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The first processing step in synchrotron-based micro-tomography is the

normalization of the projection images against the background, also referred

to as a white field. Owing to time-dependent variations in illumination and

defects in detection sensitivity, the white field is different from the projection

background. In this case standard normalization methods introduce ring and

wave artefacts into the resulting three-dimensional reconstruction. In this paper

the authors propose a new adaptive technique accounting for these variations

and allowing one to obtain cleaner normalized data and to suppress ring and

wave artefacts. The background is modelled by the product of two time-

dependent terms representing the illumination and detection stages. These

terms are written as unknown functions, one scaled and shifted along a fixed

direction (describing the illumination term) and one translated by an unknown

two-dimensional vector (describing the detection term). The proposed method

is applied to two sets (a stem Salix variegata and a zebrafish Danio rerio)

acquired at the parallel beam of the micro-tomography station 2-BM at the

Advanced Photon Source showing significant reductions in both ring and wave

artefacts. In principle the method could be used to correct for time-dependent

phenomena that affect other tomographic imaging geometries such as cone

beam laboratory X-ray computed tomography.

Keywords: attenuation tomography; flat-field correction; intensity normalization;
ring artefacts; synchrotron X-rays; parallel beam.

1. Introduction

In synchrotron-based micro-tomography, it is common to

observe the illumination beam motion owing to the thermal

instability of the optics (Tucoulou et al., 2008; Nakayama et al.,

1998; Smith et al., 2006). Together with the defects in the

imaging system, it causes variations in the background

recorded over time. These are known (Raven, 1998) to

introduce artefacts into the resulting reconstructions. In this

paper the authors propose a means of reducing such artefacts.

By way of an example case we consider such variations on

2-BM which is a dedicated X-ray micro-tomography beamline

(De Carlo et al., 2006; Wang et al., 2001; De Carlo & Tieman,

2004) shown schematically in Fig. 1. Our example datasets

comprise projections and white fields collected for a piece of a

plant stem Salix variegata and a zebrafish Danio rerio. Typi-

cally, the flux on 2-BM is 1012 photons s�1 mm�2 at 10 keV and

the beam size is 4 mm � 25 mm (see Chu et al., 2002). Since

the size of the source is very small and the distance between

the sample and the source is very large, the beam could be

considered as essentially parallel.

The X-ray beam delivered from the synchrotron source is

very intense. Therefore, both the mirror and the multilayer

monochromator are water-cooled. Owing to thermal fluctua-

tions in the cooling system, the profiles of the mirror and

the monochromator may change during data acquisition. In

practice, the mirror and the multilayer monochromator are

not perfect and introduce background features into the illu-

minating beam. The scintillator and the optical objective may

also have scratches or dust on their surfaces and defects inside.

The bending magnet on the APS storage ring also possesses

some instability and there are small time-dependent pertur-

bations of the CCD sensor with respect to the scintillator. All

these features affect the intensity profile recorded with time

by the CCD camera. Fig. 2 shows a typical white-field image

recorded by the CCD camera and the associated intensity

variation down a pixel column. The standard so-called flat-

field correction ‘can’ be written (Stock, 2008)



P�D

W �D
; ð1Þ

where P, D and W denote a projection (with a sample in the

beam), dark (the beam is switched off) and white (with no

sample in the beam) field images, respectively. Unfortunately,

this approach does not suppress the above-mentioned arte-

facts as illustrated by the white-field corrected projection in

Fig. 3 and the profile of the quotient of two white fields in

Fig. 4. As a result, ring and wave artefacts are evident in

reconstructions (e.g. see Fig. 5). Ring artefacts often appear as

concentric arcs or half-circles with changing intensity. Since

the recorded perturbations fluctuate randomly but smoothly

with time, the ring artefacts vary continuously along the

angular coordinate. In some instances the standard flat-field
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Figure 2
A typical white-field image (top panel) recorded on 2-BM-B by the 12-bit
CCD camera. The size of the image is 2048� 1792 pixels. The inset in the
top-right corner shows a magnified version of the square box in the
central region. The intensity profile along the dotted line is shown in the
bottom panel.

Figure 3
A projection of a piece of a stem (Salix variegata). The flat-field
correction method described by equation (1) is applied.

Figure 1
A simplified scheme of the micro-tomography beamline 2-BM-B at the Advanced Photon Source, Argonne National Laboratory.

Figure 4
Profile of the quotient of two white fields from 16 recorded during the
acquisition time. In this case the ninth and the first images are chosen as
the divisor and the dividend (reference) images. The profile is taken along
the dotted vertical line of the image shown in Fig. 2.



correction procedure succeeds in suppressing these artefacts

for several neighbouring projections and the ring structures

become almost invisible. Wave artefacts appear as smooth hills

and valleys over areas extending more than 10% of the width

of the sinogram. By the width and the height of the sinogram

the lengths along projection and angle dimensions, respec-

tively, are meant. Their smoothness is due to the correlated

nature of the perturbations.

Ring artefact suppression is a very common task in

computed tomography and several methods already exist.

These methods can be divided into the following groups:

(a) Suppression is carried out before reconstruction.

Assuming that a sinogram should be smooth:

(i) In Boin & Haibel (2006) the mean values yðiÞ for each

column of a sinogram pnðiÞ are found, the moving average

filter is applied to the values found in order to replace yðiÞ by

ysðiÞ, which is the average value of 2N þ 1 neighbouring

values, then the sinogram is normalized by the formula p0nðiÞ =

pnðiÞ ysðiÞ=yðiÞ;

(ii) In Walls et al. (2005) the pixel recorded intensities are

replaced by the mean of their eight neighbours in all views;

(iii) In Münch et al. (2009) a wavelet-FFT filter is applied;

(iv) In Sadi et al. (2010) an iterative centre-weighted median

filter is proposed;

(v) In Titarenko et al. (2010) a Tikhonov’s functional is used

to find the solution.

(b) Suppression is carried out after the image has been

reconstructed (see, for example, Sijbers & Postnov, 2004; Yang

et al., 2008). In Sijbers & Postnov (2004) a reconstructed image

is transformed into polar coordinates, where a set of homo-

geneous rows is detected. From the set an artefact template is

generated using a median filter; the template is subtracted

from the image in the polar coordinate, which is transformed

back into Cartesian coordinates.

(c) Modification of an experimental procedure or hardware:

(i) In Davis & Elliott (1997) the detector is moved laterally

during acquisition;

(ii) In Niederlöhner et al. (2005) a photon-counting hybrid

pixel detector is described. The authors also investigated flat-

field statistics, which have been used to develop an algorithm

calculating additional correction factors for each pixel;

(iii) In Hsieh et al. (2000) a solid-state detector is introduced

and a correction scheme based on recursive filtering is used to

compensate for detector afterglow; as a result ring artefacts

have also been suppressed.

Of course, ring artefact suppression methods can combine

ideas from several groups. For example, the method proposed

by Titarenko et al. (2009) is based on both pre- and post-

processing ideas.

The main stumbling block for any ring artefact suppression

method is that artefacts may not be removed completely while

real features may be suppressed. Consider one example: let a

rotation axis of a sample pass through a very dense particle,

then the particle is always projected into the same pixel of the

CCD camera and there is a jump in intensity near this pixel for

all projections. If the number of other dense particles in the

sample is low, then one may suppose the pixel to record

incorrect values and therefore suppress real features. Similar

things may be observed when plastic or glass tubes are used to

protect a biological sample and their axes are near the rotation

axis of the sample. Therefore some so-called a priori infor-

mation about a sample is definitely required in order to

distinguish real features and artefacts. In addition, different

ring artefacts on an image may have a different nature and

therefore should be removed in different ways. For example, a

piece of dirt on a scintillator may decrease the intensity along

an X-ray in a standard way, i.e. intensity decreases by

expð���xÞ (� and �x are the attenuation coefficient and the

thickness of the dirt) and does not depend on the total flux of

the beam, while a crack inside the scintillator may emit

additional light with intensity proportional to the total flux, so

if one has an asymmetric sample then the strength of the

corresponding artefact depends on the sample’s orientation.

Therefore we think that it is not feasible to develop a ‘general’

ring artefact suppression algorithm applicable to any sample

and imaging facility. However, one may propose a strategy

that should be adapted to a particular beamline. The aim of

this paper is to propose a method of suppressing ring and wave

artefacts which is based on some a priori information about

the experimental set-up and nature of the perturbations

causing the artefacts.

2. Mathematical framework

2.1. Notation

x and z are the horizontal and vertical coordinates perpendi-

cular to the beam.
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Figure 5
A horizontal slice reconstructed by (a) the flat-field correction method
described by equation (1), (b) the proposed method. This cross section
does not intersect the sample.



n and m are the number of projections and white fields.

Index i is related to a projection, while j is related to a white

field.

t denotes a moment of time, the ith projection is taken at ti, the

jth white field is taken at �j (to distinguish projections and

white fields we use different symbols, t and �).

P and W denote a projection or white field after the dark field

has been subtracted from each one; we also use symbols

Pðx; z; tÞ and Wðx; z; tÞ in the case of continuous time variable

t and Piðx; zÞ = Pðx; z; tiÞ, Wjðx; zÞ = Wðx; z; �jÞ in the case of a

discrete time variable.

Iðx; z; tÞ describes the intensity profile of the X-ray beam

incident on the sample.

I0ðx; zÞ � Iðx; z; 0Þ, i.e. the intensity at the initial moment of

time t = 0.

rðx; z; a; bÞ � I0ðx; azþ bÞ=I0ðx; zÞ, where a and b are

numbers [for simplicity we omit x, i.e. use rðz; a; bÞ and I0ðzÞ].

aðtÞ and bðtÞ are some unknown random functions; they

describe how the intensity profile of the beam changes its

value over time.

Aðx; z; tÞ is the attenuation factor of the sample, i.e. the ratio

of intensities of the X-ray beam after and before the sample

for the ray passing through the point ðx; zÞ on the CCD camera

at the moment t (the sample is rotating, so the factor is a time-

dependent function).

Qðx; z; tÞ is a multiplicative function defined by dust, dirt on

the surfaces of the scintillator and CCD camera; we also use

symbol Qðx; zÞ when the function does not depend on time.

Q0ðx; zÞ � Qðx; z; 0Þ.

Functions cðtÞ and dðtÞ describe possible horizontal and

vertical shifts of the optical system.

w and h are the width and the height of the CCD sensor; the

sensor records only the intensity for 0 � x � w and 0 � z � h.

S, S1, S2 and ~SS are some areas on the CCD sensor, i.e.

S; S1; S2; ~SS � ½0;w� � ½0; h�.

2.2. A simplified case

To a first approximation, it is assumed that there are only

perturbations of the bending magnet source, the mirror and

the monochromator. These cause the intensity profile of the

X-ray beam incident on the sample to change linearly by a

shift/stretch along the vertical axis z (this is the typical case in

practice, but other variations could be modelled),

Iðx; z; tÞ ¼ I0½x; aðtÞzþ bðtÞ�; ð2Þ

where aðtÞ and bðtÞ are unknown random functions. In this

paper, for any two moments t1 and t2 (t2 > t1) the corre-

sponding values of aðt1Þ, aðt2Þ and bðt1Þ, bðt2Þ are supposed to

be uncorrelated, i.e. the values at t2 do not depend on the

values at t1 . Of course in real experiments one may find some

rule making it possible to predict/estimate the values of aðtÞ

and bðtÞ at t > t1.

The intensity profile Iðx; z; tÞ only stretches and does not

reflect I0ðx; zÞ. Therefore the stretch factor aðtÞ is a positive

function. The case of aðtÞ = 0 is also impossible in practice. So

it is supposed that the stretch factor is never close to zero.

Hence we find that aðtÞ is a strictly positive function, i.e. there

is a positive constant " such that aðtÞ 	 ". Note that this

constant does not exist for any positive function; aðtÞ =

expð�1=tÞ for t 2 ð0; 1� is such an example. For real samples

the authors found that aðtÞ varied slightly about 1; for the stem

sample aðtÞ 2 ½0:995; 1:020� (see Fig. 10). Thus it is always

possible to choose any moment t0 and suppose that at this

moment I0ðx; zÞ = Iðx; z; t0Þ. This is true, since one can always

change the variable z linearly, i.e. replace aðt0Þzþ bðt0Þ by ~zz, so

I0½x; aðt0Þzþ bðt0Þ� = I0ðx; ~zzÞ.
In this case the scintillator, the objective and the CCD

camera are assumed to be stable, i.e. there are no vibrations,

and the white field Wðx; z; tÞ varies according to

Wðx; z; tÞ ¼ Qðx; zÞ Iðx; z; tÞ; ð3Þ

where Qðx; zÞ is defined by dust, dirt on the surfaces of the

scintillator and the CCD camera. It is difficult to determine

Qðx; zÞ directly. The measured white fields can be described by

Wðx; z; tÞ ¼ Qðx; zÞ I0½x; aðtÞzþ bðtÞ�: ð4Þ

For a sample rotating in the X-ray beam the intensity

measured by the camera can be written as

Pðx; z; tÞ ¼ Aðx; z; tÞWðx; z; tÞ; ð5Þ

where Aðx; z; tÞ describes the attenuation properties of the

sample, from which the tomographic structure of the sample

can be reconstructed. Of course, Aðx; z; tÞ depends on time,

since the sample rotates during the experiment. This can be

rewritten in the following form,

Pðx; z; tÞ ¼ Aðx; z; tÞQðx; zÞ I0½x; aðtÞzþ bðtÞ�: ð6Þ

In collecting our test data at the APS the following

measurement scheme was used: a projection was recorded

every 0.125
 and one white-field image was recorded before

every 100 ordinary projections until 180
 rotation was

complete, after which one additional white-field image was

taken. Therefore m = 16 and the number of projections

n = 1441.

Let a white field be taken at time � and a projection at time

t. The symbols �, �j are used for white-field images and t, ti for

projections. In our experiments these times were different, i.e.

�j 6¼ ti if j = i. Then

Pðx; z; tÞ

Wðx; z; �Þ
¼

Aðx; z; tÞQðx; zÞ I0½x; aðtÞzþ bðtÞ�

Qðx; zÞ I0½x; að�Þzþ bð�Þ�
; ð7Þ

Aðx; z; tÞ ¼
Pðx; z; tÞ

Wðx; z; �Þ

I0½x; aðtÞzþ bðtÞ�

I0½x; að�Þzþ bð�Þ�

� ��1

: ð8Þ

Our aim is to obtain the attenuation factor Aðx; z; tÞ, which is

used in the reconstruction. The functions Pðx; z; tÞ and

Wðx; z; �Þ are measured in experiments but the function

I0ðx; z; tÞ cannot be found directly.

2.2.1. Some properties. Let us choose a reference white

field. For simplicity one may suppose without loss of generality

it is taken at �1 and að�1Þ = 1, bð�1Þ = 0 [see the discussion after

equation (2)]. Denote the white fields by Wjðx; zÞ = Wðx; z; �jÞ,

j = 1; 2; . . . ;m, the projections by Piðx; zÞ = Pðx; z; tiÞ, i =
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1; 2; . . . ; n. For the white-field images we use coefficients aj =

að�jÞ, bj = bð�jÞ and for the projections ai = aðtiÞ, bi = bðtiÞ are

used. Then from (8) the attenuation factor Aðx; z; tÞ can be

found at t = ti ,

Aðx; z; tiÞ ¼
Piðx; zÞ

W1ðx; zÞ

I0ðx; aizþ biÞ

I0ðx; zÞ

� ��1

: ð9Þ

One approach to finding ðai; biÞ is to approximate

I0ðx; aizþ biÞ=I0ðx; zÞ with Wðx; aizþ biÞ=Wðx; zÞ. However,

this approximation may cause additional artefacts as

Qðx; aizþ biÞ is not always equal to Qðx; zÞ over the entire

image. Therefore, a new approach is needed.

For simplicity the variable x is temporarily omitted, i.e.

I0ðx; zÞ becomes I0ðzÞ defined on ½0; h� and a function

rðz; a; bÞ ¼
I0ðazþ bÞ

I0ðzÞ
ð10Þ

is defined. Assuming the function I0ðzÞ is unknown, and a and

b are known, three properties of rðz; a; bÞ arising from (10)

can be written.

(i) Let ~zz = azþ b, then z = a� ~zzþ b�, where a� = 1=a, b� =

�b=a and

1

rðz; a; bÞ
¼

I0ðzÞ

I0ðazþ bÞ
¼

I0ða
� ~zzþ b�Þ

I0ð~zzÞ
¼ rð~zz; a�; b�Þ: ð11Þ

(ii) Let rðz; a; bÞ be known for two pairs ða1; b1Þ and ða2; b2Þ.

Then rðz; a1; b1Þrða1zþ b1; a2; b2Þ equals

I0 a1zþ b1ð ÞI0 a2 a1zþ b1ð Þ þ b2

� �
I0ðzÞI0 a1zþ b1ð Þ

¼ r z; a1a2; a2b1 þ b2ð Þ;

ð12Þ

i.e. rðz; a; bÞ could be found for a = a1a2, b = a2b1 þ b2.

(iii) If I0ðzÞ is strictly positive [there is I� such that I0ðzÞ 	 I�

for all z], differentiable and jI00ðzÞj � L, then

d

da
rðz; a; bÞ

����
���� ¼ jI00ðazþ bÞz=I0ðzÞj � Lh=I�;

d

db
rðz; a; bÞ

����
���� ¼ jI00ðazþ bÞ=I0ðzÞj � L=I�;

d

dz
rðz; a; bÞ

����
���� ¼ jI00ðazþ bÞa=I0ðzÞj � 2L=I�;

since a ’ 1 for real data, i.e. a< 2.

Then redefine the function rðx; a; bÞ,

rðx; z; a; bÞ ¼
I0ðx; azþ bÞ

I0ðx; zÞ
: ð13Þ

If the variable x is fixed, then the new function rðx; z; a; bÞ has

all the properties described above. Since

I0 x; a �j

	 

zþ b �j

	 
� �
I0ðx; zÞ

¼
Wjðx; zÞ

W1ðx; zÞ
; ð14Þ

then on the whole image ½0;w� � ½0; h� one can find

rðx; z; a; bÞ for the pairs ða; bÞ, where a = að�jÞ and b = bð�jÞ,

j = 2; 3; . . . ;m.

2.2.2. A method to find the stretch factors. So far we have

supposed that the pairs ðaj; bjÞ are known. Now we discuss how

to find them. Assume that there is an area S � ½0;w� � ½0; h�,

where Qðx; zÞ ’ 1. This means that there is an area where the

detector is relatively free of dust, dirt or other perturbing

influences or where the intensity could be easily corrected. For

example, the structures seen in the top right part of Fig. 2

could be successfully decreased after applying a median filter

(Gonzalez & Woods, 2008). So one may assume that there is

an area S where W1ðx; zÞ = I0ðx; zÞ.

Suppose that there are constants amin, amax, bmin, bmax

such that, at any moment of time t, aðtÞ 2 ½amin; amax�,

bðtÞ 2 ½bmin; bmax�. The following is usually true in practice:

there is a region S1 inside S in which Qðx; azþ bÞ = 1 at a given

point ðx; zÞ 2 S1. In region S1, W1ðx; azþ bÞ = I0ðx; azþ bÞ

and W1ðx; azþ bÞ=W1ðx; zÞ = I0ðx; azþ bÞ=I0ðx; zÞ. For

convenience, S1 should not be close to the edges of the images

so, for any point ðx; zÞ 2 S1 , numbers a 2 ½amin; amax� and

b 2 ½bmin; bmax�, the point ðx; axþ bÞ 2 S.

Choose K pairs ðak; bkÞ, k = 1; 2; . . . ;K, ak 2 ½amin; amax�,

bk 2 ½bmin; bmax�. Note that there is no correspondence

between ðak; bkÞ and ðaj; bjÞ or ðai; biÞ, i.e. the real values of aðtÞ

and bðtÞ when the jth white-field image or the ith projection

were acquired, ðaj; bjÞ and ðai; biÞ are still unknown. Let us

introduce uniform grids on ½amin; amax� and ½bmin; bmax� with K1

and K2 grid points, so K = K1K2. We are going to determine

ðai; biÞ and ðaj; bjÞ from ðak; bkÞ.

Let us take an area S2 inside S1 and compare the functions

gk ¼
W1ðx; akzþ bkÞ

W1ðx; zÞ
ð15Þ

with the function

fj ¼
Wjðx; zÞ

W1ðx; zÞ
ð16Þ

for j 2 2; . . . ;m, defined on S2 . In practice we have noticed

that several vertical segments in the images can usually be

taken as S2 . These segments are chosen in such a way so that

W1ðx; azþ bÞ have significant intensity fluctuations and these

functions are easy to distinguish for different pairs ða; bÞ. The

accuracy of determining these pairs will be better when the

profiles of W1ðx; zÞ are different on different segments

belonging to S2 .

We calculate gk=fj for each ðak; bkÞ 2 ½amin; amax� �

½bmin; bmax� and find the corresponding standard deviations on

S2 . The optimal ðak; bkÞ is found when the minimal standard

deviation is obtained. In the ideal case, the optimal ðak; bkÞ

corresponds to the zero deviation. In practice, however, the

standard deviation corresponding to the optimal ðak; bkÞ is

typically non-zero.

2.2.3. Correction of intensity profiles. After the coefficients

aj and bj, j = 2; . . . ;m, have been identified for all white-field

images, the function rðx; z; a; bÞ can be found for m� 1 pairs

ðaj; bjÞ, j = 2; . . . ;m. For any of these pairs one can find

1=rðx; z; a; bÞ and therefore rðx; z; a�; b�Þ, where a� = 1/a, b� =

�b=a [see equation (11)]. So rðx; z; a; bÞ can be identified for

m� 1 new pairs of ða; bÞ, i.e. rðx; z; a; bÞ is found for 2ðm� 1Þ

pairs in total. In a similar way one can identify rðx; z; a; bÞ for

other ð2m� 2Þ2 pairs if equation (12) is applied. So there are
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ð2m� 2Þ2 þ ð2m� 2Þ pairs. And again one may use equations

(11) and (12) to identify rðx; z; a; bÞ for other pairs ða; bÞ, and

so on. Suppose I0ðx; azþ bÞ=I0ðx; zÞ is found for some number

M of pairs ða; bÞ. Based on the smoothness of rðx; z; a; bÞ one

may expect that the found M functions allow one to find

I0ðx; aizþ biÞ=I0ðx; zÞ for all i = 1; 2; . . . ; n with a good accu-

racy.

Some of these pairs ða; bÞ may have similar values. Strictly

speaking, a good approximation cannot be guaranteed if a

given ðai; biÞ is far away from the known ðaj; bjÞ pairs.

However, the white fields taken evenly during the data

acquisition guarantee that the modes of the beam motion are

well sampled. The authors expect the set of ða; bÞ pairs found

in the above manner can cover ða; bÞ pairs for all projections.

This is indeed verified in our experimental data processing. In

principle, if the pair ða; bÞ for one projection is out of the range

of all M pairs ða; bÞ, one can always perform a calculation with

equations (11) and (12) on a subset of the M identified func-

tions to extend the definition range of the ða; bÞ pairs.

A similar approach can be used to find ðai; biÞ. In this case

an area S�, where Aðx; z; tiÞ = 1, should be selected. Then

Piðx; zÞ=W1ðx; zÞ is compared with the M identified functions

on S�. Once ai and bi are found, then

Aðx; z; tiÞ ¼
Piðx; zÞ

W1ðx; zÞ

I0 x; aizþ bið Þ

I0ðx; zÞ

� ��1

ð17Þ

on ½0;w� � ½0; h�.

2.3. A general case

In the above, the multiplicative function Qðx; zÞ in equation

(3) is assumed to be time independent, which is not strictly

true. Here, possible vibrations in the optical detection system

are taken into account, which comprises the scintillator, the

objective and the CCD camera. Assume the following time-

dependence,

Qðx; z; tÞ ¼ Q0½xþ cðtÞ; zþ dðtÞ�: ð18Þ

This means that Qðx; z; tÞ is shifting the imaging relative to the

CCD camera along with the time. Let us also set cð�1Þ = 0,

dð�1Þ = 0.

In this paragraph white-field images are considered;

projections can be corrected in a similar way. We have found

that the vector ½cðtÞ; dðtÞ� in the experimental images is usually

just a fraction of a pixel in magnitude. Let us choose an area ~SS,

where I0ðx; zÞ is almost a constant along each horizontal

segment belonging to ~SS. Taking various pairs ðc; dÞ we shift

W1ðx; zÞ along the vector ðc; dÞ to obtain an image W1cdðx; zÞ

and find the quotient Wjðx; zÞ=W1cdðx; zÞ. Then the mean value

and the standard deviation are found on each horizontal

segment. The goal is to minimize the sum of all these standard

deviations. Suppose the minimal summation is obtained

at cj = cð�jÞ and dj = dð�jÞ. W1cdðx; zÞ is therefore defined

as Q0ðxþ cj; zþ djÞI0ðxþ cj; zþ djÞ. Instead of Wjðx; zÞ=
W1ðx; zÞ in the simplified case, Wjðx; zÞ=W1cdðx; zÞ should be

employed to find ðak; bkÞ in this general case. Similarly,

W1cdðx; zÞ can be found for each projection image, which is

then employed to find ðaj; bjÞ.

3. Applications and discussion

3.1. Sample 1: plant stem Salix variegata

In order to assess the new method we examine the data

collected for the plant stem (Salix variegata) and compare it

with two other techniques. For the first technique we select

one white-field image [assume it is W1ðx; zÞ] and set Aðx; z; tiÞ

by the following formula,

Aðx; z; tiÞ ¼
Piðx; zÞ

W1ðx; zÞ
ð19Þ

for i = 1; 2; . . . ; n [compare with equation (17)], i.e. we have

assumed that Iðx; z; tÞ � I0ðx; zÞ. We refer to this as the one-

slice correction method.

For the second technique, here referred to as the inter-

mittent correction, each projection is corrected by the formula

Aðx; z; tiÞ ¼
Piðx; zÞ

Wjðx; zÞ
; ð20Þ

where Wjðx; zÞ is the last white-field image taken before the

projection Pi under consideration.

Sinograms obtained by applying these established methods

as well as the new method are shown in Fig. 6. The corre-

sponding images reconstructed by a filtered back-projection

algorithm (Natterer & Wübbeling, 2007) are shown in Fig. 7.

Unsurprisingly, the one-slice correction gives the strongest

ring artefacts. However, the intermittent correction also shows

significant ring and wave artefacts in both the sinogram and

the reconstructed slice. To compare these three techniques

some metric characterizing the quality of artefact suppression

is needed.

For all the projections we could find the rectangular region

½1350; 2030� � ½20; 1780� where there is only a white field, i.e.

the stem does not project onto this rectangle. In the case of an

ideal correction we should obtain Aðx; z; tiÞ = 1 for this

rectangle. The variation in the standard deviation � of

Aðx; z; tiÞ inside the rectangle is plotted in Fig. 8(a). Taken

over all the projections the average standard deviations

for three techniques are: �one = 0.0185, �inter = 0.0142,

�adapt = 0.0068. Note that we take the rectangle

½1350; 2030� � ½20; 1780� (rather than ½1350; 2047� � ½0; 1791�)

since for some projections we have to shrink and shift the

reference white field W1ðx; zÞ and we have no information

about values of W1ðx; zÞ outside ½0; 2047� � ½0; 1791�. As a

result the correction will be definitely worse than inside the

rectangle ½1350; 2030� � ½20; 1780�.

While these deviations clearly demonstrate a better

performance of our algorithm they do not quantify the ring

artefacts. To obtain an indication of this we apply a 13� 13

median filter, which suppresses short-range fluctuations, e.g.

those caused by vibrations in the optical system, which cause

ring artefacts (see Fig. 8b). As the sample does not project into

the rectangle ½1350; 2030� � ½20; 1780�, the obtained standard
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deviations fully characterize the quality of wave artefact

suppression. In this case �one = 0.0164, �inter = 0.0115, �new =

0.0036. So some wave artefacts still persist (see also Fig. 9 and

compare with Fig. 3, where the one-slice correction is applied)

but are decreased by approximately three to four times in

comparison with conventional flat-field correction methods.

The coefficients aðtiÞ and bðtiÞ are shown in Figs. 10 and 11.

The absolute values of the vector ½cðtiÞ; dðtiÞ� are shown in

Fig. 12. In this case the sample vibrations give only a subpixel

shift.

The behaviour of the functions aðtiÞ and bðtiÞ can be

explained in the following way. A user chooses the energy

value, then the system sends pulses to motors controlling the

position of components of the monochromator, so that only

rays of the given energy penetrate a sample. Owing to thermal

processes and vibration the positions of the components

change over time. Once one component has changed its

position too much, the system sends a pulse to the corre-

sponding motor in order to return the component to the

predefined position. Unfortunately, (i) each motor has a

certain resolution, (ii) to return to the original energy it

requires moving several components, (iii) some time is needed

to stabilize the system. In addition, we have assumed that each

image is acquired during a very small time. However, to take

one image we need to expose the CCD during some time (in

our cases it often varies from 300 to 600 ms), which is more

than a ‘period’ of vibrations on the monochromator. There-

fore Wjðx; zÞ 6¼ Wðx; z; �jÞ but

Wjðx; zÞ ¼
1

��

Z�jþ��

�j

Wðx; z; tÞ dt: ð21Þ
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Figure 6
A sinogram for a horizontal slice of a piece of Salix variegata. The one-
slice correction (a), the intermittent correction (b) and the adaptive
correction (c) are applied.

Figure 7
The reconstructed slice of the plant stem using (a) the one-slice
correction, (b) the intermittent correction and (c) the new adaptive
correction.



The CoolSNAP-K4 camera used at the beamline allows us to

acquire at most three frames per second, so we cannot

determine how the real white field depends on time. In addi-

tion, decreasing the exposure time does not help, since the

signal-to-noise ratio of the CCD sensor decreases and the time

between frames cannot be decreased to zero. Another possi-

bility is to use an ultra-fast CMOS camera, but this will not

help since both the flux of the X-ray beam available at the

beamline and the signal-to-noise ratio of the CMOS sensor

will not allow us to sufficiently improve the intensity resolu-

tion over time.

After we have acquired a set of white fields with 50 ms

exposure time and about 300 ms between shots we may only
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Figure 8
A standard deviation of Aðx; z; tiÞ inside the rectangle
½1350; 2030� � ½20; 1780� as a function of projection number. The one-
slice correction (blue line, A), the intermittent correction (red line, B) and
the adaptive correction (green line, C) are applied. In (a) no filter and in
(b) the mean filter was used.

Figure 9
A projection cleaned by the adaptive technique.

Figure 10
The magnification scale coefficient aðtiÞ identified for each projection.

Figure 11
The illumination shift coefficient bðtiÞ (in pixels) identified for each
projection.

Figure 12
The absolute value ½c2ðtiÞ þ d2ðtiÞ�

1=2 (in pixels) of the detector shift of
Qðx; z; tiÞ as a function of projection number.



suppose that the real intensity profile has some ‘period’ (less

than a second) depending on the time needed to stabilize the

system. Note that there is no ‘periodicity’ for aðtiÞ and bðtiÞ as

one may suggest from Figs. 10 and 11 (e.g. when images’

numbers are greater than 700): we have checked other data

sets.

3.2. Sample 2: zebrafish Danio rerio

Now we consider a sample where the structure and the

background have similar attenuation coefficients, so it is

difficult to separate them when additional artefacts appear.

The sample is a zebrafish Danio rerio. The same projection

before and after the correction proposed in the paper is shown

in Fig. 13; the reconstructed slice and region of interest are

shown in Fig. 14.

We also used a linear interpolation of white fields in order

to correct the ring artefacts, (see Fig. 14d). The method

suppresses the ring artefacts well only near several rays; the

angle between the rays is about 180
=ðm� 1Þ = 12
. This is due

to the fact that only projections acquired just before or after a

white field has been taken are cleaned well using the standard

flat-field correction technique with the corresponding white-

field image. The method proposed in the paper also does not

suppress all artefacts (see Fig. 14e); however, the method

makes the artefacts more ‘regular’, i.e. their strength depends

weakly on the polar angle. As a result, additional pre-

processing based on the method of Titarenko et al. (2010),

which is developed for suppression of ‘regular’ ring artefacts,

allows us to see the difference between the proposed method

and the method based on linear interpolation more clearly.

Now we discuss practical considerations for implementing

the method proposed in the paper and possible ways to

improve the method. Firstly, let us discuss suppression of wave

artefacts caused by shrinking and shifting the incident X-ray

beam in the vertical direction. To correct intensity profiles we

just choose one to three vertical line segments (their height is

about 90% of the projections’ height), so that a sample is

never projected onto these segments during acquisition. Since

the number of segments is small we often choose them

manually, so they cross as many ‘hills’ as possible on the

intensity profile. Note that the method cannot be used if the

sample’s shadow is larger that the image sensor. In principle

the lines should not be the same during acquisition. For

example, if a sample’s horizontal cross sections are elongated,

then one may choose fewer but better distributed vertical

segments, i.e. where the number of ‘hills’ on the intensity

profile is increased and these ‘hills’ are better separated, when
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Figure 13
Zebrafish (Danio rerio): (a) the original projection, (b) the same
projection after the proposed method has been applied; the dashed line
indicates the position of the slice reconstructed in Fig. 14.

Figure 14
Zebrafish (Danio rerio): (a) full area and region of interest (inset), (b)
one-slice correction, (c) linear interpolation between white fields, (d) the
proposed method, (e) and ( f ) additional ring artefact suppression
described by Titarenko et al. (2010) is applied to (c) and (d).



the area covered by the sample’s shadow is minimal and

increase the number of vertical segments when the shadow is

wide. As we mentioned above, shrinking/shifting of the

intensity profile is random. Therefore, if the number m of

white fields is small, e.g. <5, then it may happen that the

shrinking/shifting factors aj, bj, j = 1; 2; . . . ;m, have similar

values, which are far away from the factor ai , bi , i = 1; 2; . . . ; n,

found for projections. Hence to find rðx; z; ai; biÞ it may be

required to apply a large number of operations described by

equations (11) and (12) to the known functions rðx; z; aj; bjÞ.

However, increasing the number of these operations causes

additional errors in rðx; z; ai; biÞ, since rðx; z; aj; bjÞ are known

only for discrete values of ðx; zÞ and some interpolation is

required. As a result, sometimes it is better to acquire an

additional set of white fields, e.g. 100 images after the scan,

and select those images having sufficiently different values

of aj , bj .

Secondly, let us consider ring artefacts. We have assumed

that the multiplicative function Qðx; zÞ can only be shifted

along a vector [see equation (18)]. However, when a scintil-

lator/optics/CCD has been used for a long time, some radia-

tion damage occurs and the time-dependence of Qðx; zÞ may

be written as

Qðx; z; tÞ ¼ Qstabðx; zÞQmov½xþ cðtÞ; zþ dðtÞ�; ð22Þ

where Qstabðx; zÞ is related to a ‘stable’ component, e.g. a CCD,

optical system and scintillator, and Qmovðx; zÞ is determined by

a ‘moving’ component, e.g. a monochromator. In the case of

a clean undamaged optical system, the number of small

‘features’ similar to those shown in the inset of Fig. 2 is very

small, therefore Qstabðx; zÞ is a very smooth function and

Qstabðx; zÞ ’Qstabð~xx; ~zzÞ if a point ð~xx; ~zzÞ is near ðx; zÞ, so we may

use equation (18). This is true for the first sample (plant stem

Salix variegata). However, if the radiation damage is high and

there are a lot of dust/dirt/scratches on the surfaces of the

optical system, the number of ‘features’ for Qstabðx; zÞ is

increased. Unfortunately, proper determination of Qstabðx; zÞ

is not always possible, therefore shifting the original white

field W1ðx; zÞ along the vector ðc; dÞ to find W1cdðx; zÞ and the

ratio Wjðx; zÞ=W1cdðx; zÞ as described in x2.3 will suppress ring

artefacts caused by the ‘moving’ component Qmovðx; zÞ but

introduce new artefacts caused by shifting the ‘stable’

component Qstabðx; zÞ. This is true for the zebrafish sample. To

overcome this problem the authors will propose a method to

separate Qstabðx; zÞ and Qmovðx; zÞ in a forthcoming paper, so

that the method will also be applicable for damaged optical

systems.

4. Conclusions

The proposed white-field correction method based on a

continuous adaptive correction using intermittent white-field

measurements effectively suppresses both ring and wave

artefacts. The time required to process a 2000� 2000� 2000

volume depends on the sizes of the areas and number of

temporary images used in the method. However, to obtain

enough suppression it takes less than 10 min spent on an

ordinary Intel Dual-core processor. Further improvements are

possible and will be discussed in future papers. For instance,

ring artefacts could be better suppressed if a subpixel structure

of the white-field image is found. This is possible in principle,

since there are several white fields shifted on subpixel lengths.

For remaining artefacts it would be possible to apply

suppression algorithms based on sinogram smoothness (see,

for example, Titarenko, 2009; Titarenko et al., 2009; Titarenko

& Yagola, 2010). Wave artefact suppression could also be

improved if the function I0ðx; azþ bÞ=I0ðx; zÞ is found for a

greater number M of pairs ða; bÞ. While we have focused on

parallel beam synchrotron data it should in principle be

possible to extend the method to cone beam optics and other

types of time variations that affect the white fields collected

during acquisition. Finally we should mention that the

proposed adaptive correction technique is based only on two

types of motion. The next steps should take into account

instability of the intensity profile of the beam during acquisi-

tion, as well as possible beam-hardening and diffraction

effects.
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