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Introduction
Many processes have been implicated in early atherogenesis. These include endothelial
denudation, injury, or activation, including shear stress–related events; local adherence of
platelets; lipoprotein oxidation; lipoprotein aggregation; macrophage chemotaxis and foam
cell formation; and smooth muscle cell alterations. Which process, if any, could be regarded
as the key event in early atherogenesis, ie, absolutely required, yet also sufficient as the sole
pathological stimulus in an otherwise normal artery to provoke a cascade of events leading
to lesion formation? The work of many investigators, which we summarize here, strongly
supports subendothelial retention of atherogenic lipoproteins as the central pathogenic
process in atherogenesis (for prior reviews, see References 1 through 61, 2, 3, 4, 5, 6). Our
thesis is that other contributory processes are either not individually necessary or are not
sufficient. Most often, they are merely normal, expected responses of otherwise-healthy
tissue to the presence of retained lipoproteins.

Competing Hypotheses
It is instructive to catalog other processes that have been argued to be central to the initiation
of atherogenesis. The first is endothelial denudation,7, 8, 9 injury,10 or activation,11, 12 as
outlined in the “response-to-injury” hypothesis of Ross, Glomset, and coworkers. Although
this important hypothesis has stimulated much of the work that we cite here, there is no
definitive evidence in vivo that endothelial injury is either necessary or sufficient for lesion
formation.

The response-to-injury hypothesis originally presupposed endothelial desquamation as the
key event in atherogenesis.7, 8, 9 It is now clear, however, that developing atheromata are
covered by an intact endothelial layer throughout most stages of lesion progression:
lipoprotein retention, fatty streak formation, and formation of advanced lesions.5, 6, 12, 13,
14, 15 In humans, only the most complicated, ulcerated lesions lose their endothelial layer.
Furthermore, in some experimental models, an intact endothelium is required for lesion
initiation and development, which do not occur in adjacent areas of denudation.16, 17, 18

Gross endothelial denudation, though presumably important in restenosis after balloon
injury19 and in very advanced complicated plaques, does not appear to be central to early
atherogenesis.5

A refinement of the response-to-injury hypothesis states that endothelial injuries that are
insufficient to cause gross denudation but severe enough to cause functional modifications
are key to atherogenesis.10, 11, 12, 20 A major hypothesized change in endothelial function
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was increased permeability,21, 22 particularly to atherogenic lipoproteins.23, 24, 25, 26, 27

This idea is related to the lipid infiltration hypothesis,5 which originated with Anichkov and
Khalatov28 (reviewed in References 29 and 3029, 30). Alterations in permeability or even
microscopic losses of endothelial cells in excess of those due to normal cell turnover are not
mechanistically required for atherogenesis, however, because normal, healthy endothelium
transports31, 32 or “leaks”26, 33 many molecules, including lipoproteins (reviewed in
Reference 2727). In fact, the rate of LDL entry into the normal, healthy arterial wall vastly
exceeds the LDL accumulation rate.34 Most important, seminal studies by Schwenke and
Carew35, 36 showed in vivo that the early prelesional accumulation of atherogenic
lipoproteins within the arterial wall is focally concentrated in sites that are known to be
prone to the later development of atheromata, but that the rates of lipoprotein entry into
prelesional susceptible versus resistant sites were not different (cf Reference 22). These
studies indicate that retention, not enhanced endothelial permeability to lipoprotein influx, is
the key pathological event in this experimental model. Subsequent studies in several other
animal models have demonstrated either increased23, 24, 25, 26 or decreased37 rates of
lipoprotein entry into atherosclerosis-susceptible sites, suggesting a nonessential role for
alterations in endothelial permeability. All studies agree, however, that prelesional
susceptible arterial sites show enhanced retention of apoB-rich, atherogenic lipoproteins.35,
36, 38, 39, 40, 41 We conclude that alterations in endothelial permeability, though apparently
not essential to lesion development, may play a contributory role, eg, in smoking,42

dyslipidemias27, 37 (cf Reference 3636), and possibly hypertension27 (cf Reference 4343),
but only if some of the infiltrated material is retained.35

Several other functional modifications have been documented in the endothelial layer in
vivo during atherogenesis, but these occur comparatively late. For example, in rabbits, cell
adhesion molecules,44 the earliest known being vascular cell adhesion molecule–1
(VCAM-1), are expressed by endothelial cells that overlie lesions, but only after more than 4
days of severe hypercholesterolemia and resultant foam cell formation.45 In contrast,
lipoprotein retention and aggregation are detectable within minutes to hours after the onset
of hypercholesterolemia.31, 36, 41, 46 Furthermore, atherogenic lipoproteins and their
components have been shown to regulate endothelial expression of cell-adhesion molecules.
12, 47, 48, 49 The most straightforward conclusion is that the earliest known endothelial
changes during atherogenesis in vivo, such as VCAM-1 expression, cannot be a cause, and
are likely to be a consequence, of the initial retention of lipoproteins within the arterial wall
(see “Future Directions”).

The effect of turbulent blood flow on the arterial wall deserves special comment,
particularly because it can be such an early influence. Arterial segments that are subject to
turbulent blood flow, such as those at branch points or during hypertension, show a
predisposition to lesion development, though the precise relationship in vivo may be
complicated.50 Because of the response-to-injury hypothesis, the connection between blood
flow and atherogenesis has led to many studies on the effects of shear stress on the
endothelium in cell culture experiments. Many alterations have been reported,12, 18, 51 such
as intracellular calcium mobilization, ion channel activation, cytoskeletal changes, altered
cellular alignment, cell surface streamlining,52 increased endothelial cell division,53

stimulation of specific transcription factors,54 and production of potentially atherogenic
molecules, such as vasoactive,55 adhesive,56 and growth12, 20, 57 factors. Somewhat
different results are obtained in vitro when shear is low instead of high, constant instead of
pulsatile, laminar instead of turbulent, or spatially uniform instead of graded,12, 51, 53 but the
overall findings in vitro strongly support a contributory role for shear stress–induced
alterations of the endothelium during atherogenesis.

Williams and Tabas Page 2

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2010 August 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In vivo, however, it is clear that sheer stress–induced endothelial alterations are neither
necessary nor sufficient for atherogenesis. In vivo lesion development at sites of turbulent
flow shows an absolute requirement for high plasma concentrations of atherogenic
lipoproteins relative to those that occur naturally in nonhuman, nonatherosclerotic
mammals: the plasma concentration of LDL cholesterol must exceed 2 mmol/L (80 mg/dL)
for atherogenesis, even at sites of high shear stress.58, 59 Furthermore, at sufficiently high
plasma lipoprotein concentrations, lesions develop even at sites of low shear stress, such as
at non–branch points6, 60 or within the pulmonary arteries.60, 61 Although stress-induced
endothelial changes can play a contributory role in atherogenesis, the most directly relevant
functional changes that have been documented at prelesional sites that are susceptible to
atherogenesis, including those that are subject to turbulent blood flow, are altered
proteoglycan structure62, 63, 64, 65, 66 and increased lipoprotein retention36, 39, 46, 67, 68, 69

(see above).

We therefore propose that the atherogenic effects of sheer stress in vivo are entirely
dependent on lipoprotein retention within the arterial wall and are limited to increased local
vulnerability to lipoprotein retention and the consequences thereof. Specifically, we
hypothesize that the role of shear stress in early atherogenesis is mediated primarily through
the stimulation of intramural synthesis of molecules, such as proteoglycans, that promote
lipoprotein retention (see References 63, 64, 66, 70, and 7163, 64, 66, 70, 71). Later, once
vessel segments have accumulated retained lipoproteins, the threshold for injury and
activation from continued shear stress may be lowered. Many stimuli can activate
endothelial cells, and synergy is likely between shear stress and, for example, oxidative
breakdown products of retained lipoproteins. The same general lines of reasoning can be
used to argue against a central role for other potential activators of the endothelium, such as
viruses72 or homocysteine,9, 12, 20, 73 which are likewise neither necessary nor sufficient for
lesion development in vivo. Note that these hypotheses about the central role of retained
lipoproteins are testable (see “Future Directions”).

The second process that has been proposed to be central to atherogenesis is lipoprotein
oxidation.74, 75, 76 Current evidence indicates, however, that pathophysiologically important
oxidation can occur only after the retention of lipoproteins within the sequestered
microenvironment of the arterial wall. Lipoprotein oxidation by cells or transition metals in
vitro is blocked by small concentrations of plasma or plasma proteins,77 such as albumin78,
79, 80, 81, 82, 83 (cf Reference 8484), and any oxidized lipoproteins that might appear in the
plasma in vivo would be rapidly removed by the liver,85, 86 rather than be deposited into
developing lesions within the arterial wall.87 In fact, oxidation may be regarded as a normal,
expected consequence of lipoprotein trapping: studies in vitro indicate that once lipoproteins
are sequestered from the protective elements of plasma, nearby healthy arterial cells will
cause oxidation,75 apparently through their efficient generation of thiols.88, 89 In vivo,
myeloperoxidases may be involved.90 Note that adherence of LDL to arterial proteoglycans
increases LDL’s susceptibility to oxidation in vitro71, 91 (see below), but that prior oxidation
of LDL does not enhance its retention in arteries.87 Consistent with these results, apoB is
retained in the human intima before it is detectably oxidized.92 The most straightforward
conclusion is that oxidation is a normal, expected consequence of intramural sequestration
of sufficient quantities of atherogenic lipoproteins within an otherwise healthy artery.

The importance of lipoprotein oxidation in lesion development is supported by discoveries
of many biological consequences in vitro that are consistent with atherogenesis,48, 74, 75, 93

by demonstrations of antiatherogenic effects in experimental animals of compounds with
antioxidant actions,94, 95, 96 and by the findings in humans of oxidized epitopes within
lesions92, 97 (see Reference 9898) and of anti–oxidized LDL antibodies within lesions99 and
in plasma.100 Nevertheless, there are also reports that show the ineffectiveness of
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antioxidants on atherogenesis. For example, recent reports of humans who consumed
antioxidant vitamins101, 102 or who were given probucol103, 104 and of animals that were
given a potent antioxidant analogue of probucol that does not affect plasma lipoprotein
concentrations105, 106 (see Reference 107107) failed to find beneficial effects of these
treatments on disease. Note that vitamin E and probucol, which appear to be antiatherogenic
in humans102 and animals,94, 95 respectively, have many actions besides inhibition of
lipoprotein oxidation.102, 104, 105, 108, 109 Because even minimal oxidation of LDL, which
has been described in human lesions110 (see also Reference 111111), produces many
potentially harmful biological effects,93 lipoprotein oxidation is unlikely to be a rate-limiting
step in atherogenesis. Thus, nearly total inhibition of oxidation of retained lipoproteins may
be required before there would be any substantial effect on lesion development in vivo (cf
Reference 105105).

Evidence to Support Retention as the Key Event
Following rapid induction of hypercholesterolemia in rabbits due to injection of LDL, the
earliest detectable change in the arterial wall is the intramural retention of LDL and of
microaggregates of LDL, a change that occurs within 2 hours.46 Perfusion of arterial
segments in situ has shown substantial accumulation of LDL within 5 minutes.31 Early
arterial retention of injected LDL in vivo is focal, in sites that are known to be susceptible to
the subsequent development of atheromata.35, 36 LDL retention in these sites is not the
result of increased flux into the arterial wall but from reduced lipoprotein egress.36 These
rapidly apparent differences in lipoprotein retention between prelesional susceptible versus
resistant sites suggest a preexisting metabolic difference that, under the proper conditions of
hypercholesterolemia, leads to differences in lipoprotein retention. This conclusion is
supported by the observation that atherosclerosis cannot develop when plasma β-lipoprotein
concentrations are truly low,58, 59, 112 even in the presence of other major risk factors.113

Several lines of evidence indicate that intramural retention of atherogenic lipoproteins
involves extracellular matrix, chiefly proteoglycans1, 71 and perhaps other structural
elements,114, 115, 116, 117, 118, 119 and lipolytic enzymes, chiefly lipoprotein lipase (LpL)120,
121, 122, 123, 124, 125, 126, 127 and sphingomyelinase (SMase).127, 128, 129, 130 First, all of
these molecules are present to varying degrees within the normal arterial wall.70, 71, 120, 128,
131, 132, 133 Thus, they are available to participate in the earliest stages of atherogenesis.
Second, retained apoB in extremely early46, 69 as well as advanced64, 71 lesions is closely
associated with arterial proteoglycans. Purified arterial proteoglycans, particularly those
from lesion-prone sites,66, 134 bind LDL in vitro, particularly LDL from patients with
coronary artery disease.135, 136 This interaction involves several well-defined, positively
charged segments of apoB.71, 137 Third, LpL enhances adherence of LDL in vitro to the
matrix that is derived from normal endothelial125, 138 and smooth muscle127 cells and to
normal cell-surface proteoglycans.122, 123, 124, 125, 126, 127, 139 This adherence is
independent of LpL enzymatic activity122, 123, 125, 127 (cf References 120 and 121120, 121)
and appears to occur in vessels enriched in situ with LpL.140 Fourth, a linkage between
peritoneal macrophage production of LpL and susceptibility to atherosclerosis has been
documented in recombinant inbred mice.141 Results in humans indicate a linkage between
LpL polymorphisms and coronary artery disease, though without a linkage between LpL
polymorphisms and specific plasma lipoprotein patterns, thus suggesting that the effects on
lesion development are independent of plasma changes.142 A genetic absence of LpL in
humans has long been known to cause hyperlipidemia without increased atherosclerosis,121

presumably because of poor generation of small, cholesteryl ester–rich particles143 that are
able to enter the arterial wall27 and loss of LpL-facilitated binding to arterial proteoglycans.
122, 123, 124, 125, 126, 127 More recent work in humans indicates that the single most
important determinant of lesion development in homozygous familial hypercholesterolemia

Williams and Tabas Page 4

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2010 August 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is the postheparin plasma concentration of LpL mass, not enzymatic activity; this is
consistent with a structural effect.144 Fifth, SMase causes the formation of LDL
microaggregates129 that morphologically resemble the intramural particles seen 2 hours after
rapid induction of hypercholesterolemia,46 and LpL and SMase synergistically interact to
cause massive retention and aggregation of LDL and Lp(a) in vitro to arterial cell
proteoglycans and matrix.127 The arterial wall SMase128 was recently shown to act on the
LDL retained in aortic strips ex vivo.130 At later stages, once atherogenesis has begun, the
content of specific proteoglycans,64, 65, 66, 71, 145 LpL,120, 131, 132, 133, 146, 147, 148 and
SMase128 increases in lesional areas, thereby apparently accelerating the disease.

The factors responsible for focal retention of lipoproteins and subsequent lesion
development, however, are not clear. Because prelesional differences in lipoprotein retention
between susceptible versus resistant arterial sites are so rapidly apparent after induction of
hypercholesterolemia,35 there are likely to be preexisting local differences in apoB-retentive
molecules. Proteoglycan variations alone may not explain the focal development of early
lesions, because potentially atherogenic proteoglycans are abundant and ubiquitous
throughout the arterial tree,70 though focal alterations in proteoglycans have been
documented in prelesional63, 64, 65, 66 and lesional145, 149 sites. The enzymes LpL and
SMase show enhanced expression in established human133, 146, 148 and animal133 lesions,
and arterial contents of LpL were shown two decades ago to correlate strongly with the
arterial accumulation of cholesteryl ester during atherogenesis in rabbits (r=0.9).121

Nevertheless, the status of proteoglycans, LpL, SMase, and possibly other apoB-retentive
molecules in prelesional susceptible versus prelesional resistant sites remains an important
area for study (see “Future Directions”).

Consequences of Retention
Following its retention by proteoglycans, LDL has been shown in vitro to undergo several
modifications with important biological consequences. Proteoglycan-bound LDL in vitro
forms aggregates71 and vesicular structures127 that resemble material seen in vivo.46, 67, 68,
150, 151 LDL-proteoglycan complexes show increased susceptibility to oxidation under
typical serum-free, albumin-free pro-oxidative experimental conditions.91 Minimally
oxidized LDL induces endothelial and smooth muscle cells to express monocyte
chemotactic activity,152 and more extensively oxidized LDL is directly chemoattractive to
monocytes,153, 154 smooth muscle cells,155 and T lymphocytes,154 largely because of its
lysophosphatidylcholine content.154 Retained LDL would also be subject to arterial wall
SMases,127, 128, 129, 130 which generate choline phosphate and ceramides. Ceramides are
well documented to have many biological effects, such as induction of NF-κB and
stimulation of apoptosis or mitogenesis.156, 157

LDL that has been aggregated or otherwise modified by arterial proteoglycans under a
variety of conditions in vitro is avidly taken up by normal cultured macrophages and smooth
muscle cells,134 leading to foam cell formation.136, 151, 158 This avid uptake may involve
several different receptors,122, 123, 124, 125, 126, 134, 139, 158, 159 of which only the LDL
receptors are known to be nonessential, in that their genetic absence does not impede arterial
lipoprotein accumulation160 or atherogenesis60, 161 in vivo, in contrast to the situation with
LpL deficiency (see above). The conversion of macrophages to foam cells stimulates the
release of more LpL133, 146, 147, 148, 162, 163 and other potentially atherogenic factors164,
165, 166 and has been shown to alter proteoglycan metabolism.167 Retained, altered
lipoproteins155, 168, 169 and nearby macrophages170, 171 can stimulate chemotaxis and
transformation of smooth muscle cells from the contractile to the proliferative state, which
in smooth muscle cells causes increased synthesis of proteoglycans,64, 172 including LDL-
binding proteoglycans,173 and possibly LpL132, 133 (cf Reference 146146). Thus, retained
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lipoproteins can directly or indirectly provoke all known features of early lesions and, by
stimulating local synthesis of proteoglycans and LpL, can accelerate further lipoprotein
retention and aggregation.

Lesion development may be altered by local cellular expression of apoE within the arterial
wall. As macrophages become foam cells in situ, they appear to increase their synthesis of
apoE,148, 174 a molecule that has been shown in vitro to release lipoproteins from the
extracellular matrix175 (see Reference 137137). The ultimate fate of these released
lipoproteins, however, is unclear. They could leave the lesion, or they could be taken up by
arterial cells, particularly through apoE-mediated binding.

The atherogenic nature of Lp(a) may originate from its extensive propensity for intramural
retention.41, 136, 176, 177, 178 Despite plasma concentrations of Lp(a) that are far lower than
those of other apoB-rich lipoproteins, Lp(a) may account for most of the apoB in human
lesions.179, 180 In vitro, Lp(a) binds to arterial proteoglycans with greater affinity176 and
capacity176, 181 than does LDL. Avid cellular uptake of Lp(a) by at least four processes may
then occur: through scavenger receptors after oxidation86; through the heparan sulfate–
proteoglycan pathway in the presence of intramural LpL122, 123; by phagocytosis following
aggregation and cross-linking by LpL, SMase, and proteoglycans127; and by a specific
Lp(a)/apo(a) receptor on cholesterol-enriched macrophages.182, 183 After Lp(a) retention,
many other biological effects occur, including enhanced LDL retention,184 stimulation of
smooth muscle cell proliferation,185 and, possibly, local inhibition of lysis of
microthrombi186, 187, 188, 189 (cf References 190 through 192190, 191, 192).

Future Directions
A major mystery in atherogenesis is the well-known variation in lesion progression among
individuals with similar plasma lipid profiles (see Reference 5959) and among different
arterial sites within the same individual.6 All known risk factors account for merely 50% of
coronary events and well under 50% of interindividual variability in the actual extent of
coronary lesions.193 The remaining risk is at least partially attributable to poorly
characterized properties of the vessel wall. The response-to-retention hypothesis predicts
that these vessel wall factors include molecules involved in lipoprotein retention, which, at
this state of our knowledge, means proteoglycans, LpL, SMase, apoE, apoB, and apo(a).

Tools now exist or can be developed to assess the roles of proteoglycans and arterial wall
enzymes in very early atherogenesis. Many proteoglycan core proteins of endothelial194, 195,
196 and smooth muscle194, 195, 197, 198, 199, 200, 201, 202 cells have been cloned and
sequenced, which would allow linkage studies in animals and humans and direct genetic
manipulation, particularly at lesion-susceptible branch points. Enzymes that are involved in
proteoglycan side-chain assembly are still being characterized,203, 204, 205, 206 but we
suggest that polymorphisms might play a role in atherosclerosis susceptibility (see
References 207 and 208207, 208). To establish a causal role for LpL in atherogenesis in vivo,
direct stimulation and especially suppression of intramural arterial LpL must be done,
followed by an examination of lesion progression (see Reference 140140). Because several
functional domains within LpL have already been characterized,209 specific constructs can
be engineered to separately examine in vivo the atherogenicity of its enzymatic121 versus
structural122, 123, 125, 127 actions. Two decades ago, lesions were shown to be enriched with
SMase, but detailed enzymatic or molecular characterization of this lipase activity is still
lacking, thus preventing linkage studies or genetic manipulation. The mechanism of SMase-
induced aggregation in vitro has been shown to depend on the generation of ceramide.130

Thus, to implicate SMase in atherogenesis, lesional lipoproteins will have to be shown to be
enriched in ceramide.
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Investigation into the local roles of apoproteins and other molecules in very early
atherogenesis can also be performed. Transgenic mice that overexpress apoE in the arterial
wall, among other sites, have shown reduced atherosclerosis in one preliminary report,210

consistent with the hypothesis of a local protective role for this molecule in vivo.175, 211

Transgenic mice that overexpress apoA-I show reduced lesion development,212, 213, 214

perhaps because of accelerated reverse cholesterol transport, but possibly because of the
local inhibitory effects that apoA-I particles exert on aggregation215, 216 and oxidation77, 80,
84, 215, 217 of atherogenic lipoproteins. It will be interesting to develop animal models in
which overexpression of apoE or apoA-I is cleanly confined to the arterial wall. The
physical characteristics of LDL, including its size,218, 219 apoB conformation,220 or sialic
acid content,221 may affect binding affinity to arterial proteoglycans135, 219, 221 and
subsequent oxidation.220, 222 Apo(a) polymorphisms177 should also be examined.

Tools exist as well to investigate the proposed sequence of events in early atherogenesis,
subsequent to lipoprotein retention. For example, on the basis of the apparent sequence of
events in vivo, we predict that massive retention of LDL or Lp(a) by smooth muscle cells or
matrix127 will stimulate nearby endothelial and possibly smooth muscle cells127, 152, 223 to
express cell adhesion molecules, chemoattractants, and growth factors (see “Competing
Hypotheses”). A likely mechanism would be oxidation of the retained lipoproteins, followed
by release of biologically active components, such as lysophosphatidylcholine, which is
known to stimulate the expression of VCAM-1, platelet-derived growth factor, and other
molecules by otherwise-normal endothelium.224,The prediction can be tested by coculture in
vitro,84 with specific emphasis on the search for lipoprotein retention as an initial event. In
addition, we predict that one key atherogenic effect of turbulent blood flow on prelesional
sites in vivo is the locally enhanced expression of apoB-retaining molecules, particularly by
vascular smooth muscle cells. A search for these molecules in susceptible versus resistant
prelesional arterial sites could be undertaken, the molecules genetically manipulated if
already cloned, and the effects on atherogenesis examined. Possible mechanisms for altered
expression of these molecules would include direct effects of hemodynamic forces acting
through sheer stress response–elements in underlying smooth muscle cells18 or through
endothelium-dependent effects,63 including direct electrical communication between the
endothelium and smooth muscle18, 225 or humoral signals.63 For example, transforming
growth factor–β is expressed by the endothelium under control of a shear stress–responsive
element57 and is known to stimulate synthesis of chondroitin sulfate proteoglycans by
smooth muscle cells.226, 227

Finally, the search for additional molecules or mechanisms that may be important in vivo to
lipoprotein retention and responses to retention should continue. For example, collagen,114

fibrin,115, 116 fibronectin,117, 118, 119 and matrix-bound phospholipase A2
228, 229 have been

implicated in several studies. Also, the LDL receptor–related protein, which binds LpL230

and apoE231 on ligand blots in vitro, has recently been reported to be present in normal and
lesional arteries.232, 233 Of particular interest is how an arterial segment might remain
healthy after the entry of lipoproteins (see Reference 9292). For example, there is substantial
and well-documented evidence for the egress of atherogenic lipoproteins from the normal
arterial wall,27, 36 which has generally been assumed to be passive, though it may not be.
Other processes that could blunt or enhance oxidative and inflammatory responses to
retained lipoproteins show genetic variability in mice234 and merit further study in humans.

Arterial retention of atherogenic lipoproteins is a logical target for therapeutic intervention.
So far, three strategies specifically directed against lipoprotein retention have been proposed
in the literature. The first strategy is the local use of molecules that interfere with adherence
of apoB or apo(a)-apoB to arterial proteoglycans. As noted before, apoE is a promising
candidate, in vitro137, 175 and possibly in mice.210 Boosting local expression of apoE in
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human arterial segments, however, would be difficult at present and may require gene
therapy, an approach still in its infancy. Other potential candidates include apoB
fragments137 or other proteoglycan-binding peptides.235, 236, 237 The second strategy
proposed in the literature is inhibition of intra-arterial SMase activity.129 The effects of
SMase, unlike the effect of LpL, involve its enzymatic action.130 Specific enzymatic
inhibitors could test its role in vivo and might provide therapeutic benefit. A third strategy to
reduce arterial retention of LDL is the use of nifedipine,238 a calcium-channel blocker that
alters many cellular functions,239 including arterial retention of autologous, but not human,
LDL in normocholesterolemic rabbits.238 Note, however, that calcium-channel blockers do
not appear to affect atherogenesis in LDL receptor–deficient rabbits, which exhibit
nondietary hyperlipidemia.240 Other novel targets to consider would be inhibition of
intramural production of proteoglycans or LpL, alteration of cytokine expression, such as
transforming growth factor–β, and perhaps stimulation of ceramidase production.

Concluding Remarks
Although atherosclerosis is a complex and multifactorial process, we conclude that there
exists a key pathogenic event, namely, lipoprotein retention, that is both necessary and
sufficient to provoke lesion initiation in an otherwise-normal artery. Other potential
contributors to early atherogenesis, such as hyperlipidemia; lipoprotein influx; lipoprotein
modification; turbulent blood flow; and alterations in the endothelium, smooth muscle cells,
and matrix, individually fail to meet this dual criterion of necessity and sufficiency.
Lipoprotein retention, however, is an absolute requirement for lesion development and
appears to be sufficient in most circumstances to provoke otherwise-normal cellular and
matrix elements to participate in a cascade of events leading to atherosclerosis (see the
Figure ↓). Essentially all later events can be traced to these early changes.
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Figure 1.
Schematic of the response-to-retention model of early atherogenesis. Mild to moderate
hyperlipidemia causes lesion development only in specific sites within the arterial tree,
implying the existence of predisposing stimuli, such as sheer stress, that make these sites
particularly lesion-prone by stimulating local synthesis of apoB-retentive molecules (B).
Predisposing stimuli in the absence of abundant atherogenic lipoproteins (ie, <2 mmol LDL
cholesterol/L) are insufficient to cause atherogenesis. Predisposing stimuli in the presence of
abundant atherogenic lipoproteins result in lipoprotein retention (C). Evidence suggests that
aggregation promptly follows or may be part of the retentive process. Once significant
retention has occurred, a cascade of early responses, including lipoprotein oxidation and
cellular chemotaxis, leads to lesion development (D). ECs indicates endothelial cells; PGs,
proteoglycans; IEL, internal elastic lamina; SMCs, smooth muscle cells; LpL, lipoprotein
lipase; SMase, sphingomyelinase; and LPs, lipoproteins.
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