delGTACCTCTT) was
analyzed with Western blotting. Only a full-length transcript
was detected, suggesting that aberrantly spliced mRNA may
be unstable and rapidly degraded (121). Four nonsense and
nine frameshift mutations introduce premature stop codons,
and nearly all of the predicted proteins lack exons 3–5. Only
one mutation causing a deletion of 2,776 bp (g.120032_122808
del) was reported. This deletion spans 2,776 bp and en-
compasses the last 1,315 bp of intron 4, the complete exon 5a
sequence, and 971 bp downstream of the FXN gene (336). This
mutation is also expected to lead to truncated frataxin. All
these mutations are associated with typical FRDA, in some
cases with particularly severe phenotypes (Table 2).

A single amino-acid change is predicted for 17 missense
mutations (Table 2). These mutations span across exons 1, 3, 4,
and 5, with a cluster of mutations found within exons 4 and 5,
which correspond to the C-terminal and the most conserved

portion of frataxin (Fig. 7A). Most of the patients with these
mutations have typical presentations. However, six of the
mutations (L106S, D122Y, G130V, N146K, R165C, and L182F)
were associated with a milder course of the disease (Table 2,
Fig. 6).

The most common mutations are those that affect the ATG
codon, G130V, and I154F. Haplotype analysis provided evi-
dence for founder events in the cases of M1I (335) and G130V
(81) mutations. Patients heterozygous for the G130V mutation
have a milder disease presentation. Although onset can be in
the early teens, progression is very slow and associated with
brisk knee reflexes, moderate ataxia, absence of dysarthria,
and absence of diabetes (28, 70). In G130V heterozygotes,
frataxin mRNA levels are similar to those in clinically healthy
carriers, suggesting that this mutation causes the atypical
phenotypes in these patients (28). The I154F mutation was
first described in five patients belonging to three families from
southern Italy with typical FRDA without any signs of dia-
betes (51, 97).

The phenotypic features of patients harboring point mu-
tations are frequently typical FRDA, although slightly dif-
ferent phenotypes are sometimes observed, which may cause
confusion in the clinical diagnosis. In general, disease is severe
in these patients, often being associated with early onset and
infrequent signs such as chorea (Table 2). Interestingly dys-
arthria and diabetes are less frequent. A study comparing the
clinical parameters of homozygous and heterozygous pa-
tients showed only significant earlier age at onset, less dys-
arthria, and more-frequent optic disc pallor in those with
point mutations (70) (Table 1). This study included a small set
of 19 families carrying a total of 14 mutations. The GAA-
repeat expansion was significantly larger in heterozygotes
than in homozygous patients, making it difficult to evaluate
the effect of the point mutations on phenotype. No other re-
cent comparative study exists. A point mutation that results in
loss of function of frataxin is generally associated with a se-
vere phenotype. In the case of missense mutations, even in
regions that have been conserved through evolution, it cannot
be predicted whether the disease will have a mild or severe
clinical course. In all cases, the size of the GAA triplet-repeat
expansion in the other allele may modulate the effect of the
point mutation.

IV. Frataxin Is a Unique Protein

A. Phylogeny and structure of frataxin

Frataxins are small proteins (between 100 and 220 amino
acids) that are conserved from gram-negative bacteria to hu-
mans (126). All eukaryotic frataxins identified so far, except in
the human pathogens Trichomonas vaginalis and Trachipleis-
tophora hominis, are localized to the mitochondrial matrix (50,
126, 169, 189, 309). Trichomonas vaginalis is a protist that in-
habits oxygen-poor environments and lacks mitochondria.
Their energy metabolism depends on cytosolic glycolysis and
pyruvate breakdown in a specialized organelle enclosed by a
double membrane, the hydrogenosome. The frataxin protein
is targeted to the hydrogenosome, where iron–sulfur (Fe-S)
clusters assembly also takes place (90). The microsporidia T.
hominis is an obligate intracellular parasite that has mito-
chondrial remnants called mitosomes. In other microsporidia,
frataxin is addressed to the mitosomes, but in T. hominis, it is
located in the cytoplasm along with the Fe-S cluster scaffold
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protein Isu1 (128). No frataxin homologue has been identified
in gram-positive bacteria or Archae, suggesting that all eu-
karyotic frataxins originated at the moment of proteobacteria
endosymbiosis and that the gene migrated later from the
mitochondrial to the nuclear genome (126).

Owing to its small size, frataxin proved to be readily
amenable to structure resolution in solution. Furthermore, the
analysis of 1H-15N chemical shifts of amide protons in NMR
experiments allowed frataxin-interaction sites to be mapped.
Structures were determined for the human frataxin isoform 1
(only residues 91 to 210 because of the autodegradation and
proteolysis of the protein’s N-terminus; PDB ID: 1dlx and
PDB ID: 1ly7) (216), the E. coli frataxin homologue CyaY (PDB
ID: 1soy) (218), and the mature yeast frataxin homologue Yfh1
(PDB ID: 1xaq=2ga5) (143) in solution. The crystal structures
of the three proteins also are available for the human frataxin
(PDB ID: 1ekg) (86), CyaY (PDB ID: 1ew4) (61), and Yfh1 (PDB
ID: 2fql) (161). Solution and crystal structures are in remark-
able overall agreement and are highly conserved between
prokaryotes and eukaryotes. The frataxin fold is unique. It
consists of a large, twisted, six-stranded b-antiparallel sheet,
flanked by N- and C-terminal a helices (a1 and a2), with no
main surface cavity (Fig. 7A), and is described in the CATH
database (www.cathdb.info; ID 3.30.920.10) as an ‘‘alpha beta
2-layer sandwich’’. The only discrepancy between the solution
and crystal structures is the presence of a seventh short
b strand before the second helix a2 in the crystal structure of
Yfh1 but not in the solution structure. Conversely, this strand
was observed in solution but not in the crystal structure for
the human protein. One major feature of the frataxin structure
is the presence of a large patch of negatively charged residues
on the helical plane (Fig. 7B). This anionic surface may be
involved in iron binding (6). By contrast, the b-sheet surface is
almost uncharged and may be involved in protein–protein
interactions. Most of the residues conserved during evolution
or affected by mutations in FRDA patients are located on this
surface.

Although the frataxin fold is considered to be unique, it also
has been found in the Nqo15 subunit of the hydrophilic do-
main of the respiratory complex I from Thermus thermophilus,
an extremophile bacterium (277). Similarly, Nqo15 interacts
with the other subunits of complex I through the exposed b-
sheet surface, and it is possible that it also binds iron. It was
thus suggested that Nqo15 may be involved in iron delivery
for regeneration of nearby Fe-S clusters (277). The structural
analogy between Nqo15 and frataxin may provide new per-
spectives for the study of frataxin function.

B. Frataxin maturation

Frataxin is translated in cytoplasmic ribosomes (268) and
imported into the mitochondria (169), where the targeting
sequence is proteolytically removed in a two-step process to
produce the mature protein (38, 54). Maturation of yeast and
human frataxin depends on the mitochondrial processing
peptidase (MPP). MPP first cleaves the precursor to give an
intermediate form, followed by conversion of this product to
the mature form (Fig. 8) (38, 54, 130). In a yeast two-hybrid
assay, the mouse frataxin (N-terminal 4–87 amino acids) was
shown to interact with the b-subunit of MPP (170).

The precursor of the human frataxin is initially cleaved
between G41 and L42 (RRG;LRT), as demonstrated by in vitro

processing assays with recombinant MPP and N-terminal
radiosequencing of the intermediate form (54). Identification
of the site involved in the second step of processing to gen-
erate the mature form has been less clear. In the study men-
tioned earlier, Cavadini et al. (54) sequenced the mature form
and identified a cleavage site between A55 and S56 (m56-FXN;
17.2 kDa) (54). The recombinant human frataxin purified from
E. coli undergoes iron-mediated autoproteolysis, producing
another mature form (m78-FXN; 14.7 kDa) (331). However,
analysis of the in vivo processing of frataxin in human cells
showed a major mature form that was smaller (63). Sequen-
cing by Edman degradation of the immunopurified mature
form of precursor frataxin overexpressed in HEK293 cells
gave the sequence SGTLGH, suggesting that cleavage oc-
curred between K80 and S81 (m81-FXN; 14.3 kDa) (63). These
results were confirmed by MALDI-PMF analysis of the
immunopurified mature form from COS-1 cells (279). This
mature form co-migrated with endogenous frataxin in fibro-
blasts, lymphoblasts, and heart tissue in Western blots (63).
Moreover, the rescue of aconitase activity deficiency in FRDA
patient cells (63) and of the lethal phenotype in frataxin-
deficient murine fibroblasts (279) demonstrated that m81-FXN
was functional. In summary, in vivo experiments have estab-
lished that m81-FXN is the normal mitochondrial mature form
in living cells. However, m56-FXN and m78-FXN can be pro-
duced in vivo when normal processing is impaired or when
processing is carried out in vitro (63, 279).

In yeast, the first MPP cleavage site lies between residues
Y20 and M21 (RRY;MIA), removing *2 kDa, and the second
cleavage is between residues F51 and V52 (KRF;VES), re-
sulting in the removal of an additional *4 kDa (Fig. 8) (130).
As for the human frataxin, the cleavage sequences match
MPP consensus sequence. Detailed analysis of the two se-
quences, residues 1–20 (Domain I) and residues 21–51 (Do-
main II), established that Domain I is the matrix-targeting
signal. This domain can be replaced by other mitochondria-
addressing peptides without affecting import efficiency or
Yfh1 function. In the absence of Domain II, mitochondria-
targeting signals cannot mediate import of yeast frataxin.
Domain II acts as a spacer, separating the basic Domain I
from the mature acidic Yfh1 and thus precluding futile in-
teractions (130).

In addition to MPP, efficient maturation of Yfh1 pre-protein
requires the sequential action of the Hsp70-family mitochon-
drial chaperones, Ssc1 and Ssq1 (165, 315). In the ssc1-3
mutant mitochondria, Yfh1 precursor was not processed to
the intermediate or mature forms, indicating that Ssc1 is
crucial for translocation of Yfh1 across the inner membrane
(315). However, Ssq1 is necessary for efficient processing
of the intermediate form by MPP, but the steady-state level
of Yfh1 in Dssq1 mitochondria is only 25% lower than that in
the wild-type (165, 315). Another partner from the inner-
membrane protein-import machinery, Tim44, is required for
binding of Ssc1 to Yfh1 (120).

The pathologic mutations G130V and I154F (correspond-
ing to the G127V and I151F changes on the mouse sequence)
were shown, in a yeast two-hybrid system or when ex-
pressed in COS cells, to decrease the efficiency of processing
of the mouse frataxin without any change in site cleavage
(170). However, no differences were observed between these
mutants and the wild type when they were processed by
recombinant MPP or in isolated mitochondria (54, 131). Two
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other FXN point mutations, R40C and W173G, affect frataxin
maturation. R40C disrupts the consensus sequence recog-
nized by MPP (307), and W173G inhibits the second cleav-
age step, causing accumulation of the intermediate form (54).
A recent study, in which HEK293T cells were transfected
with plasmids encoding wild-type or mutated forms
(G130V, I154F, W155R, L156P, W173G), showed by Western
blotting that the mature form was absent from G130V-,
L156P-, and W173G-producing cells and reduced in I154F
cells (287).

Two-step cleavage by MPP is very rare and has potential
regulatory functions. The human frataxin precursor is cleaved
rapidly and quantitatively to the intermediate form, whereas
the second cleavage is slower and limits the overall rate of
mature frataxin production in rat liver mitochondria (54). It is
possible that in human cells, as in yeast, mitochondrial pro-
teins modulate processing of the intermediate form, ac-
counting for some of the variability observed in clinical
phenotype between individual patients.

C. Cellular function of frataxin

The first clues about the role of frataxin came from the
analysis of a S. cerevisiae frataxin-deficient mutant (Dyfh1) (15,
104, 169, 323). The phenotypes observed in this mutant were
severe growth deficit on fermentable substrates; reduced rate
of respiration and impaired growth on glycerol and ethanol;
accumulation of petite cells (complete or partial loss of
mtDNA); high sensitivity to hydrogen peroxide and copper;
low cytosolic iron level and constitutive activation of the high-
affinity iron-transport system at the plasma membrane; and
mitochondrial iron content > 10 times that of the wild type
(15, 104, 323). These observations led to the first hypothesis
that frataxin regulates mitochondrial iron efflux (15). Ac-
cordingly, when Yfh1 was reintroduced in the Dyfh1 mutant,
the accumulated iron was exported back into the cytoplasm
(252). This hypothesis was never confirmed, but these obser-
vations and the finding of iron accumulation in the heart tis-
sue of FRDA patients (177, 272) have established a role for
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∆
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∆
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FIG. 6. Distribution of frataxin point mutations. (A) Mutations in the ATG codon are represented by the symbol j;
frameshifts, by the symbol D; and splice-site mutations by arrows. *Missense mutations and the amino acid changes. Regions
encoding the mitochondrial addressing sequence are in gray, and those encoding the mature frataxin protein are in white.
Most of missense mutations are distributed in the conserved exons 3-5a. (B) Distribution of missense mutations in the frataxin
structure. Changes resulting in typical disease presentation are in red, changes resulting in atypical disease presentation are
in blue, and those that can result in both typical and atypical disease presentation are in green. The YASARA View software
was used to visualize the structure of the human frataxin deposited in Protein Data Bank (PDB ID: 1ekg). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article at www.liebertonline
.com=ars).
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frataxin in iron homeostasis. At the same time, Rötig et al.
(262) found selective deficiencies of the respiratory chain
complexes I, II, and III and of both mitochondrial and cyto-
solic aconitase activities in heart biopsies from patients with
hyperthrophic cardiomyopathy (262). These enzymes all have
Fe-S clusters in their active sites, which are exquisitely sensi-
tive to ROS. These data thus suggested that the alteration in

iron homeostasis caused by frataxin deficiency resulted from
increased mitochondrial iron and ROS production by the
Fenton reaction, leading to inactivation of Fe-S clusters,
mtDNA damage, and hypersensitivity to oxidative stress (15,
262). Several subsequent studies were consistent with the idea
that iron accumulation in the mitochondria was responsible
for the abnormalities observed in frataxin-deficient cells (60,

FIG. 8. Maturation of human and yeast frataxin by mitochondrial processing protease. Maturation of precursor (p)
frataxin by MPP is a sequential two-step cleavage originating the intermediate (i) and the mature (m) forms. The human
frataxin is synthesized as a 210-amino acid precursor, and processing in vitro may originate m56-FXN and m78-FXN, but only
the m81-FXN mature form has a functional significance in vivo. For the yeast frataxin (174-amino acid precursor), only one
mature form has been detected. It is interesting to note that frataxin proteins show a higher apparent molecular weight on
SDS-PAGE gels than predicted because of the acidic nature of the N-terminal a-helix (279). The apparent sizes for FXN are
described in (63, 279), and for Yfh1, are described in (38, 131).

FIG. 7. Frataxin structure and homology. (A) Schematic representation of the structural elements found in human frataxin,
as described at www.ebi.ac.uk=thornton-srv=databases=cgi-bin=pdbsum= (PDB: 1ekg). A color code identifies the primary
structure conservation with cold colors, indicating low conservation, whereas hot colors indicate the most-conserved resi-
dues. (B) Surface charges distribution in human frataxin structure (PDB: 1ekg). Negative potential is represented in red, and
positive potential is represented in blue. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article at www.liebertonline.com=ars).
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103, 266). However, addition of an iron chelator to the culture
media restored normal intramitochondrial iron content in
Dyfh1 cells without increasing aconitase activity, suggesting a
more direct role for Yfh1 in Fe-S cluster biogenesis (103). Data
obtained from knockout and conditional mouse models also
demonstrated that the deficiency in Fe-S cluster enzyme ac-
tivity occurs before iron accumulation in the mitochondria
(71, 249). In a more recent study, Mühlenhoff et al. (215)
suggested that the primary function of yeast frataxin is the
maturation of Fe-S cluster proteins and that the other phe-
notypes are derived from this main function (215).

Another interesting hypothesis first proposed by Isaya and
colleagues (4), is that frataxin may be an iron-binding protein
that stores iron in a bioavailable, nontoxic form for heme and
Fe-S cluster synthesis.

The precise function of frataxin remains unclear, but recent
efforts have led to significant advances in this area. It is clear
that frataxin is involved in mitochondrial iron use and that
this function is important for maintenance of overall cellular
iron homeostasis and redox status. In the following sections,
we discuss the findings and hypotheses concerning the role of
frataxin in greater detail: Fe-S cluster and heme biosynthesis;
iron binding and storage; and response to oxidative stress and
survival (Fig. 9).

V. Frataxin Function in Cell Iron Use
and Oxidative-Stress Defense

A. Frataxin is critical for Fe-S cluster assembly

A deficit in Fe-S cluster proteins is commonly observed in
organisms lacking frataxin, with the exception of bacteria
(184, 314), including yeasts, protists, plants, flies, and mam-

mals (11, 44, 71, 192, 262, 323). Fe-S clusters appeared early in
evolution as prosthetic groups essential for many fundamental
cellular processes, including respiration, replication, and
DNA repair and translation [for recent reviews, see (188,
264)]. The most common Fe-S clusters in eukaryotic cells are
[2Fe-2S] and [4Fe-4S], which are involved mainly in electron-
transfer reactions. Biogenesis of the Fe-S clusters in eukaryotes
requires two sets of molecular assembly machineries: the
mitochondrial Fe-S cluster–assembly machinery (ISC) and the
cytosolic Fe-S cluster–assembly machinery (CIA). Assembly
of mitochondrial Fe-S cluster holoproteins requires only the
ISC machinery, but nuclear and cytosolic Fe-S cluster proteins
require both ISC and CIA.

The overall ISC assembly process can be divided in two
steps. The first step is de novo synthesis, starting by the release
of one sulfur atom from cysteine by cysteine desulfurase
(yeast and human Nfs1=Isd11 complex in vivo), and the
transfer to scaffold proteins (Isu1=2 in yeast and ISCU in
humans) through a direct protein=protein interaction and iron
coordination. Fe-S cluster assembly on the scaffold protein
Isu1 also requires electron transfer in the presence of ferre-
doxin and ferredoxin reductase (Yah1 and Arh1 in yeast and
FDX1 and FDXR in humans).

The second step of biogenesis is the transfer of the newly
formed cluster from scaffold proteins and its assembly into
apoproteins. This requires the Hsp70 ATPase Ssq1 and the
DnaJ-like Jac1 (HSPA9 and HSCB in humans) chaperones. It is
thought that energy from ATP hydrolysis drives conforma-
tional changes in scaffold proteins, facilitating cluster disso-
ciation and transfer to recipient proteins. Other components
have also been implicated in Fe-S cluster assembly and are
shown in Fig. 10.

Several lines of evidence strongly suggest that frataxin is
directly involved in iron delivery for de novo Fe-S cluster
biosynthesis in yeast and human cells. A synthetic lethal
screen, identifying a functional interaction between YFH1 and
ISU1, suggested that these genes are functionally related
(254). Another study showed the yeast frataxin to bind spe-
cifically the core of the ISC-assembly complex, Nfs1=Isu1, an
interaction that was enhanced by the addition of iron (124).
In vitro studies using the mature form of human frataxin
demonstrated that holofrataxin (six to seven iron ions per
frataxin molecule) interacts with apoISCU, and that two iron
atoms are transferred for the assembly of a [2Fe-2S] cluster
(329). Additionally, by immunoprecipitation of tagged pro-
teins in HEK293T cells, Shan et al. (287) showed that human
frataxin interacts with ISD11, a component of the NFS1=ISCU
scaffold complex, and with the chaperone HSPA9. The in-
teraction between frataxin and ISD11 was abolished in I154F
mutants and diminished in W155R mutants (287). These ob-
servations have been confirmed in yeast; the interaction of
Yfh1 with the ISC assembly machinery is mediated by direct
binding to Isd11 or Isu1 (185, 317). Several regions at the
surface of frataxin have been implicated in this interaction; the
acidic residues of helix a1 and the b1 strand are required, and
also the b3 strand for Yfh1 (105, 150, 317).

The E. coli frataxin CyaY interacts only with the cysteine
desulfurase IscS, as shown in affinity chromatography ex-
periments; however, CyaY-Fe(III) was found to serve as an
iron donor for Fe-S cluster formation on the IscU scaffold
in vitro (180). Another protein, IscA, is able to recruit and de-
liver iron for Fe-S assembly. In the presence of the thioredoxin

Frataxin

iron binding
iron storage

heme
biosynthesis

Fe-S cluster
assembly

response to
oxidative stress

survival
or death

iron
homeostasis

FIG. 9. Hypothesis on the cellular functions of frataxin.
Frataxin is an iron-binding protein involved in mitochondrial
iron storage or iron use or both. These functions are impor-
tant for maintenance of the overall cellular iron homeostasis
and redox status. Frataxin deficiency causes impairment of
Fe-S cluster and heme biosynthesis, oxidative stress, and cell
death.
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reductase system required to mimic intracellular redox po-
tential, CyaY, unlike IscA, failed to bind iron, suggesting that
IscA was the iron donor for cluster synthesis (88). However,
when hydrogen peroxide was added, the iron-binding thiol
groups of IscA became oxidized, preventing iron binding,
whereas CyaY was able to bind iron at low affinity (88). Based
on these findings, Ding et al. (88) suggested that, under normal
physiologic conditions, IscA is the iron donor for Fe-S bio-
genesis and that CyaY serves as an iron chaperone to se-
quester redox-active free iron and alleviate oxidative damage
under conditions of oxidative stress (88). The iscA gene forms
part of the operon iscRSUA; therefore, the role of IscA as the
iron donor would imply that this operon encodes the com-
plete set of ISC components in E. coli. Recently, the monomeric
form of CyaY was shown to function as an iron-dependent
inhibitor of Fe-S cluster formation through the binding to IscS
(5). Therefore, E. coli frataxin could be an iron sensor and
negatively regulate Fe-S cluster assembly in conditions of iron
deficiency (5). Although this seems to provide a very attrac-
tive hypothesis, the interaction with the cysteine desulfurase
complex in eukaryotes is mediated by physical interaction
with ISD11 (185, 287). Nevertheless, the accumulated data
may suggest that frataxin plays a regulatory role instead of
having a direct function in Fe-S cluster biogenesis.

Frataxin can have an extramitochondrial localization in
human cells (3, 64). The human colon adenocarcinoma cell

line Caco-2 is widely used for intestinal epithelial differenti-
ation studies. In these cells, frataxin is found outside the
mitochondria, and protein levels increase during differentia-
tion (3). Immunoprecipitation experiments have shown an
interaction between frataxin and the cytosolic ISCU1 scaffold
protein in differentiated cells only. These findings suggest that
frataxin may also be involved in the assembly of cytosolic and
nuclear Fe-S clusters (3).

Frataxin also can act as an iron chaperone in converting the
oxidative damaged [3Fe-4S] cluster into the active [4Fe-4S]
cluster of aconitase (40). Furthermore, interaction of frataxin
with aconitase, in the presence of citrate, protects the cluster
from oxidation, reducing the risk of enzyme inactivation (40).

Microarray studies revealed a number of differences in the
gene-expression profiles obtained from yeast, mouse, and
three human cell types. In yeast, expression of the genes en-
coding Isu1=2 was found to be upregulated in the Dyfh1
mutant, suggesting a genetic link between frataxin and ISC
biogenesis (106). However, a recent study showed that ISCU
and NFS1 gene expression is repressed in the cardiac tissue of
the muscle creatine kinase knockout mouse (MCK) (151).
Another study, using fibroblasts and lymphoblasts from
FRDA patients and a neural NT2 cell line with frataxin RNAi
knockdown, showed significantly reduced levels of tran-
scription for seven genes involved in sulfur amino acid and
Fe-S cluster biosynthesis in these cells, none of which encoded

FIG. 10. A model for Fe-S cluster protein assembly in human cells. In mitochondria and cytosol of mammalian cells,
cysteine desulfurases (m-NFS1 and c-NFS1) remove sulfur from free cysteine and transfer it to the scaffold ISCU proteins
(m-ISCU and c-ISCU). The proposed function of frataxin is to deliver iron to the desulfurase=scaffold complex for de novo
biogenesis of [2Fe-2S] and [4Fe-4S] clusters in the mitochondria. This synthesis also requires the redox proteins ferrredoxin
(FDX) and ferredoxin reductase (FDXR). The clusters are transiently bound to the scaffolds before being released and
incorporated into recipient apoproteins. These steps are facilitated by the HSPA9 and HSCB chaperones in the mitochondria,
and possibly by the NUBP1, NUBP2, NARF1, and CIAO1 chaperones in the cytosol. The cytosolic assembly of Fe-S clusters
requires an unknown precursor exported from the mitochondria by the ABCB7 transporter.
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components of the essential ISC assembly machinery (303).
Four of these downregulated genes are involved in serine
synthesis. Serine is condensed with homocysteine to pro-
duce cystathionine in a reaction catalyzed by cystathionine
b-synthase. Cystathionine is then cleaved by cystathionase to
form cysteine. Expression of the gene encoding cystathionase
also is repressed. Thus, consistent with the downregulation of
these genes, biochemical data showed that steady-state levels
of cysteine, serine, homocysteine, and cystathionine were re-
duced in the frataxin-deficient cell types (303).

Recent data show that the yeast Pichia guilliermondii Dyfh1
mutant displays organic sulfur auxotrophy (251). Of note,
cysteine desulfurase and cystathionine b-synthase have the
same cofactor, pyridoxal phosphate (PLP). Our unpublished
results show lower levels of intracellular PLP in yeast Dyfh1
cells and FRDA patient fibroblasts than in controls. Taken
together, these findings suggest that cysteine and PLP defi-
ciency may contribute to decreased de novo Fe-S cluster syn-
thesis. This is consistent with the Duby et al. (92) proposal that
Yfh1 plays an important but not essential role in this process,
because Fe-S cluster biogenesis can occur in the absence of
frataxin, even though at a reduced level (92).

B. Frataxin is involved in heme biosynthesis

Heme is an iron-containing tetrapyrrole ring that is used as
a cofactor by many cytochromes, enzymes, and other hemo-
proteins, involved mainly in respiration and oxygen transport
and sensing. The heme biosynthetic pathway occurs in eight
sequential steps; the first step occurs in the mitochondria,
followed by four steps in the cytoplasm, with the last three
steps taking place back in the mitochondria. In a study of 13
FRDA patients tested for free erythrocyte protoporphyrin, all
patients had levels above the normal range, indicating heme
deficiency in these patients caused by inhibition of ferroche-
latase activity and leading to ineffective and persistent
erythropoiesis (213). A cellular deficit in heme metabolism
was first reported in the S. cerevisiae Dyfh1 strain (104, 183).
The mutant had 20-fold less total heme content compared
with the wild type, and low-temperature spectra of whole
cells revealed a near absence of cytochrome signals (aþ a3, b,
and c) (183). Zinc protoporphyrin was visible in these cells,
suggesting that ferrochelatase, which catalyzes the end step of
heme biosynthesis, incorporated zinc instead of iron into

protoporphyrin IX. A detailed analysis of ferrochelatase levels
demonstrated repression of the encoding gene HEM15 and
reduction of total protein levels to < 25% of wild type in
frataxin-deficient cells (183). In vivo studies showed that the
unavailability of iron, rather than the decrease in ferrochela-
tase activity, accounted for the lack of heme and the presence
of Zn-protoporphyrin in Dyfh1 cells (183). These results were
later confirmed in FRDA patient lymphoblasts (280).

A specific interaction (KD *40 nM) between recombinant
Yfh1 and Hem15 proteins was seen in the absence of iron by
using plasmon surface resonance (183). These observations
were completed by in vitro experiments using the human
frataxin and ferrochelatase proteins (330). In these studies,
high-affinity binding of frataxin to ferrochelatase (frataxin
monomer=ferrochelatase dimer stoichiometry) was iron de-
pendent and stimulated ferrochelatase activity, suggesting a
physiologic role of frataxin in iron delivery to ferrochelatase
(330). The contact surface of yeast and human frataxin was
mapped by NMR and was shown to involve predominantly
the helical plane and b1 strand, hence overlapping with the
putative iron-binding domain (25, 143). For Yfh1, but not for
human frataxin, the b6-loop-a2 region and the surface of the b-
sheet were also found to be involved in the interaction (143).
Neutral residues in the b6-loop region might provide a hy-
drophobic patch on the protein, facilitating binding to the
hydrophobic external part of ferrochelatase (143). The specific
Yfh1 and human frataxin residues that showed a chemical-
shift perturbation as a result of complex formation with fer-
rochelatase are shown in Fig. 11. These data suggest a model
in which holofrataxin docks to the ferrochelatase dimer
mostly through helical surface residues, with complex
formation allowing ferrous iron delivery for heme synthesis
(25, 143).

In mammalian cells, but not in yeast cells, ferrochelatase
has an Fe-S cluster. Absence of this cofactor would therefore
be expected to result in inactivation of the enzyme in mam-
mals. However, normal levels of ferrochelatase activity were
observed in FRDA patient lymphoblasts (280) and in HeLa
cells with frataxin depletion by RNAi (298). Despite normal
ferrochelatase activity, HPLC analysis and heme staining re-
vealed that heme a and c levels were reduced and protopor-
phyrin IX levels were increased in FRDA lymphoblasts and in
a frataxin-deficient human oligodendroglial cell line (220,
280). Furthermore, gene-transcription analyses using various

FIG. 11. Mapping of frataxin residues that interact with ferrochelatase. (A) FXN and Yfh1 amino acid sequence alignment
showing the frataxin residues, identified by NMR spectroscopy, that show a chemical-shift perturbation as a result of
complex formation with ferrochelatase (25, 143). (B) Residue visualization on the human frataxin structure by using the
YASARA View software (PDB ID: 1ekg). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article at www.liebertonline.com=ars).
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human and mouse cell types demonstrated that several steps
of heme biosynthesis were affected by frataxin deficiency
(151, 220, 280). The genes encoding the 5-aminolevulinate
dehydratase, porphobilinogen deaminase, uroporphyrinogen
III synthase, coproporphyrinogen oxidase, and ferrochelatase
were found to be downregulated.

C. Iron homeostasis

Disruption of cellular iron homeostasis, resulting in mito-
chondrial accumulation and cytosolic depletion, is charac-
teristic of frataxin deficiency. Massive iron accumulation
(reaching levels> 10 times), as observed in mitochondria of S.
cerevisiae Dyfh1 cells (15, 104, 323), is exceptional even among
yeasts. In human and mouse tissues, the increased iron level
resulting from frataxin insufficiency does not reach much
more than twice the normal level. Several mouse models of
FRDA have been constructed, and iron accumulation was not
frequently observed. No significant iron deposits were seen in
the complete knockout (71), the neuron knockout (neuron-
specific enolase promoter, NSE model) (249), the knockin
(homozygous insertion of 230 GAA-repeat expansions in the
first intron of the mouse FXN gene) (207), or the Cb=Br models
(cerebellum=brain; specific neuronal expression of tamoxifen-
dependent recombinase Cre-ERT under the mouse Prion
protein promoter, with ablation of frataxin expression in adult
mice) (294). However, iron accumulates in the heart of 10-
week-old MCK mice (249) and iron deposition and lipofuscin
accumulation were detected in the DRG and heart of the hu-
manized mouse model after 1 year of age (YAC transgenic
mice containing the human FXN gene with 190 GAA repeats)
(8). Studies of tissues and cells obtained from FRDA patients
have occasionally given inconsistent results. Iron accumula-
tion has been found in the heart (36, 177, 206, 272), liver (36),
and spleen (36), but not in the DRG, spinal cord, skeletal
muscle, cerebellum, peripheral nerves, or pancreas (36). By
using magnetic resonance imaging, Waldvogel et al. (316)
found increased iron in the dentate nucleus of the cerebellum
in 12 FRDA patients. However, these findings were not con-
firmed by biochemical analyses of autopsy tissue from nine
patients; no significant differences in total iron and ferritin
content were observed between patients and normal controls
(166). In a later study, total iron levels in the DRG from three
patients also were found to be in the normal range (167).
Additionally, serum iron and ferritin concentrations, mea-
sured in 10 FRDA patients, were found similar to normal
controls (322). Studies of cultured fibroblast and lymphoblast
cells from patients or mouse models, however, showed a
modest increase of mitochondrial iron content (46, 302, 326).
Overall, these results do not suggest a global iron overload
but rather accumulation in specific tissues, such as the heart.
The potential relation between the increased iron observed in
the heart and development of cardiomyopathy in FRDA pa-
tients remains unclear (36). Recently, Huang et al. (151) pro-
posed a model explaining iron overload in the mitochondria
and iron scarcity in the cytosol by using microarray analysis of
RNA extracted from the heart tissue of MCK mice. They
found induction of the genes encoding the transferrin receptor
1 (increasing cellular iron uptake from circulating transferrin)
and the mitochondrial iron importer mitoferrin-2, and re-
pression of the gene encoding the cell-membrane iron ex-
porter ferroportin 1. Additionally, the expression of genes

encoding proteins involved in iron use, like in Fe-S clusters
and heme biosynthesis, was decreased (151).

In S. cerevisiae, a strong relation is found between Fe-S
cluster status and the regulation of iron uptake and homeo-
stasis (239). Iron uptake is controlled by the transcriptional
activator Aft1, which shuttles from the cytosol to the nucleus
on iron starvation. This signaling pathway is dependent on an
iron-sensor complex formed by Grx3=4, Fra2, and a [2Fe-2S]
cluster (186). Frataxin-deficient cells, as observed in other
mutants with impaired Fe-S cluster biogenesis and in iron-
deprived cells, upregulate Aft1-dependent genes (15, 239).
Interestingly, the frataxin-deficient mutant of the respiratory
yeast Candida albicans, which uses transcriptional repression,
rather than activation, for the regulation of iron uptake, ac-
cumulates iron in the mitochondria at much lower levels than
does S. cerevisiae (275).

In addition to the transcriptional deregulation of the iron-
regulon genes, a defect in Fe-S cluster assembly in yeast leads
to mislocalization of the iron taken up by the cells, which
accumulates in the mitochondria instead of in its normal
storage compartment, the vacuole. Consequently, all yeast
mutants with impaired Fe-S cluster biogenesis display a high
level of iron uptake and accumulate iron specifically in their
mitochondria (264). The molecular mechanisms leading to the
mislocalization of iron in yeast cells with defective Fe-S as-
sembly are unknown. In mammalian cells, Fe-S clusters also
play a major role, through the IRP proteins, in transcriptional
and posttranscriptional regulation of iron homeostasis (214).
For example, inactivation of human ISD11, a protein involved
in mitochondrial Fe-S cluster biogenesis, results in disruption
of iron homeostasis, through increased binding activity of
IRP1 and increased protein levels of IRP2 (292). However, the
strong link between Fe-S cluster status and the intracellular
distribution of iron observed in yeast has not been observed
for mammalian cells. These observations may thus explain the
greater mitochondrial iron accumulation in Dyfh1 yeast cells
than in other frataxin-deficient organisms.

Mitochondrial iron accumulation is common to all yeast
mutants with defective Fe-S cluster assembly, irrespective of
frataxin abundance. It is therefore important to distinguish
between yeast phenotypes that are specifically related to the
lack of frataxin and those that are more generally related to
defects in Fe-S cluster assembly. Only a few of the phenotypes
observed in yeast are specifically related to the lack of frataxin.
For example, anaerobiosis has a beneficial effect on cell
growth in Dyfh1 cells, but not in other mutants with defective
Fe-S cluster biogenesis, suggesting a specific role of frataxin in
cellular oxygen handling (39).

The surplus iron in frataxin-deficient cells may exacerbate
oxidative stress through the Fenton reaction (15, 45, 234, 262).
Whether this is the case is unclear. In human cells, the ex-
pression of mitochondrial ferritin or the addition of defer-
iprone leads to a reduction in ROS accumulation and in cell
death and to an increase in the activity of Fe-S cluster enzymes
(49, 160). In yeast, preventing mitochondrial iron accumula-
tion in Dyfh1 cells by overexpressing CCC1 (which encodes a
vacuolar iron importer), by adding chelators to the growth
medium or by disrupting the transcriptional activator gene
AFT1, improves cellular respiration and decreases the amount
of oxidatively modified proteins in the mitochondria (60, 103).
Moreover, the heterologous expression of human mitochon-
drial ferritin in Dyfh1 yeast cells attenuates the deleterious
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phenotypes of this mutant (48). Some suppressor strains of
Dyfh1, however, become resistant to oxidative stress while still
accumulating iron in the mitochondria (183). Additionally,
Dyfh1 cells grow better when excess iron is added to the me-
dium than when grown in iron-restricted conditions (275).
These findings question the toxicity of the accumulated iron in
mitochondria.

The chemical form of mitochondrial iron in primary fibro-
blasts from FRDA patients was analyzed by x-ray absorption
spectroscopy (246). Most of the iron in patient fibroblasts ex-
ists as ferrihydrite associated with mitochondrial ferritin (at
levels 3 times higher than control cells). Ferrous iron is present
at a low level in these cells (246). Although we cannot exclude
the fact that this small pool of iron may contribute to ROS
production, most of the mitochondrial iron is thus in a non–
redox-active form. Accordingly, Sturm et al. (300) did not find
any difference in the mitochondrial labile (chelatable and re-
active) iron pool in fibroblasts and lymphoblasts between
patients and controls. Mössbauer spectroscopy studies have
shown that the mitochondrial iron in yeast Dyfh1 cells forms
amorphous nanoparticles of ferric phosphate (183). Similar
findings have been reported for other Fe-S cluster mutants
that accumulate iron in the mitochondria (204, 205). In vivo
experiments demonstrated that this iron is not available for
heme synthesis (183) or as a cofactor for heterologous ex-
pression of E. coli FeSOD (R. Santos, unpublished data).
Additionally, unlike iron in the mitochondria of other iron-
accumulating mutants, this iron is not ‘‘Sod2-reactive,’’
meaning that it cannot compete with manganese for binding
to Sod2 (328). Thus, most of the iron accumulated in Dyfh1
mitochondria is probably not redox active.

As well as mitochondrial iron accumulation, the effects of
concurrent cytosolic depletion should be considered. In FRDA
lymphoblasts, the posttranscriptional regulators IRP1 and
IRP2 (displaying aconitase activity in iron-replete conditions)
show increased IRE-binding activities, indicative of low levels
of iron in the cytosol and oxidative stress (187). Li et al. (187)
also demonstrated that frataxin expression is increased by
iron and substantially reduced by addition of the iron chelator
deferoxamine. Iron-dependent expression of YFH1 also was
observed in yeast cells (275, 286). These results suggest that
cytosolic iron depletion exacerbates the repression of frataxin
expression, initially due to FXN gene silencing, thereby pro-
moting the pathogenesis of the disease.

D. Iron-binding properties and oligomerization
of frataxin

Given that the lack of frataxin results in mitochondrial iron
accumulation, it was quickly predicted that frataxin may di-
rectly interact with iron. The iron-binding capacity of frataxin
was first determined for yeast frataxin (4) and then for the
human and bacterial homologues (6, 25, 34, 55, 150). Fur-
thermore, the ability of the bacterial and yeast frataxin to
oligomerize is tightly related to their iron-binding capacity.
These proteins generally form highly soluble monomers, but
in the presence of a large excess of iron, they can oligomerize
or aggregate (6). The human frataxin protein seems to behave
differently, because the monomer assembles in an iron-inde-
pendent manner through stable protein–protein interactions
mediated by the nonconserved N-terminal region of the pro-
tein (225, 226). Frataxin can bind iron in vitro in the monomeric

(65), trimeric (161), or oligomeric=multimeric form (278).
Based on these observations, and consistent with determina-
tions of the iron=protein ratio, frataxin was suggested to play
a role as an iron donor [chaperoning Fe(II)] for biologic pro-
cesses (317, 329, 330), as an iron-storage protein (4, 117), or
both (118, 161).

The biochemical and structural aspects of iron binding by
frataxin have been extensively studied [reviewed in (24)]
Structural attributes may account for the iron-binding prop-
erties; the plane formed by the two terminal a-helices includes
highly conserved exposed acidic residues (glutamic and as-
partic acids), forming a patch on the protein that could be
involved in cation binding (Fig. 7B) (24). Studies with bacte-
rial, yeast, and human frataxin show that the monomeric
CyaY and Yfh1 proteins can bind two Fe(II) atoms (no metal–
metal interaction) with dissociation constants of 3.8 and
3.0 mM, respectively, and that human frataxin binds seven
Fe(II) atoms with a dissociation constant of 55 mM (34, 65, 329).
Human frataxin was found to have the lowest affinity for iron
(329). In some cases, no evidence of interaction between
human frataxin and iron could be detected, leading to the
suggestion that the putative iron-storage property of the
frataxin family is a side function that has been lost during
evolution (6).

Structural studies on the oligomerization of frataxin have
focused mainly on the yeast protein, because of the tendency
of human frataxin to polymerize and form higher-order
structures spontaneously and independent of iron (6, 55).
Yeast frataxin monomers can self-assemble in vitro in an iron-
dependent manner to yield a macromolecular complex with
physical features consistent with a role in iron storage (117).
The assembly of yeast frataxin in vitro is a stepwise process
that requires the presence of Fe(II). It proceeds through the
formation of several stable intermediates: a1?a3?a6?
a12?a24?a48 (4, 117). In this model, the trimer represents
the basic structural and functional unit of the 24- or 48-subunit
frataxin oligomer (161, 235). Fe(II) is converted into Fe(III)
during oligomerization, through two sequential oxygen-
dependent iron-oxidation reactions: a ferroxidase reaction
catalyzed by frataxin induces the first assembly step (a1?a3),
followed by a slower autoxidation reaction that promotes the
assembly of higher-order oligomers yielding ferritin-like
particles (a24 or a48) (234, 235). Frataxin monomers are ar-
ranged into trimers within these particles, which contain up to
2,400 iron atoms that exist predominantly as ferrihydrite (4,
117, 161, 224, 278). Stabilization of yeast frataxin oligomers
seems to be mediated by interactions between the ferrihydrite
crystallites, formed at separate mineralization sites, with
disassembly of the frataxin oligomers occurring on reduction
of their ferric iron core (235). Consistent with this, the crystal
structure of the trimer showed the contact region between
monomers to form a channel that may accommodate the
metal ions (161). The iron-binding properties of human fra-
taxin have been studied less extensively. Although its oligo-
merization is iron independent (6, 55), human frataxin
overproduced in E. coli can also assemble into a stable
homooligomer with ferroxidase activity (226), which can bind
*10 iron atoms per frataxin molecule (55).

Frataxin has been compared with ferritin, despite major
structural differences, because both proteins can convert
redox-active iron into an inert mineral through ferroxi-
dation activity (278). These findings led several authors to
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suggest that frataxin not only promotes the biogenesis of iron-
containing proteins (through monomeric and=or trimeric
forms of the protein), but also detoxifies surplus iron in the
mitochondria (through the formation of ferritin-like frataxin
particles), thus serving as a major antioxidant (118, 119, 185).

The iron-storage properties associated with frataxin oligo-
merization in vitro are well established; however, it remains
unclear whether these properties are relevant to in vivo func-
tion. In vivo oligomerization of Yfh1 is induced by iron, heat
stress, and overproduction of the monomer (119, 286), but
iron storage in frataxin multimers has never been shown to
accompany the increase in oligomerization in these condi-
tions. Moreover, Aloria et al. (10) observed that a Yfh1 mutant,
defective in iron-induced oligomerization in vitro, was still
able functionally to replace the wild-type protein in vivo, even
when produced at very low levels. Nevertheless, it remains
possible that frataxin oligomerization may be required in vivo
under stringent conditions, such as exposure to stress (118,
119). The observation that mitochondrial iron accumulates in
frataxin-deficient cells seems to support the hypothesis of
frataxin being involved in mitochondrial iron storage (117).
Moreover, the expression of human mitochondrial ferritin in
frataxin-deficient yeast cells attenuates the deleterious phe-
notypes associated with the lack of frataxin (48, 49). However,
many different yeast mutants, most of which with impaired
[Fe-S] cluster assembly, accumulate large amounts of iron in
their mitochondria, although they possess a functional fra-
taxin protein (263). It is possible that expression of human
ferritin in these mutants would also improve cell viability.
Finally, frataxin is not an abundant protein, with a concen-
tration in yeast of *1,000–1,500 molecules per cell under
standard conditions (286). Thus, the iron concentration in the
mitochondrial matrix greatly exceeds the iron-binding ca-
pacity of frataxin (286).

E. Regulation of cellular antioxidant defenses

Frataxin deficiency causes pathologic oxidative stress in
cells from FRDA patients and in all eukaryotic organisms
studied (8, 11, 44, 59, 275, 309). Oxidative stress is therefore a
central feature of the disease and a potential target for ther-
apy. Several antioxidant drugs are currently being tested in
clinical trials (see VII.B). Biomarkers of oxidative stress have
been discovered in urine and blood samples from FRDA pa-
tients. Levels of urinary 8-hydroxy-20-deoxyguanosine, a
marker of DNA oxidative damage (284), and plasma mal-
ondialdehyde, a product of lipid peroxidation (37, 95), are
higher in patients than in controls. Nonetheless, conflicting
results have been obtained, as a difference could not be
found in urinary 8-hydroxy-20-deoxyguanosine (87) and F2-
isoprostanes (217) levels between patients and controls in
these studies. Oxidative stress due to frataxin deficiency is
frequently associated with iron accumulation in the mito-
chondria, as discussed earlier (see V.D). However, the mis-
regulation of antioxidant enzymatic defense mechanisms has
been observed in frataxin-deficient cells, which may result in
ROS accumulation and oxidative stress (59, 157, 237, 305).

ROS are produced in several cellular compartments but the
large majority, estimated at 90%, comes from mitochondrial
respiration [for reviews, see (16, 102, 148, 325)]. A small
proportion of the electrons passing through the electron-
transport chain, mostly at complexes I and III, react with

molecular oxygen to produce superoxide anion (O2
��), which

can be converted into other ROS species either enzymatically
or nonenzymatically (Fig. 12). Superoxide dismutases (SODs)
are the first line of defense against ROS, converting O2

�� into
hydrogen peroxide (H2O2). Eukaryotic cells have two SODs,
one in the mitochondrial matrix that uses manganese as a
cofactor (Sod2 or MnSOD), and a copper–zinc SOD located in
the cytoplasm and the mitochondrial intermembrane space
(Sod1 or CuZnSOD). Mammalian cells have a third SOD
isoform, an extracellular CuZnSOD. Superoxide can inacti-
vate [4Fe-4S] cluster-containing enzymes such as aconitase,
releasing iron and thereby increasing the intracellular free-
iron pool. This favors the Fenton reaction [Fe(II)þH2O2?
Fe(III)þHO�þHO�], in which H2O2 reacts with ferrous iron
to produce the hydroxyl radical (HO�), which can damage any
biologic macromolecule. Excess O2

�� also can react with nitric
oxide (NO) to generate the deleterious peroxynitrite
(ONOO�). Detoxification of H2O2 involves the action of di-
verse scavenging enzymes such as catalases, glutathione
peroxidases (GPXs), or peroxiredoxins. The glutathione tri-
peptide (GSH=GSSG; l-g-glutamyl-cysteinyl-glycine) is a
major antioxidant molecule in eukaryotic cells. Peroxides are
reduced by GPXs through a reaction in which GSH is simul-
taneously oxidized to GSSG. GSH is regenerated from GSSG
by glutathione reductase by using NADPH as the electron
donor (Fig. 12) (45). The cellular response to oxidative stress
involves the induction of detoxifying enzymes such as SODs
and GPXs, an increase in GSH and NADPH synthesis, a de-
crease in the GSH=GSSG ratio, and glutathionylation of target
proteins (45). The cellular thiol redox status is maintained by
the glutathione=glutaredoxin and thioredoxin=thioredoxin
reductase systems, which reduce the oxidized sulfydryl
groups of proteins (Fig. 12). Even though ROS and reactive
nitrogen species (RNS) can cause cellular damage, some have
other important roles. H2O2 can be produced by several en-
zymes in different compartments and functions as a signaling
molecule in growth, apoptosis, and aging (127). NO is an
important messenger in neuronal communication in the cen-
tral nervous system, despite also being a mediator of neuro-
toxicity in several disorders (45). Under normal physiologic
conditions, the rate of ROS and RNS production is compen-
sated by the activity of scavenging enzymes and small anti-
oxidant molecules (a-tocopherol, ascorbic acid, and
glutathione). An imbalance between ROS and RNS formation
and antioxidant defense mechanisms results in increased ox-
idative stress. Fibroblasts from FRDA patients, unlike those
from healthy controls, are sensitive to low doses of H2O2,
oligomycin, and iron and do not upregulate SODs in response
to oxidative-stress inducers (59, 157, 237, 302, 326).

Several studies using blood or cells from FRDA patients, or
yeast, suggest that frataxin deficiency leads to the impairment
of glutathione homeostasis (13, 221, 236, 243). A considerable
reduction in free glutathione levels (15-fold) and a significant
increase in the glutathione bound to hemoglobin (twofold) in
erythrocytes were observed in the blood of FRDA patients
(243). The glutathione-dependent redox status of frataxin-
deficient cells was studied in detail in the yeast model (13). In
Dyfh1 cells, the total glutathione concentration and the
GSH=GSSG ratio are significantly lower, and GPX activity is
higher than in wild-type cells. Although the pentose phos-
phate pathway (NADPH-producing pathway in the cell) is
stimulated (glucose-6-phosphate dehydrogenase activity
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being 3 times higher than in the wild type), the NADPH=
NADPþ pool remains low in mutant cells. In contrast to these
marked metabolic changes, no significant difference was ob-
served in the expression of genes involved in glutathione-
dependent systems between Dyfh1 and control cells. These
findings suggest that frataxin deficiency in yeast results in the
remodeling of glutathione-dependent defense systems and in
cell adaptation to chronic oxidative stress (13). Interestingly,
the addition of iron, but not of an iron chelator, to the culture
medium increases total GSH levels and decreases the activity
levels of GPX and glucose-6-phosphate dehydrogenase (13).
Additionally, GPX activity has been shown to be induced and
GSSG concentration increased in cultured fibroblasts and

lymphoblasts from FRDA patients, suggesting that these cells
are in a state of oxidative stress (221, 236, 237, 303). Consistent
with a twofold increase in glutathionylated hemoglobin (243)
and an 83% increase in gluthatione S-transferase activity (305)
in patients’ blood, Pastore et al. (236) found that the gluta-
thione pool is shifted toward its protein-bound form in patient
fibroblasts. Immunoprecipitation of fibroblast lysates with
anti-actin antibody and probing with anti-GSH antibody
confirmed that actin glutathionylation levels were 4.7 times
higher in patient fibroblasts than in normal control cells (236).
The glutathionylation of actin results in the disassembly of
filaments in vivo, which is reversible by glutathione treatment.
In contrast to observations in the yeast model, addition of iron

FIG. 12. ROS production and cellular antioxidant defense enzymes. Superoxide anion (O2
��) is produced by complexes I

and III of the electron-transport chain and converted into hydrogen peroxide (H2O2) by superoxide dismutases (SOD) or into
peroxynitrite (ONOO�) by reacting with nitric oxide (NO). H2O2 can react with ferrous iron to produce the hydroxyl radical
(HO�). Glutathione (GSH=GSSG) is a tripeptide synthesized in two steps from glutamic acid, cysteine, and glycine. H2O2 and
other peroxides are detoxified by glutathione peroxidases (GPXs), which oxidizes glutathione. GSSG is reduced to GSH by
glutathione reductase (GR) by using electrons from NADPH. NADPH is regenerated by the pentose phosphate pathway
enzymes, glucose 6-phosphate dehydrogenase (G6PDH), and 6-phosphogluconate dehydrogenase. Other enzymes that
scavenge H2O2 and peroxides are catalases and peroxiredoxins (PRXs). Peroxiredoxins also can scavenge ONOO�. The
cellular thiol redox status is maintained by the thioredoxin (TRX)=thioredoxin reductase (TR) and glutathione=glutaredoxin
systems by reducing the oxidized sulfhydryl groups of proteins.
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to FRDA fibroblasts leads to increased protein-bound gluta-
thione (236). These results were confirmed in autopsy samples
from the spinal cords of four patients (297). Immunostaining
with an antibody that specifically recognizes protein-bound
glutathione showed stronger staining in patient samples (in
gray matter neurons and in white matter cells and axons) than
in controls, suggesting a higher level of glutathionylated
proteins in FRDA patients. This study also showed abnormal
microtubule dynamics in patient autopsy samples (297).

It was established several years ago that FRDA fibroblasts
are sensitive to oxidants (59, 157), but the signaling defect in
the pathway leading to SOD induction was discovered only
recently (237). Impairment of mitochondrial SOD2 induction
with iron treatment does not appear to involve the tran-
scription factor NF-kB (157). Paupe et al. (237) demonstrated
that the Nrf2-dependent Phase II antioxidant pathway is
defective in frataxin-deficient fibroblasts. Under normal
conditions, the activity of the transcription factor Nrf2 is
regulated by the actin-associated Keap1 protein, which se-
questers Nrf2 in the cytoplasm and promotes its degradation
through ubiquitination (223). Under conditions of stress, this
interaction is disrupted, and Nrf2 is translocated to the nu-
cleus, where it binds to DNA sequences of the cis-acting ARE
(antioxidant-responsive element), activating the expression
of Phase II antioxidant genes (223). These encode proteins
including SODs, catalase, glutathione S-transferase, and
NADH quinone oxidoreductase (223, 237). In FRDA fibro-
blasts treated with oligomycin or tBHQ, Nrf2 fails to trans-
locate to the nucleus, and none of these genes is induced
(237). These results are consistent with the observation of the
disorganization of actin fibers in patient fibroblasts and the
consequent dissociation of Keap1 and Nrf2 from actin. Simi-
lar results were obtained in an shRNA frataxin-depleted
neuronal model (neuroblastoma-derived cell line) (237).
Taken together, these findings suggest that constitutive oxi-
dative stress due to frataxin deficiency causes changes in
the glutathione pools, resulting in increased actin glutathio-
nylation and altered cytoskeletal dynamics and thus impair-
ing the induction of Phase II antioxidant defense pathways
(Fig. 13).

In parallel to reduced cell antioxidant defense mechanisms,
frataxin deficiency also seems to lead to an increase in ROS
accumulation (154, 221, 274, 275, 286). It remains unclear,
however, which molecular species among ROS and RNS are
accumulated in frataxin-deficient cells and are responsible for
the observed damage. Additionally, little is known about the
regulation of the enzymes that produce ROS and RNS in
FRDA patient cells or in other models. In patient lympho-
blasts, the reduced activity of respiratory chain, specifi-
cally of complex III and cytochrome c, leads to accumulation
of O2

�� (221).
Other studies suggest that H2O2 is the most likely cause of

oxidative stress. The treatment of patient fibroblasts with a
catalase mimetic, Euk134, rescues the Nrf2 signaling pathway
(237); and the expression of H2O2-detoxifying enzymes, but
not SOD1 or SOD2, in Drosophila rescues the deleterious
phenotypes of frataxin deficiency (12). Several different en-
zymes in the cell can produce H2O2 (127). One of these en-
zymes, the mitochondrial outer membrane monoamine
oxidase (MAO) A, was found induced in frataxin-deficient
HEK293 T-Rex cells (193). MAOs catalyze the oxidative
deamination of biogenic amines to generate the reaction

products H2O2 and aldehyde. Oxidative stress and apoptosis
are thereby induced, resulting in neuronal degeneration (219).

The role of NO production and the contribution of RNS to
oxidative damage in frataxin-deficient cells has yet to be de-
termined. Given that NO is a major signaling molecule in the
central nervous system, it may be of particular interest to
evaluate its role in the pathophysiology of the disease.

F. Mitochondrial and nuclear genome integrity

Loss of mitochondrial DNA was one of the first phenotypes
observed in yeast Dyfh1 cells, the so-called petite phenotype
(rho- and rho8 cells) (15, 104, 323). On downregulation of
YFH1 expression, by using a tightly regulated GAL1 pro-
moter, it was shown that iron accumulation and protein oxi-
dative damage precede the appearance of petite cells (163). In
this study, cells with acute frataxin deficiency displayed the
petite phenotype once they had accumulated at least five le-
sions per mitochondrial genome, corresponding to 10 gener-
ations under glucose repression. Complete loss of mtDNA

FIG. 13. Frataxin deficiency leads to oxidative stress. In
frataxin-deficient cells, the Nrf2-dependent Phase II antioxi-
dant defense pathway is impaired. Actin is glutathionylated,
and actin fibers are disorganized and not associated with
Keap1 and Nrf2. Consequently, expression of the genes
controlled by Nrf2, such as the mitochondrial SOD2, is not
induced on treatment of frataxin-deficient cells with oxi-
dants. The total glutathione concentration may be decreased,
in addition to increase in the levels of the oxidized form
(GSSG) and to more glutathione bound to proteins.
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(rho8 cells) was observed four to five generations later (163). In
cells in which frataxin was still present, but at reduced levels,
lesions were detected after 16 generations with only a limited
loss of mtDNA after 22 generations, indicative of a slow ac-
cumulation of damage (163). Low levels of frataxin corre-
spond to the situation observed in FRDA patients, and
mtDNA lesions have been observed (36, 145, 149). Analysis of
tissues from biopsies or autopsies of patients with FRDA have
shown a reduced ratio of total mtDNA to 18S rDNA in the
skeletal muscle (60%), the heart (33%), cerebellum (27%), and
DRG (18%) (36).

Mutations in mtDNA can lead to impairment of oxidative
phosphorylation, causing several disorders, such as mito-
chondrial myopathies and cardiomyopathy. In vivo analysis
of cardiac and skeletal muscle bioenergetics of FRDA patients
by using phosphorus magnetic resonance spectroscopy
showed interesting findings. Lodi et al. (190) demonstrated
that in skeletal muscle of FRDA patients, the maximal rate of
mitochondrial ATP production was significantly lower than
that in healthy controls or in patients with unrelated muscular
diseases. In addition, the deficit in ATP production correlated
with the number of GAA triplet repeats in the smaller allele,
strongly suggesting that oxidative phosphorylation is affected
by a decrease in frataxin level. The cardiac bioenergetics,
measured as the phosphocreatine-to-ATP and inorganic
phosphate–to-phosphocreatine ratios, are abnormal in FRDA
patients, even in the absence of left ventricular hypertrophy
(41, 191). These results imply that energy-metabolism deficit
in cardiac tissue could be the cause of cardiomyopathy in
FRDA patients. No relation was found between the GAA-
repeat length and the myocardial energy (191).

A growing body of evidence highlights the importance of
normal mitochondrial metabolism in nuclear genome integ-
rity. Like the other petite mutants, Dyfh1 cells are unable to
grow on respiratory substrates. However, they grow more
slowly on fermentable carbon sources. This observation en-
couraged Karthikeyan et al. (162) to investigate whether fra-
taxin deficiency leads to nuclear DNA damage. They found
evidence of chromosomal instability, with the Dyfh1 mutant
showing higher levels of illegitimate mating, a sixfold higher
rate of spontaneous recombination, and a twofold higher
mutation rate than controls. Frataxin deficiency also led to
increased sensitivity to the DNA-alkylating methyl metha-
nesulfonate and to the replication inhibitor hydroxyurea than
to rho8 control cells (162). Furthermore, the DNA damage-
inducible promoter from the DIN1 gene was upregulated in
mutant cells, and addition of the antioxidant N-acetylcysteine
suppressed the induction of DIN1 expression, suggesting that
the nuclear damage was due to increased ROS. Consistent
with this, deletion of the glutathione peroxidase gene GPX1 in
Dyfh1 cells led to a marked increase in the nuclear mutation
rate, as determined by canavanine resistance (162). These re-
sults led the authors to suggest that the substantial sponta-
neous nuclear damage in yeast frataxin-deficient cells was
caused by H2O2 generated in the mitochondria (162).

A recent study challenges this hypothesis and suggests that
mitochondrial dysfunction promotes nuclear genome insta-
bility by inhibiting the assembly of Fe-S cluster proteins that
are required for maintenance of nuclear genome integrity
(311). Veatch et al. (311) described the crisis events that follow
loss of mtDNA in yeast; they observed cell-cycle arrest, pro-
gressive loss of viability, and selection for nuclear mutations

that improve growth in the absence of mtDNA. Loss of
mtDNA led to a reduction in the inner mitochondrial mem-
brane electrochemical potential (DC), a transcriptional profile
characteristic of iron starvation and intracellular Aft1-
dependent iron accumulation, an increase in oxidative protein
damage, and impaired mitochondrial and nuclear=cytosolic
Fe-S cluster assembly. By using Daft1 mutant cells, which do
not accumulate iron, they concluded that increased iron and
oxidative damage may play a role in the crisis after mtDNA
loss but are not required for the increase in nuclear genomic
instability.

VI. Frataxin Is Involved in Development, Cell Death,
and Cancer

A. Development in model organisms

As discussed earlier (see III.F), no FRDA patient has yet
been found to be homozygous for point mutations, suggest-
ing an essential role for frataxin in development. Inactivation
of the frataxin gene in mice causes embryonic lethality at day
E6.5, a few days after implantation (for details on frataxin
expression in mouse, see III.C) (71). Frataxin also was re-
ported to be necessary for differentiation in cell cultures. The
mouse embryonic carcinoma P19 cells can differentiate into a
variety of cell types, and frataxin was found to be required for
neuronal, but not for cardiomyocyte, differentiation (274).

The Drosophila melanogaster dfh gene, encoding the frataxin
homologue, is expressed at a low level throughout develop-
ment, from early embryonic stages to adults (11, 52). Frataxin
protein levels are highest in late embryos, diminishing in
larvae and pupae, and increasing to modest levels in young
adults (11). A peak in dfh mRNA expression is thus observed
in 6- to 12-h embryos, corresponding to the time at which most
tissues differentiate (52). RNA in situ hybridization has shown
a ubiquitous distribution of dfh transcripts in embryos (52).
The effects of downregulating dfh expression by using a
GAL4-UAS transgene (RNAi-based technology) differ be-
tween larvae and adults (11). Larvae exhibit retarded devel-
opment, leading to a prolonged larval phase, and impaired
metamorphosis to become adults at 258C. At 188C, 1–2% of
larvae develop into adults, but most die within 3–4 days; the
remaining flies survive � 40 days. The silencing of dfh in the
peripheral nervous system, but not in motor neurons, imposes
a reduction of 40% in adult life span without any defect in pre-
adult development (11). A ubiquitous overexpression of dfh
also leads to death of all individuals before pupae eclosion
from puparium because of alterations in the development of
embryonic muscles, peripheral nervous system, and the heart
(189). These results show that changing the level of cellular
frataxin in Drosophila affects the same tissues as those
observed in FRDA patients. At the biochemical level, the
effects of dfh silencing include decreased activity of Fe-S
cluster-containing enzymes, disruption of intracellular iron
homeostasis, and sensitivity to oxidative stress (11, 189).
Overexpression of dfh resulted in inhibition of mitochondrial
aconitase under hyperoxia, but not in normal oxygen condi-
tions (189).

Caenorhabditis elegans transgenic strains carrying fusions of
the frataxin-encoding gene ( frh-1) and the green fluorescent
protein showed localization of frataxin to the muscles, gut,
pharynx, spermatheca, and head neurons (308). As observed
for other organisms, frh-1 knockout in C. elegans results in
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developmental arrest at the L2=L3 larval stage (312). Data
obtained on the effect of frataxin knockdown on nematode life
span have been inconsistent (309, 312, 332). Ventura et al. (312)
reported that the life span was *25% greater than normal,
despite their small size, reduced fertility, and sensitivity to the
superoxide generator juglone. By contrast, other groups have
described a shorter life span, associated with impaired res-
piration and increased sensitivity to paraquat (another su-
peroxide generator) (309, 332). These results were reconciled
by using an RNAi dilution strategy to obtain different degrees
of frataxin gene expression and of four genes involved in the
electron-transport chain (255). The observed phenotypes were
dose dependent, with the inhibition of mitochondrial function
increasing the life span until a certain threshold, beyond
which cell viability is severely compromised (255). Recently,
p53=CEP-1 was found to mediate these opposing effects in
response to the level of mitochondrial bioenergetic stress
(313).

In the plant Arabidopsis thaliana, frataxin knockout results in
early embryonic lethality (44, 310). Mutant atfh-1 plants with
< 50% of normal frataxin levels show retarded growth,
without any morphologic abnormalities in roots, leaves, and
flowers, and impaired fructification (44). The reduced fruit
fresh weight and number of seeds per fruit observed in these
plants correlated well with the pattern of frataxin gene ex-
pression, which was higher in flowers than in roots or leaves
(44, 310). These higher levels of expression in certain organs
correlate with their energy requirement. Flowers have high
energy demands for anther development and pollen matu-
ration and also have an increased number of mitochondria
and a higher respiration rate (44). Mutant plants show de-
creased activity of the Fe-S cluster enzymes aconitase and
succinate dehydrogenase, improved CO2 assimilation rates,
iron accumulation, increased ROS and nitric oxide produc-
tion, and induction of an oxidative stress–defense response
(44, 196).

In lower eukaryotes, frataxin deficiency also can be lethal.
In our hands, deletion of the S. cerevisiae YFH1 gene in BY4741
genetic background is viable in anaerobiosis but lethal under
aerobic conditions (R. Santos, unpublished data). Ad-
ditionally, deletion of the frataxin-encoding gene in the wild-
type C. albicans SC5314 strain leads to death within a month
after generation of the mutant (S. Lefevre, unpublished data).
These findings thus show that the metabolic functions regu-
lated by frataxin are essential for the normal development and
life span of several different organisms.

B. Susceptibility to cell death and neuron
degeneration

The major sites of neurodegeneration in FRDA patients are
the dorsal root ganglia, the dorsal roots of the spinal cord, and
the dentate nucleus in the cerebellum (232). It is not known
why these regions of the nervous system are particularly
sensitive to frataxin deficiency. Available data have been
obtained through the analysis of autopsy or biopsy tissues
from patients with variable disease duration. It is, therefore,
difficult to elucidate the events that initiate neuron degener-
ation and the pathway leading to cell death (152, 167).
Unfortunately, murine models fully reproducing the patho-
physiology of FRDA have not yet been successfully devel-
oped [for recent review, see (248)]. The Cb inducible knockout

model, however, presents several FRDA symptoms, with re-
pression of frataxin expression in adult mice leading to pro-
gressive sensory and cerebellar ataxia (294). Loss of large
myelinated fibers and an increased number of small unmy-
elinated fibers in the DRG, dorsal roots, and peripheral nerves
is characteristic of FRDA disease (152, 167). In the Cb mouse
mutant, the earliest pathologic feature detected was DRG
neuronal degeneration, specifically of the large sensory neu-
rons, but the myelin sheet was preserved (294). A large
number of vacuoles and accumulation of lipofuscin can be
observed in degenerating neurons. These observations led
Simon et al. (248, 294) to suggest that degeneration was me-
diated by autophagy; however, no specific markers were used
to determine whether the vacuoles were indeed autophago-
somes. Consistent with this hypothesis, they found no evi-
dence of apoptosis by TUNEL staining in the DRG neurons
(294). Degeneration of large sensory neurons harboring giant
vacuoles also was observed in the humanized mouse model,
but with secondary demyelination (7).

Autophagy is a survival response of cells subjected to nu-
trient deprivation or other stresses; in certain conditions, in-
duction of autophagy is not sufficient, and cells die (94, 172). It
is not clear, however, if cell death occurs by autophagy or by
another pathway with morphologic features characteristic of
autophagy (172). Neurons are postmitotic cells that depend
on autophagy for survival (181). Taken together, it is possible
that autophagy is induced to protect frataxin-deficient DRG
neurons against stress, but degeneration is due to additional
pathways, like apoptosis. The apoptosis is frequently ob-
served in cultured cells and has been detected in mouse
knockout embryos at E6.75 (71). Several studies show that
frataxin deficiency, in fibroblasts and lymphoblasts from
FRDA patients or in different cell lines, renders cells more
susceptible to apoptosis (64, 156, 160, 240, 258, 274, 285, 327).
A significant increase in the transcription of genes involved in
apoptosis was detected by microarray analysis of FRDA fi-
broblasts and lymphoblasts, a neural NT2 cell line knocked
down for frataxin expression (303), and in the heart tissue of
the MCK mouse (151). Additionally, caspases 3 and 9 were
more strongly activated in frataxin-deficient cells than in
controls (258, 326). Further studies are needed to understand
the potential role of autophagy and apoptosis in neuron de-
generation in FRDA patients. Such studies require biopsy
samples from patients before or soon after manifestation of
the first symptoms.

Oligodendrocytes and Schwann cells are glial cells spe-
cialized in the myelination of axons in the central and pe-
ripheral nervous systems, respectively. These cells may also
contribute to the preservation of axon integrity [for recent
review, see (222)]. Two recent reports suggest that frataxin
deficiency affects Schwann cells and that neuronal loss occurs
as a secondary event (167, 194). Analysis of FRDA patient
autopsy samples shows Schwann cells in the dorsal roots of
the spinal cord to be abnormally small and few in number,
with inappropriate myelination of the thin fibers (167). The
comparison of DRG, oligodendroglial, and Schwann cell lines
with frataxin knockdown by siRNA demonstrated that fra-
taxin depletion has no effect on DRG, but inhibits the prolif-
eration of oligodendrocytes and has significant effects on the
Schwann cells (194). Frataxin deficiency in oligodendrocytes
and Schwann cells blocks cell-cycle progression at G2M. In
Schwann cells, but not in oligodendrocytes, this is followed by
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an inflammatory response and an increase in cell death (ap-
optotic and necrotic death). Treatment of these cells with an-
tiinflammatory and antiapoptotic drugs rescues the death
phenotype (194). Altogether, these results suggest that cell-
cycle arrest, inflammation, and death of oligodendrocytes and
particularly Schwann cells could result in demyelination and
axon degeneration.

C. Cancer

Cancer is not a clinical feature of FA disease, and a clear
causal connection between frataxin expression and cancer has
not been established in vivo. However, several lines of evi-
dence suggest that frataxin acts as a tumor suppressor by
increasing cellular oxidative metabolism (285) and antioxi-
dant defense mechanisms (293). Frataxin gene knockout in
murine hepatocytes leads to the development of multiple
hepatic tumors in mice (304). Liver cells in these mice show
the classic phenotypes associated with frataxin deficiency,
including reduced respiration rate, decreased activity of Fe-S
enzymes, and increased sensitivity to oxidative stress (304).
These cells also show induction of Bax-dependent and p53-
independent apoptotic pathways. Concurrently, over-
expression of frataxin in murine 3T3L1 cells was shown to
increase thiol-dependent oxidative stress defense mechanisms
and to reduce tumor formation in nude mice (293). Consistent
with these findings, colon cancer cells stably overexpressing
frataxin have an increased respiration rate, increased mito-
chondrial membrane potential, and increased ATP levels and
aconitase activity, but do not accumulate ROS (285). When
these cells are injected into nude mice, tumors are significantly
smaller than those formed after injection of control cancer
cells, suggesting that the increased oxidative metabolism in-
duced by frataxin overexpression inhibits expansion of cancer
cells in vivo (285). The phosphorylation of the tumor sup-
pressor p38 MAP kinase seems to be dependent on the pres-
ence of frataxin and could mediate the antiproliferative effect
of frataxin in tumor cells (285, 304).

Treatment of patient cancers with chemotherapy drugs like
paclitaxel and cisplatin causes peripheral neuropathy. Inter-
estingly, Melli et al. (203) showed that the antioxidant a-lipoic
acid protects DRG and Schwann cells from mitochondrial
damage induced by these drugs, and that its effect is depen-
dent on the increased expression of frataxin.

VII. Therapeutic Approaches for Treatment
of Friedreich Ataxia

Recent advances in understanding how GAA trinucleotide
repeats repress FXN gene expression and frataxin function
has led to several new therapeutic approaches (Fig. 14). Ide-
benone was the first drug used to treat FRDA patients. It
exerts its beneficial effects by ameliorating hypertrophic car-
diomyopathy (202). This drug is now in Phase III clinical trials
in the United States and Europe and is being tested for its
potential effects on patient neurologic status. Phase II trials
are presently being undertaken for other drugs that improve
mitochondrial function or increase antioxidant defense levels
(e.g., pioglitazone). Other approaches include reducing iron-
mediated toxicity (e.g., deferiprone, Phase II trial), increasing
frataxin expression (e.g., polyamides or erythropoietin), and
gene therapy. However, no known pharmacologic treatment
cures, or even slows, FRDA disease. Given that frataxin

function remains to be elucidated, high-throughput screening
with different cellular models is being used to search for new
drugs (47). These screens are hampered by the instability of
frataxin-deficient cells, resulting in nonreproducible results
for the various steps involved in hit confirmation (47). Long-
term adaptation of mammalian cell lines and yeast cells to
frataxin deficiency may arise through epigenetic changes and
metabolism remodeling or an increased rate of chromosomal
mutation (162). Calmels et al. (46) thus constructed a new
cellular model based on murine fibroblasts producing the
human frataxin mutants, G130V and I154F, which stably re-
produce the phenotypes associated with frataxin deficiency.
These models seem very promising, although not knowing
the function of frataxin can cause difficulties in the interpre-
tation of high-throughput screens. The development of in-
duced pluripotent stem cells from patient cells could be an
alternative approach.

FIG. 14. Therapeutic strategies for the treatment of
FRDA. No efficient therapy is now available to treat patients.
Given that the frataxin function is not known, targets for
therapy are based on main phenotypes of frataxin deficiency,
including antioxidant defense (idebenone, CoQ10 plus vita-
min E), improvement of respiration (idebenone, CoQ10 plus
vitamin E), reduction of the mitochondrial iron pools (de-
feriprone), and increase in frataxin protein (erythropoietin
EPO, pioglitazone). A major goal is the finding of chemical
drugs that alleviate the Fe-S cluster deficiency. Recent strat-
egies target the GAA-expansion triplet repeat (sticky DNA
structure and heterochromatin) and intend to increase the
FXN gene expression (HDAC inhibitors, polyamides). Other
therapeutic strategies focus on replacement of the mutated
gene by gene therapy.
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As a final consideration, it is possible that the only drugs
that will treat FRDA patients effectively are those that restore
Fe-S cluster assembly. For recent reviews on disease pro-
gression and treatment, see (83, 144, 202, 283, 306).

A. Evaluation of disease progression

Clinical trials of drugs to treat FRDA patients are compli-
cated by intrinsic features of this disease. Disease progression
is slow and clinical variability among patients is extensive.
Tools that accurately evaluate the progression of this disease
are therefore needed to be able to detect small beneficial ef-
fects of potential treatments in trials with small numbers of
patients [for recent review, see (83)]. Two scales are com-
monly used to score the neurologic status of FRDA patients,
the International Cooperative Ataxia Rating Scale (ICARS),
and the Friedreich Ataxia Rating Scale (FARS). The ICARS has
been used in clinical trials for idebenone and deferiprone, but
is not appropriate for the evaluation of disease progression in
patients with a long duration of disease (83, 283). The FARS
scale seems to be more sensitive to changes in disease pro-
gression but is more labor intensive (83, 283). A new scale
(Scale for Assessment of Rating of Ataxia, SARA), validated
on dominant ataxias, is quick to administer, gives very good
results, and is applicable to FRDA (42, 83, 283). This scale was
used for the assessment of neurologic status in an open-label
study of erythropoietin effect in FRDA patients (32). The
SARA scale may be the preferred choice for future clinical
trials because of its high interrater and test–retest reliability
and the ease of administration by clinicians (42).

B. Antioxidants and oxidative phosphorylation

Treatment of patients with idebenone or a combination of
coenzyme Q10 (CoQ10) with vitamin E aims to improve mi-
tochondrial function and to reduce oxidative stress. Vitamin E
is a natural cellular lipid-soluble antioxidant that is highly
abundant in nuclear and mitochondrial membranes. CoQ10 is
an electron carrier in the respiratory chain and is involved in
the reduction of oxidized vitamin E. Treatment of patients
with vitamin E showed a therapeutic effect only when used in
combination with CoQ10 (66, 231). A 4-year open-label trial of
10 patients treated with 2,100 IU=day vitamin E and
400 mg=day CoQ10 showed improvement in cardiac and
skeletal muscle bioenergetics, even though no apparent ben-
efit was observed on cardiomyopathy (142). Additionally,
neurologic ICARS scores were stable during the trial, sug-
gesting that no progression of the disease occurred over this
period (142). However, a limitation of this study was that
ICARS scores were obtained by comparison with cross-
sectional data to predict FRDA disease progression.

Idebenone is a short-chain CoQ10 analogue that has a dual
functions in the cell; it acts as an antioxidant, by protecting
membrane lipids from peroxidation, and it stimulates oxida-
tive phosphorylation and ATP production by carrying elec-
trons from complexes I and II to complex III in the electron-
transport chain (202). Idebenone was first identified as a
candidate for treatment of FRDA in a work by Rustin and
colleagues (266). They showed that idebenone protected the
respiratory complex II from iron inactivation and decreased
lipoperoxidation in heart homogenates from patients with
valvular stenosis. Furthermore, treatment of three patients
with 5 mg=kg=day idebenone for 4 to 9 months resulted in

reduction of myocardial hypertrophy (266). This work was
followed by several clinical studies, most of which used the
same idebenone concentration, confirming a positive effect on
cardiomyopathy [for recent review, see (202, 231)]. An open-
label trial showed a decrease in the levels of the urinary
marker of oxidative stress 8-hydroxy-20-deoxyguanosine in
eight patients treated for 8 weeks with 5 mg=kg=day idebe-
none (284). Unexpectedly, no difference was found in the
baseline urinary levels of 8-hydroxy-20-deoxyguanosine be-
tween controls and young patients enrolled in a randomized,
double-blind, and placebo-controlled trial using three doses
of idebenone for 6 months (87). However, this study sug-
gested that treatment with high-dose idebenone improves
neurologic functions (87). Idebenone, even at high doses,
appears to be a safe and well-tolerated drug. Currently, two
Phase III trials are being carried out in Europe and the United
States.

Other CoQ10 analogues have been developed. One such
product, MitoQ, specifically targets mitochondria and pro-
tects patient fibroblasts from endogenous oxidative stress
with a high efficiency (155). Another drug, EPI-A0001 or a-
tocopherol quinone, also improves the mitochondrial func-
tions in vitro, and a Phase II clinical trial is ongoing.

C. Iron chelators

Iron chelation is one of the major potential strategies for
treatment of this disease and has been the focus of intensive
research. The pathogenesis of FRDA seems to involve an
imbalance in the intracellular accumulation of iron, with mi-
tochondrial accumulation and relative cytosolic depletion,
rather than an overall accumulation of iron in the cell (see
V.D). Consistent with this, iron and ferritin levels were found
to be normal, and transferrin receptor concentration in-
creased, in the serum of FRDA patients (321, 322). Rustin et al.
(266) showed that Fe(II), but not Fe(III), inactivates complex II
in the heart tissue of patients and that this effect can be res-
cued by the addition of deferoxamine. However, cytosolic and
mitochondrial aconitase activity levels are decreased by ad-
dition of this iron chelator (187, 266). Aconitase is an iron
homeostasis regulator in the cell. The inhibition of aconitase
activity is counteracted by the induction of IRE-binding ac-
tivity, which can lead to further depletion of cytosolic iron in
frataxin-deficient cells (187). Additionally, deferoxamine de-
creases frataxin mRNA and protein levels (187). In conclusion,
although deferoxamine is commonly used in clinical settings,
findings thus far obtained do not support its use in treatment
of FRDA patients. The only potential useful chelators are
those that can act on pools of labile iron within intracellular
compartments, without depleting aconitase activity and other
cellular iron-enzymes or transferrin-bound iron from the
plasma. This has led to the development of mitochondria-
targeted iron chelators (256).

The mitochondrial iron chelator deferiprone is currently
being tested in a Phase II trial, in Europe, Australia, and Ca-
nada, directed toward improvement of neurologic abilities.
This trial is based on previous results of a pilot study carried
out in France, in which nine adolescent patients were given
low-dose deferiprone (20 to 30 mg=kg=day) for 6 months (31).
Iron accumulation in the brain was assessed by magnetic
resonance imaging in these patients. Chelation treatment was
found to reduce iron accumulation in specific areas of the
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brain (dentate nucleus) and to improve neurologic status
(ICARS score); however, three of 13 patients were withdrawn
from the study because of side effects (31). Despite these
promising findings, studies of various human cells treated
with deferiprone have given conflicting results. Kakhlon et al.
(160) showed that treatment of frataxin-depleted HEK293 T-
Rex cells with 50mM deferiprone restored mitochondrial re-
dox potential, reduced ROS accumulation and apoptosis, and
increased aconitase activity. In contrast, Gonçalves et al. (129)
found that treatment of patient fibroblasts with 150 mM de-
feriprone abolished aconitase activity and inhibited cellular
growth.

D. Molecules that increase frataxin levels

The expansion of GAA repeats in the first intron of the FXN
gene forms non-B DNA structures, such as triplex and sticky
DNA, and induces histone deacetylation, causing a decrease
in gene transcription (319). Several drugs are being developed
that target non-B DNA formation or inhibit histone deacety-
lase activity. Polyamides specifically bind to GAA tracts and
increase transcription and frataxin levels in FRDA patient
lymphoblasts (43). Oligodeoxyribonucleotides designed to
block triplex formation result in increased full-length tran-
script in vitro (133). Thus, the discovery of cell-permeable
small molecules that target non-B type DNA conformations
may have potential therapeutic value and as such have been
of particular interest in recent studies (23, 135).

The gene silencing of expanded FXN alleles is characterized
by hypoacetylation of histones H3 and H4 and trimethylation
of H3 at K9 (7, 137, 147). Histone deacetylase (HDAC) in-
hibitors, by increasing histone acetylation, may change silent
heterochromatin to an active chromatin conformation and
restore the normal function of silenced genes. Several HDAC
inhibitors were tested in patient lymphoblasts in one study.
Of the inhibitors tested, only the benzamide derivative BML-
210 and its analogues were found to be nontoxic and to in-
crease the frataxin levels to those observed for FRDA carriers
(147). Another derivative of this chemical family, compound
106, corrected for frataxin deficiency in knockin mice (KIKI),
in which the mouse FXN gene contains 230 repeats in the first
intron (253). In addition, the global gene-expression profile of
KIKI mice treated with compound 106 resembled the ex-
pression pattern of control animals (253). These findings
suggest that these compounds may be promising potential
candidates for the treatment of FRDA disease, although no
data on toxicity in humans are available.

Other molecules have been reported to increase frataxin
levels in cells. Although several of these molecules have no
therapeutic interest (e.g., cisplatin or 3-nitroproprionic acid),
some display potential beneficial effects. Recombinant human
erythropoietin significantly increases frataxin levels in pri-
mary lymphocytes and fibroblasts from patients (2, 301). In-
terestingly, no increase in FXN mRNA was observed,
suggesting that recombinant human erythropoietin acts at the
posttranscriptional level (2). This drug has been tested in
small open-label clinical pilot trials in Austria; the results
show an improvement in FARS and SARA scores and a de-
crease in oxidative-stress biomarkers in the urine and blood of
patients (8-hydroxy-20-deoxyguanosine and peroxides) (32,
33). Side effects include enhancement of the hematopoietic
response in patients and a frequent need for phlebotomy (33).

Treatment of the neuroblastoma cell line SKNBE and FRDA
patient fibroblasts with Azelaoyl-PAF increases intracellular
frataxin levels by a factor of two (195). Azelaoyl-PAF is an
agonist of the peroxisome proliferator–activated receptor
gamma (PPARg), which belongs to the nuclear receptor family
of ligand-activated transcription factors and regulates adipo-
cyte differentiation and lipid storage. Recently, the PPARg
coactivator PGC-1a was found to be downregulated in cells
from FRDA patients and in tissues from KIKO mice (68). These
results suggest that modulation of PPARg could be another
potential therapeutic strategy. Earlier in 2006, P. Rustin (14)
had proposed that pioglitazone, a commercially available
PPARg agonist that can cross the blood–brain barrier, could be
useful for treatment of FRDA because of its ability to increase
fatty acid oxidation and mitochondrial function and decrease
ROS accumulation and inflammation (14). A Phase III clinical
trial has already been started in France, with an expected
outcome of improved neurologic function.

VIII. Conclusion

Friedreich ataxia is a neurologic disease caused by a dy-
namic mutation, a somatic and germline unstable trinucleo-
tide repeat expansion, in the first intron of the FXN gene.
Several other neuromuscular disorders are caused by unstable
repeats, including fragile X syndrome (FRAXA), myotonic

FIG. 15. Comprehensive model of frataxin function. Fra-
taxin is an iron-binding protein implicated in the delivery of
iron to Fe-S cluster assembly and heme synthesis and, by
doing so, regulates mitochondrial respiration and cellular
iron homeostasis. Impaired regulation of antioxidant de-
fenses, decreased respiration, iron accumulation in the
mitochondria, and possibly induction of ROS-producing
enzymes causes ROS accumulation in the cell, which results
in mutagenesis and oxidative stress. Frataxin is implicated,
most likely, indirectly in the signaling of antioxidant defense
systems and in the pathways that lead to survival or to death.
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dystrophy, Huntington disease, and spinocerebellar ataxias.
However, FRDA is the only disease known to be caused by a
GAA trinucleotide repeat expansion. FRDA shares a high
degree of similarity with other diseases caused by dynamic
mutations, particularly with FRAXA, in terms of the molec-
ular mechanism of repeat expansion, intergenerational
transmission, and cellular effects of the mutation (238).
FRAXA is caused by a CGG repeat expansion in the 50 un-
translated region of the FMR1 gene. This causes aberrant
methylation of the CpG island in the regulatory region and
decreased histone acetylation, resulting in loss of expression
of FMRP protein. As observed for FRDA, a pool of genes
carrying premutations (55–200 repeats) is responsible for the
emergence of expanded alleles (>200 repeats). Under-
standing the biology of unstable trinucleotide repeats is es-
sential to developing new therapeutic strategies to treat these
diseases. In the case of FRDA, the tendency of GAA repeats to
contract offers a potential target, because finding drugs that
stimulate the contraction of these repeats could efficiently
treat the patients.

The pathophysiology of FRDA is associated with mito-
chondrial dysfunction. However, the pathway leading to
damage and cell death is not understood, and this is because
the frataxin function remains unclear. Several mitochondrial
abnormalities have been proposed as the primary defect in
FRDA patients, and these include deficiencies in the ac-
tivities of several enzymes (lipoamide dehydrogenase,
pyruvate carboxylase, malic enzyme, a-ketoglutarate dehy-
drogenase, pyruvate dehydrogenase complex, and the re-
spiratory chain) (17, 18). It is now clear that impairment of
Fe-S cluster protein biogenesis, disruption of iron homeo-
stasis, and oxidative stress are the central cellular features of
this disease (Fig. 15). Improved knowledge of the physi-
ology of frataxin-deficient cells is needed to understand
why and how the DRG and dentate nucleus neurons de-
generate. This is likely to depend on the elucidation of
frataxin function.

FRDA is a recessive disease that occurs in families with no
known history of the disease. Initiation of neuronal death
precedes the appearance of the first symptoms; thus, damage
will already have occurred before diagnosis is confirmed. A
major aim in treating FRDA disease is to develop new ther-
apies that not only block disease progression but also induce
neuron regeneration.
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iron deposits in Friedreich’s ataxia. In: Handbook of Cere-
bellar Diseases, edited by Lechtenberg R. New York: Marcel
Dekker; 1993, pp. 453–458.

178. Lamba L, Ciotti P, Giribaldi G, Di Maria E, Varese A, Di
Stadio M, Schenone A, Mandich P, and Bellone E. Frie-
dreich’s ataxia: a new mutation in two compound hetero-
zygous siblings with unusual clinical onset. Eur Neurol 61:
240–243, 2009.

179. Lamont PJ, Davis MB, and Wood NW. Identification and
sizing of the GAA trinucleotide repeat expansion of Frie-
dreich’s ataxia in 56 patients: clinical and genetic correlates.
Brain 120: 673–680, 1997.

180. Layer G, Ollagnier-de Choudens S, Sanakis Y, and Fonte-
cave M. Iron-sulfur cluster biosynthesis: characterization of
Escherichia coli CyaY as an iron donor for the assembly of
[2Fe-2S] clusters in the scaffold IscU. J Biol Chem 281:
16256–16263, 2006.

181. Lee JA. Autophagy in neurodegeneration: two sides of the
same coin. BMB Rep 42: 324–330, 2009.

182. LeProust EM, Pearson CE, Sinden RR, and Gao X. Un-
expected formation of parallel duplex in GAA and TTC
trinucleotide repeats of Friedreich’s ataxia. J Mol Biol 302:
1063–1080, 2000.

183. Lesuisse E, Santos R, Matzanke BF, Knight SA, Camadro
JM, and Dancis A. Iron use for haeme synthesis is under
control of the yeast frataxin homologue (Yfh1). Hum Mol
Genet 12: 879–889, 2003.

184. Li DS, Ohshima K, Jiralerspong S, Bojanowski MW, and
Pandolfo M. Knock-out of the cyaY gene in Escherichia coli
does not affect cellular iron content and sensitivity to oxi-
dants. FEBS Lett 456: 13–16, 1999.

185. Li H, Gakh O, Smith IV DY, and Isaya G. Oligomeric yeast
frataxin drives assembly of core machinery for mito-
chondrial iron-sulfur cluster synthesis. J Biol Chem 284:
21971–21980, 2009.

186. Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS, Hoff-
man BM, Riggs-Gelasco PJ, Huynh BH, Johnson MK, and
Outten CE. The yeast iron regulatory proteins Grx3=4 and
Fra2 form heterodimeric complexes containing a [2Fe-2S]
cluster with cysteinyl and histidyl ligation. Biochemistry 48:
9569–9581, 2009.

187. Li K, Besse EK, Ha D, Kovtunovych G, and Rouault TA.
Iron-dependent regulation of frataxin expression: implica-
tions for treatment of Friedreich ataxia. Hum Mol Genet 17:
2265–2273, 2008.

188. Lill R. Function and biogenesis of iron-sulphur proteins.
Nature 460: 831–838, 2009.

189. Llorens JV, Navarro JA, Martı́nez-Sebastián MJ, Baylies
MK, Schneuwly S, Botella JA, and Moltó MD. Causative
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290. Sharma R, De Biase I, Gómez M, Delatycki M, Ashizawa T,
and Bidichandani S. Friedreich ataxia in carriers of unstable
borderline GAA triplet-repeat alleles. Ann Neurol 56: 898–
901, 2004.

291. Shaw J, Lichter P, Driesel AJ, Williamson R, and Cham-
berlain S. Regional localisation of the Friedreich ataxia lo-
cus to human chromosome 9q13-q21.1. Cytogenet Cell Genet
53: 221–224, 1990.

292. Shi Y, Ghosh MC, Tong WH, and Rouault TA. Human
ISD11 is essential for both iron-sulfur cluster assembly and
maintenance of normal cellular iron homeostasis. Hum Mol
Genet 18: 3014–3025, 2009.
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Abbreviations Used

AVED¼ ataxia with vitamin E deficiency
cAMP¼ cyclic adenosine monophosphate

CIA¼ cytosolic iron–sulfur cluster
assembly machinery

CoQ10¼ coenzyme Q10

D-loop¼mtDNA displacement loop
DNA¼deoxyribonucleic acid
DRG¼dorsal root ganglia

FARR¼ FRDA with retained reflexes
FARS¼ Friedreich Ataxia Rating Scale

Fe-S clusters¼ iron–sulfur clusters
FRAXA¼ fragile X syndrome

FRDA¼ Friedreich ataxia
HDAC¼histone deacetylase

HO� ¼hydroxyl anion
H2O2¼ hydrogen peroxide

ICARS¼ International Cooperative Ataxia
Rating Scale

IFNB¼ interferon-b gene RFLP probe
ISC¼ iron–sulfur cluster

KIKI¼ knockin mice with homozygous insertion
of 230 GAA-repeat expansion in the
first intron of the mouse FXN gene

LN¼ large normal FXN allele
LOFA¼ late-onset FRDA
MCK¼ knockout mouse model using the muscle

creatine kinase promoter
MIRs¼mammalian-wide interspersed repeats
MPP¼mitochondrial processing peptidase

mtDNA¼mitochondrial DNA
NMR¼nuclear magnetic resonance

NO¼nitric oxide
NSE¼ knockout mouse model using

the neuron-specific enolase promoter
O2
�� ¼ superoxide anion

ONOO� ¼peroxynitrite
PCR¼polymerase chain reaction
PDB¼Protein Data Bank (www.pdb.org)

PFGE¼pulsed-field gel electrophoresis
PLP¼pyridoxal phosphate

PPARg¼peroxisome proliferator–activated
receptor gamma

RFLP¼ restriction length polymorphism
RNA¼ ribonucleic acid

RNAi¼RNA interference
RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species

SARA¼ Scale for Assessment of Rating of Ataxia
SDS-PAGE¼ sodium dodecylsulfate polyacrylamide

gel electrophoresis
SN¼ small normal FXN allele

tBHQ¼ tert-butylhydroquinone
TUNEL staining¼ terminal deoxynucleotidyl

transferase–mediated dUTP-biotin
nick end labeling method

YAC¼ yeast artificial chromosome
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