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Genome-wide gene and pathway analysis

Li Luo1, Gang Peng1, Yun Zhu2, Hua Dong1,2, Christopher I Amos3 and Momiao Xiong*,1

Current GWAS have primarily focused on testing association of single SNPs. To only test for association of single SNPs has

limited utility and is insufficient to dissect the complex genetic structure of many common diseases. To meet conceptual and

technical challenges raised by GWAS, we suggest gene and pathway-based GWAS as complementary to the current single

SNP-based GWAS. This publication develops three statistics for testing association of genes and pathways with disease: linear

combination test, quadratic test and decorrelation test, which take correlations among SNPs within a gene or genes within a

pathway into account. The null distribution of the suggested statistics is examined and the statistics are applied to GWAS of

rheumatoid arthritis in the Wellcome Trust Case–Control Consortium and the North American Rheumatoid Arthritis Consortium

studies. The preliminary results show that the suggested gene and pathway-based GWAS offer several remarkable features. First,

not only can they identify the genes that have large genetic effects, but also they can detect new genes in which each single

SNP conferred a small amount of disease risk, and their joint actions can be implicated in the development of diseases.

Second, gene and pathway-based analysis can allow the formation of the core of pathway definition of complex diseases and

unravel the functional bases of an association finding. Third, replication of association findings at the gene or pathway level is

much easier than replication at the individual SNP level.
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INTRODUCTION

Substantial progress in GWAS of complex diseases has been made and
at least 300 loci have been found to be significantly associated with as
many as 120 diseases and traits in these studies.1 In spite of the great
success of GWAS, current GWAS continue to be primarily focused
on testing associations of a single SNP with a disease one at a time.
As common diseases are often caused by multiple genes and
environments that are organized into a myriad of complex networks,
to only test for association of a single SNP has limited utility2 and
is insufficient to dissect the complex genetic structure of common
diseases for the following reasons. First, the common approach to the
current GWAS is to select dozens of the most significant SNPs in the
list for further investigations. However, the set of most significant
SNPs often accounts for only a small proportion of the genetic
variants associated with disease and offers limited understanding of
complex diseases.3 Common diseases often arise from the joint action
of multiple loci within a gene or joint action of multiple genes within
a pathway. Although each single SNP may confer only a small disease
risk, their joint actions are likely to have a significant role in the
development of disease. If one only considers the most significant
SNPs, the genetic variants that jointly have significant risk effects,
individually making only a small contribution, will be missed. Second,
locus heterogeneity, in which alleles at different loci cause disease in
different populations, will increase the difficulty in replicating asso-
ciations of a single marker with a disease.4 The list of significant SNPs
from several studies may have little overlap. Therefore, replication of
association findings at the SNP level can be difficult if redundant
genes have roles. Third, the ultimate purpose of genetic studies of

complex diseases is to decipher the path from genotype to phenotype.
In spite of the conduct of extensive studies in search of genes causing
complex diseases, connections between DNA variation and complex
phenotypes, which are essential for unraveling pathogeneses of com-
plex diseases and predicting variation in human health, still have been
elusive. Health states of individuals are a complex, multidimensional
phenomenon. Clinical manifestations arise from integrated actions
of multiple genetic and environmental factors, through dynamic,
epigenetic and regulatory mechanisms.5–7 What has been generally
missing in the current GWAS is the context in which DNA variation
occurs. It was reported that a gene location within a cellular network
may have significant effect on the results of the given gene mutation.8

The genetic variation occurring at multiple loci often perturbs signal,
regulatory and metabolic pathways, resulting in complex changes
in phenotype. SNPs and genes carry out their functions through
intricate pathways of reactions and interactions. Knowing the list of
risk, SNPs is not sufficient to understand disease mechanisms.9

To overcome these limitations, recently, Wang et al10 suggested to
extend gene set enrichment analysis for gene expression data, which
intend to identify subtle, but coordinated expression variations of gene
groups to GWAS. The challenge for extension is how to represent a
gene in GWAS. Wang et al10 suggested to choose the most significant
SNP from each gene as a representative. But, in GWAS, a gene often
contains a variable number of SNPs. The genes that contain a number
of SNPs jointly having significant risk effects, but individually making
only a small contribution, will be missed in such representation.
Another issue is how to deal with correlations among SNPs and genes.
Owing to linkage disequilibrium (LD), there may be high correlations
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among some SNPs. In Wang et al’s publication, the statistics that were
used for testing association of a pathway with the disease did not take
correlations among SNPs into account.

To solve these problems, we consider three basic units of association
analysis: SNP, gene and pathway and suggest gene and pathway-based
GWAS. In gene and pathway-based GWAS, each gene is represented by
all SNPs, which are either located within the gene or are not 4500 kb
away from the gene.10 Unlike gene set enrichment analysis in which
one examines whether significantly associated genes are overrepre-
sented in the set of genes to be analyzed, we formulate the gene and
pathway-based GWAS as the problem to jointly test for association of
multiple SNPs within the gene or multiple genes within the pathway
with disease. This allows us to holistically unravel complex genetic
structure of common disease to gain insight into the biological
processes and disease mechanism.

The purpose of this report is to develop a general framework for gene
and pathway-based GWAS of complex diseases and novel statistics for
testing association of a gene or pathway with the disease. To accomplish
this, we first formulate the null hypothesis for testing association of the
gene or pathway with the disease. Then, we develop three statistics to
combine a set of dependent P-values of SNPs into an overall significance
level for a gene or a set of dependent P-values of genes into an overall
significance level for a pathway. We validate the null distribution and
calculate type 1 error rates of the three developed statistics for testing
association of the gene or pathway with the disease using extensive
simulation studies. To illustrate how to perform the gene and pathway-
based GWAS, we examine GWAS of rheumatoid arthritis (RA) in two
independent studies: Wellcome Trust Case–Control Consortium
(WTCCC) and the North American Rheumatoid Arthritis Consortium
(NARAC) studies. Our results show that the suggested new paradigm
for GWAS not only can identify the genes that have large genetic effects
and can be found by single SNP association analysis, but also can detect
new genes in which each single SNP confers a small disease risk, but
their joint actions can be implicated in the development of diseases.

A program for implementation can be downloaded from our
website http://www.sph.uth.tmc.edu/hgc/faculty/xiong/.

MATERIALS AND METHODS

Gene-based association and its formal null hypothesis testing
A gene-based association analysis uses a gene as the basic unit of analysis. The

gene-based association jointly considers all common variation within a gene.4

Instead of testing association of single SNPs with the disease, gene-based

association jointly tests for association of all the SNPs within the gene.

Formally, suppose that there are k SNPs in the gene. The null hypothesis for

testing association of the ith SNP in the gene is represented by

Hi0 : yi ¼ yi0;

where yi denotes the parameter, for example, the difference in allele frequencies

between cases and controls. Then, the null hypothesis for testing association of

a gene with disease is defined as testing for the combined null hypothesis:

Hi0 : yi ¼ yi0; i ¼ 1; 2; . . . ; k:

The goal of testing association of the gene is to test all SNPs in the gene as a

whole. Testing for association of the gene with disease is to test an overall effect

of all SNPs in the gene, which combines evidence. Each SNP in the gene may

confer small disease risk, and jointly they make a large contribution.

Statistics for testing association of a gene with disease
A general framework for testing association of a gene with the disease is to

combine evidence from all the markers within the gene. In general, correlations

among P-values of SNPs within the gene exist because of LD among SNPs.

Correlations among SNPs will invalidate the existing methods for combining

independent P-values. Therefore, the methods for combining independent

P-values cannot be directly applied to combining P-values of SNPs within the

gene. We need to develop methods for combining dependent P-values, which

take correlations among SNPs into account. We suggest three statistics for

combining dependent P-values. In the following discussion, we assume that Pi

is the P-value of the statistic with a normal or asymptotic normal distribution.

Before presenting statistics, we introduce some notations. Consider SNP Mi

with two alleles Bi and bi, and SNP Mj with two alleles Bj and bj. For cases,

we define the indicator variables for alleles: xi ¼
1 Bi

0 bi

�
and xj ¼

1 Bj

0 bj

�

or the indicator variables for the genotypes:

xi ¼
2
1
0

BiBi

Bibi

bibi

8<
: and xj ¼

2
1
0

8<
:

BjBj

Bjbj

bjbj

:

We similarly define the indicator variables yi and yj for controls.

Linear combination test (LCT). The first suggested statistic is to take a linear

combination of P-values for all SNPs within the gene, which is referred to as the

LCT. Let e¼(1, 1, y, 1)T. A statistic based on linear combination of the vector

Z is defined as

TL ¼
e0Zffiffiffiffiffiffiffiffiffiffi
e0Rg e

p ; ð1Þ

where Zi¼F�1(1�Pt), Z¼(Z1,y, Zk)
T, Rg is the correlation matrix of Z. A key

issue is how to calculate the correlation matrix Rg. In general, Rg is difficult to

calculate. However, if the P-value for each SNP is calculated by the t statistic, we

have the following results. Let Zk¼F�1(1�Pi)¼F�1(FT(tk)), where tk is a t

statistic for testing association of the k-th SNP. When the sample size is large

enough, FT can be approximated by a standard normal distribution, which

implies ZkEtk. Therefore, under the null hypothesis the correlation matrix of Z

among all the SNPs within a gene can be given by the sampling correlation

matrix of the data: corr(Zk , Zl)Ecorr(xk�yk, xl�yl). Therefore, the correlation

matrix Rg can be approximated by

Rg ¼ ðCorrðxi � yi; xj � yjÞÞk�k; ð2Þ

where xi and yi are indicator variables for either alleles or genotypes in cases

and controls, respectively, and F is the standard normal distribution. Under the

null hypothesis, TL is the standard normal distribution.

Quadratic Test (QT). A QT that is based on the quadratic form of Z is

defined as

TQ ¼ ZT R�1
g Z; ð3Þ

where Z and Rg are previously defined. Under the null hypothesis, TQ is

asymptotically distributed as a central w(k)
2

distribution, where k is the number

of SNPs within the gene.

Decorrelation Test (DT). Another way to combine dependent P-values

is that we first transform dependent variables into independent variables

and then combine independent variables. Let the correlation matrix Rg be

decomposed as

Rg ¼ CCT ;

where C is a nonsingular matrix. Then, the correlated random variables

Zi(i¼1,y , k) can be decorrelated by the following transformation:

W ¼ C�1Z ¼ ½W1; . . . ;Wk�T :

It can be easily observed that

CovðW ;WÞ ¼ C�1CovðZ;ZÞðCTÞ�1 ¼ C�1CCTðCTÞ�1 ¼ I:

Thus, the variables in W are independent, which implies that the

decorrelated statistics W are asymptotically distributed as a vector of
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independent standard normal variables. For each Wi, we calculate the P-value

P*
i, resulting in

CorrðP�i ; P�i Þ ¼ CorrðW ;WÞ ¼ I:

All the methods for combining independent P-values can be applied to P*. For

example, we can use the Fisher’s combination test11 to combine P*:

TF ¼ �2
XK

i¼1

log P�i ;

which follows a w(2k)
2

distribution, or Sidak, Simes, false discovery rate (FDR)

method.12

Pathway-based association test
A general framework for testing association of a pathway with disease that is

similar to gene-based association analysis is to combine P-values of the genes

within the pathway from gene-based association analysis into an overall

significant level of the pathway.

Correlation structure among genes within a pathway
Consider m genes within a pathway. Suppose that the i-th gene has ki SNPs.

Let xiu, xjv , yjv and yjv be the indicator variables for the u-th allele in the i-th

gene, v-th allele in the j-th gene in cases and controls, respectively. The

correlation between the u-th marker in the i-th gene and the v-th marker

in the j-th gene is defined as riu,jv¼corr(xiu�yiu,xjv�yjv). Let Zij¼F�1(1�Pij),

where Pij is the P-value for testing association of the j-th SNP in the i-th gene.

Define

Z1 ¼ ½Z11; � � � ; Z1k1 �
T ; � � � ;Zm ¼ ½Zm1; � � � ; Zmkm �

T :

Define the correlation matrix between vectors Zi and Zj as

Rij ¼
CorrðZi1;Zj1Þ � � � CorrðZi1;Zjkj

Þ
� � � � � � � � �

CorrðZiki
;Zj1Þ � � � CorrðZiki

;Zjkj
Þ

2
4

3
5

¼
ri1 ; j1 � � � ri1; jkj

� � � � � � � � �
riki

; j1 � � � riki
; jkj

2
4

3
5 ð4Þ

Let Ri be the correlation matrix of the vector Zi for the i-th gene in the pathway,

which is defined in Equation (2), and the correlation matrix of the vector Z for

the whole pathway be defined as

R ¼ ðRijÞm�m ð5Þ

Recall that the statistic TLi for the i-th gene defined in Equation (1) is given by

TLi ¼
e0Ziffiffiffiffiffiffiffiffiffiffi
e0Rie
p ¼

XKi

l¼1

1ffiffiffiffiffiffiffiffiffiffi
e0Rie
p Zil:

By simple algebra, we have

CorrðTLi;TLjÞ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðe0RieÞðe0RjeÞ
p XKi

u¼1

XKj

v¼1

CorrðXiu � Yiu ;Xjv � Yjv Þ

Let TL¼(TL1,y ,TLm)T, rgij¼corr(TLi,TLj) be the correlation between the test

statistic for the i-th gene and the test statistic for the j-th gene. Then, its

corresponding correlation matrix Rp for the whole pathway is given by

RP ¼ corrðTL;TLÞ ¼
1 rg12 � � � rg1m

� � � � � � � � � � � �
rgm1 rgm2 � � � 1

2
4

3
5: ð6Þ

Statistics for testing association of a pathway with disease
Similar to testing for association of a gene with the disease, the basic idea for

testing association of a pathway with the disease is to combine P-values of genes

within the pathway. We have three statistics for testing association of a pathway

with the disease.

Linear combination test. Taking a linear combination of statistics for testing

association of the genes within the pathway leads to a statistic for testing

association of the pathway with the disease. Formally, we define the statistic for

testing association of the pathway with the disease as

TP ¼
e0TLffiffiffiffiffiffiffiffiffiffiffi
e0RPe
p ;

where TL¼(TL1,y ,TLm)T and RP is defined in Equation (6). Then, under the

null hypothesis, TP is asymptotically distributed as the standard normal

distribution.

Quadratic test. Similar to the gene-based analysis, we can also define the

following QT

TPQ ¼ TT
L R�1

P TL

Under the null hypothesis, TPQ is asymptotically distributed as a central w(m)
2

distribution.

Decorrelation test. The vector of the statistics for testing gene association TL

can also be decorrelated by

TPD ¼ C�1
P TL;

where RP¼CP CT
P Then, TPD consists of m independent standard normal

variables. Let PD¼(PD1 ,y , PDm)T be the vector of P-values corresponding to

TPD . We can use the Fisher’s combination test to combine PD :

TPF ¼ �2
Xm

i¼1

log PDi

which follows a w(2m)
2

distribution. Other methods for combining independent

P-values such as Sidak, Simes and the FDR method can also be used to combine

P-values for individual genes within the pathway.

RESULTS

Type 1 error rates of test statistics
To validate the statistics presented for testing association of genes and
pathways with the disease in this publication, first verify the standard
normal distribution of the Z statistic that is obtained by an inverse
normal distribution transformation of the t statistic. For simplicity,
here we only present results for indicator variables with alleles.
The results for the genotypes were similar (data not shown). SNaP
software13 was used to generate a population of 1 000 000 chromo-
somes. We sampled 2000 individuals as cases and 2000 individuals as
controls from the population and performed 10 000 simulations.
Figure 1 plots the empirical distribution of the Z statistic, which is
very close to the standard normal distribution. We then calculate the
type 1 error rates of the developed statistics. For calculation of type 1
error rates of the statistics for testing association of the gene with the
disease, SNaP software was used to generate 1 000 000 chromosomes,
each having a gene with 20 SNPs. For calculation of type 1 error rates
of the statistics for testing association of the pathway with disease,
SNaP software was used to generate 1 000 000 chromosomes, each
having 5 blocks that are representative of genes and each block having
20 SNPs. We randomly sampled individuals from the population that
were equally divided as cases and controls. The number of sampled
controls range from 1000 to 3000, and 10 000 simulations were
performed. Table 1 and Supplementary Table 1 show that type 1
error rates of the statistics for testing association of the gene and
pathway with the disease were not appreciably different from the
nominal levels (a¼0.05, a¼0.01 and a¼0.001), respectively.
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RA in the WTCCC and NARAC studies
To evaluate the performance of the gene and pathway-based GWAS,
the developed statistics were applied to RA in the WTCCC14 and
NARAC15 studies to identify significantly associated genes and path-
ways with RA. A total of 459 653 SNPs were typed for 1860 RA
patients and 2938 controls in the WTCCC studies and 545 080 SNPs
were typed for 866 RA patients and 1194 controls in the NARAC
studies. The total number of genes involved in the WTCCC and
NARAC studies were 15 732 and 17 773, respectively.

The current GWAS are limited to taking a SNP as the basic unit for
association testing. The results, wherein taking a gene or a pathway as

a basic unit of association test are presented below. We assembled 465
pathways from KEGG16 and Biocarta (http://www.biocarta.com). The
assignment of SNPs to a gene was obtained from the NCBI human9606
database (version b129) (ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_
9606/database/organism_data/b129/b129_SNPContigLocusId_36_3.bcp.gz).
The P-values for declaring association of the gene with RA after
performing a Bonferroni correction in the WTCCC and NARAC
studies were 3.2�10�6 and 2.8�10�6, respectively. All 465 pathways
were involved in the WTCCC and NARAC studies. Thus, the P-value
for declaring association of the pathway with RA was 1.1�10�4.

Table 2 summarizes all 19 replicated genes by the LCT method with
their P-values. Supplementary Tables 2, 3 and 4 list 49, 47 and 45
replicated genes by the QT, DT(FDR) and DT(Fisher) methods,
respectively. The QT method identified 90 and 92% of the replicated
genes and they are included in the list of replicated genes identified by
the DT(FDR) method and the DT(Fisher) method, respectively.
Association of the genes human leukocyte antigen (HLA)-DPB1,17,18

HLA-DQR1,18 HLA-DQB1,19,20 and MICA21,22 with RA were pre-
viously reported. MICA is a cell stress-induced glycoprotein and
localized in the HLA region. Its reaction with T cells and natural
killer cells suggest that MICA gene may have an important role in
the development of autoimmune disease. The gene AIF1 (an allograft
inflammatory factor 1) that is encoded within the HLA class III
genomic region on chromosome 6p21 and has an important role in
inflammation was reported to be associated with systemic sclerosis23

and atherosclerosis.24 RDRNA-binding protein that is located in the
major histocompatibility complex (MHC) class III region on chromo-
some 6p21.3 was reported to be involved in the immune response and
systemic inflammatory stimulation.25 The genes BAT3, BAT4 and
AGPAT1 are within the human MHC class III region. The gene
ZFP57 that is located on chromosome 6p22 and encodes a zinc-finger
transcription factor is involved in hypomethylation of several
imprinted loci in transient neonatal diabetes patients.26 The SNP

Table 1 Type 1 error rates of the statistics for testing association of

the gene with the disease

Sample size LCT QT DT

1000

a¼0.001 0.0012 0.0023 0.0019

a¼0.01 0.0086 0.0119 0.0124

a¼0.05 0.0455 0.0542 0.0540

1500

a¼0.001 0.0008 0.0009 0.0008

a¼0.01 0.011 0.0108 0.011

a¼0.05 0.0537 0.0535 0.0543

2000

a¼0.001 0.001 0.0014 0.0011

a¼0.01 0.0097 0.0122 0.0124

a¼0.05 0.0477 0.0528 0.0525

2500

a¼0.001 0.0007 0.0014 0.0014

a¼0.01 0.0096 0.0122 0.0128

a¼0.05 0.0482 0.0545 0.0542

3000

a¼0.001 0.0009 0.0015 0.0014

a¼0.01 0.0107 0.0107 0.0107

a¼0.05 0.049 0.0504 0.0514

Table 2 Genes with significant association with RA in both WTCCC

and NARAC studies that were identified by the LCT method

P-value

Gene NARAC WTCCC

PTPN22 8.10E-08 2.44E-15(RSBN1)a

AIF1 4.44E-16 8.22E-15

CREBL1 o1E-17 5.91E-09

HLA-DPA1 2.63E-11 2.72E-11

HLA-DPB1 2.83E-07 2.34E-11

HLA-DQA1 8.92E-12 1.49E-11

HLA-DQA2 1.31E-07 4.84E-11

HLA-DQB1 6E-15 6.55E-11

MICA 6.83E-11 5.82E-09

RPS18 1.13E-08 2.80E-06

BAT3 8.97E-11 5.16E-07

BAT4 3.14E-10 o1E-17

RDBP 2.24E-14 o1E-17

AGPAT1 9.55E-15 3.68E-12

EHMT2 1.65E-09 7.01E-11

BTNL2 2.97E-12 1.55E-07

GPSM3 o1E-17 5.20E-09

ZFP57 4.69E-09 3.78E-07

LOC731881 1.37E-10 o1E-17

aWTCCC typed SNP rs6679677 that is close to the gene PTPN22 belongs to the gene RSBN1
in the NCBI database.

Figure 1 Empirical distribution of the Z statistic.
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rs6679677, which is in complete LD with the SNP rs2476601 in the
PTPN22 gene belongs to the gene RSBN1 in the NCBI database. The
PTPN22 gene that has been reported to be associated with RA
several times14 also showed strong association with RA in the
NARAC studies in our analysis.

To show that the strategy for considering only the most significant
SNPs in the association studies may lead to missing the genetic
variants that jointly have significant risk effects, but individually
make only a small contribution, see Table 3. Five different markers
were typed for the gene ZFP57 in both the WTCCC and NARAC

studies. Table 3 shows that none of the SNPs in the gene ZFP57
showed significant association, but the gene ZFP57 itself has strong
association with RA in both the WTCCC and NARAC studies. We also
observe that although typed SNPs within the gene ZFP57 in two
studies were different, we still can replicate association of the gene
ZFP57 with RA in the two independent studies.

Attempting to understand and interpret a number of significant
SNPs without any unifying biological theme can be challenging and
demanding. SNPs and genes carry out their functions through
intricate pathways of reactions and interactions. The function of
many SNPs may not be well characterized, but the function of
pathways, on the contrary, are much better analyzed. Pathway-based
association analysis can help unravel the mechanism of complex
diseases. Next we present the results of pathway-based GWAS of
RA. Supplementary Table 5, Table 4, Supplementary Tables 6 and 7
list significantly associated pathways with RA in both the WTCCC and
NARAC studies, which were identified by LCT, QT, DT(FDR) and
DT(Fisher) methods, respectively. Figures 2 and 3 plot a MAPK
signaling pathway, which was associated with RA in the WTCCC
and NARAC studies, respectively. These tables and figures showed
several remarkable features that can be used to extract biological
insight from GWAS. First, functional pathway analysis is a key to
unraveling the mechanism of complex diseases and opens a way for a
pathway definition of complex diseases. Biological pathways are sets of
genes that work in concert to perform particular cellular functions or
biological processes. RA is an autoimmune disease characterized by
chronic inflammation of the joints, the tissues around the joints
and other organs in the body.27 Associated pathways identified in
the WTCCC and NARAC studies can be classified into three groups.

Table 3 P-values of SNPs in the gene ZFP57

NARAC WTCCC

Method P-value ZFP57 Method P-value ZFP57

LCT 4.69E-09 3.78E-07

QT 6.70E-06 4.16E-06

DT(FDR) 9.11E-06 1.92E-05

DT(Fisher) 2.38E-06 6.04E-06

SNP P-value SNP P-value

rs2535238 0.018526 rs378596 0.0005011

rs2747430 0.007419 rs387603 0.0005158

rs3129054 7.42E-05 rs387642 0.007956

rs9257936 0.024268 rs3129063 0.07998

rs9257940 0.046082 rs3131847 0.006112

Table 4 Significant pathways in both WTCCC and NARAC studies that were identified by the QT method

WTCCC NARAC

Name of pathway No. of genes P-value (QT) No. of genes P-value (QT)

Complement and coagulation cascades pathway 53 5.94E-13 62 o1E-17

Jak-STAT signaling pathway 109 1.19E-10 122 o1E-17

Natural killer cell-mediated cytotoxicity pathway 94 1.66E-09 111 o1E-17

Cytokines and inflammatory response pathway 23 1.83E-07 23 o1E-17

Focal adhesion pathway 175 4.06E-07 190 o1E-17

Th1/Th2 differentiation pathway 17 4.62E-07 17 o1E-17

The role of eosinophils in the chemokine network of allergy pathway 4 1.02E-05 5 o1E-17

Bystander B-cell activation pathway 6 4.40E-05 7 o1E-17

B lymphocyte cell surface molecules pathway 8 4.89E-05 10 o1E-17

Antigen-dependent B-cell activation pathway 10 8.79E-05 10 o1E-17

IL 5 signaling pathway 7 0.000103 8 o1E-17

MAPK signaling pathway 203 o1E-17 235 o1E-17

Cytokine–cytokine receptor interaction pathway 175 o1E-17 203 o1E-17

Cell adhesion molecules pathway 109 o1E-17 117 o1E-17

Antigen processing and presentation pathway 47 o1E-17 53 o1E-17

Type I diabetes mellitus pathway 36 o1E-17 38 o1E-17

Alternative complement pathway 11 o1E-17 12 5.54E-06

Lysine degradation pathway 38 0.000109 44 1.76E-08

Glycerophospholipid metabolism pathway 54 7.32E-07 61 1.93E-10

Gap junction pathway 73 2.08E-06 81 1.31E-10

Glycerolipid metabolism pathway 48 1.10E-06 54 7.9E-11

Toll-like receptor signaling pathway 74 1.29E-08 83 5.9E-12

Ether lipid metabolism pathway 27 3.26E-09 29 1.51E-13

Cell communication pathway 110 8.15E-11 119 8.33E-14

Tight junction pathway 115 7.09E-10 121 1.68E-14

Complement pathway 17 o1E-17 21 2.22E-16
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The first group consists of three pathways: antigen processing and
presentation, cell adhesion molecules and type I diabetes mellitus
pathways. Results of all tests (LCT, QT and DT) have shown that these
three pathways were significantly associated with RA in two studies.
The second group includes six pathways: MAPK signaling pathway,
complement pathway, complement and coagulation cascades, alter-
native complement pathway, cytokines and inflammatory pathway
and ether lipid metabolism pathways, which were in common in the
lists of associated pathways identified by QT and DT methods. The
third group includes B lymphocyte cell surface molecules, IL 5
signaling pathway, Th1/Th2 differentiation pathway, glycerophospho-
lipid metabolism, cell communication, focal adhesion, glycerolipid
metabolism, Jak-STAT signaling pathway, bystander B-cell activation
pathway and antigen-dependent B-cell activation pathway. The path-
ways in the third group were identified by either the QT method or
DT method.

In the first group, the antigen processing and presentation pathway
mainly consists of MHC molecules, which are shown on cell surfaces

and responsible for lymphocyte recognition and antigen presentation.
The antigen processing and presentation pathway and the cell adhe-
sion pathway are crucial for controlling inflammatory and immune
responses and involved in the RA.28,29 Close contact between different
populations of cells is fundamental for inflammatory and immune
responses. The type I diabetes mellitus pathway induces an uncon-
trolled immune attack against the insulin producing b-cells.30 These
three pathways form the core pathway definition for RA.

The relationships between the second group of pathways and RA
consist of the MAPK pathway, which is a key signal transduction
pathway of inflammation and reported to be involved in the devel-
opment of RA.31 The complement pathway helps clear pathogens
from an organism and has a key role in determining the fate of
immune status.32 The complement and coagulation cascades pathway
is a partner of inflammation33 and involved in the pathogenesis of
RA.34 The pathways in the third group such as IL 5 signaling path-
way,35 Th1/Th2 differentiation pathway,36 B lymphocyte cell surface
molecules pathway,37 lysine degradation,38 antigen-dependent B-cell

Figure 2 P-values for testing association of the genes within the MAPK signaling pathway with RA in WTCCC studies. Blocks including significant genes are

in red color, blocks including mild significant genes are in light red color and blocks including no significant genes are in green color.
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activation pathway,39 cell communication,40 bystander B-cell activa-
tion pathway41 and focal adhesion42 are involved in inflammation and
immune responses and hence are related to RA in some degree.

Second, replication of the results of pathways in independent
samples is much easier than replication of genes or SNPs. Replications
can be performed at the level of the SNP, the gene and pathway. As
Figures 2 and 3 show, the WTCCC and NARAC studies shared no
common significantly associated genes within the MAPK pathway, in
other words, we failed to replicate significantly associated genes within
the MAPK pathway in two independent studies. However, Table 4 and
Supplementary Tables 6 and 7 show that the MAPK pathway in both
studies were significantly associated with RA. This example shows
that replication at the pathway level is easier than replication at the
gene level.

Third, the number of genes showing significant association with RA
within the pathway may be very small, but the number of genes
showing mild association with RA within the pathway may be quite

large. In Figures 2 and 3 shown, we can only observe two and four
significantly associated genes, but we can observe 19 (9.4% of total
genes within the pathway) and 29 (12.7% of total genes within the
pathway) genes showing mild association with RA within the MAPK
pathway in the WTCCC and NARAC studies, respectively. It is
interesting that these mildly associated genes were proinflammatory
cytokine, stress gene, growth factors, MAPKKK, MAPKK, MAPK and
transcription factors, which were distributed among all stages, from
upstream to downstream, of inducing the MAPK pathway. We also
observe that even if the gene CACNA2D3 showed significant associa-
tion with RA using the LCT test, the P-value of the best SNP in the
gene CACNA2D3 was 0.000432, in the NARAC studies. This shows
that if we consider only the most significant SNPs, the genetic variants
that jointly have significant risk effects, but individually make only a
small contribution, will be missed. This example also shows that each
gene may confer a small contribution, but their joint actions may
affect the function of the pathway, which in turn will cause disease.

Figure 3 P-values for testing association of the genes within the MAPK signaling pathway with RA in NARAC studies. Blocks including significant genes are

in red color, blocks including mild significant genes are in light red color and blocks including no significant genes are in green color.

Pathway analysis
L Luo et al

1051

European Journal of Human Genetics



DISCUSSION

In spite of the great success of large-scale GWAS, the current approach
to GWAS has mainly focused on testing association of single SNPs
with disease and selected the best SNPs for further studies. However,
single SNP association analysis will miss many SNPs with moderate
genetic effects. Separate association finding from biological interpreta-
tion offer limited understanding of the functional basis of complex
diseases. To overcome these limitations, in this report we suggest gene
and pathway-based GWAS in which we take a gene and a pathway as
basic units of association analysis in addition to single SNP association
studies. Gene and pathway-based GWAS assess the significance of the
genes and the predefined pathways, and intend to identify biological
pathways with subtle but coordinated genetic variants that confer risk
contributions.

To shift the paradigm from single SNP-based GWAS to gene and
pathway-based GWAS, we addressed the following issues. First, unlike
the extension of gene set enrichment analysis to GWAS in which we
analyze whether significantly associated genes are overrepresented in
the set of genes, which are of interest, we formulate the gene and
pathway-based GWAS as the traditional hypothesis testing problem. In
other words, to test the association of a gene or a pathway with the
disease is to jointly test for association of multiple SNPs within the
gene or multiple genes within the pathway with the disease. Second,
the challenge facing us is how to develop statistics for testing
association of a gene or a pathway with the disease. A simple approach
to joint analysis of multiple SNPs within the gene and multiple genes
within the pathway is to combine their P-values into an overall P-value
to represent the significance of a gene or a pathway. We analyzed
correlations among SNPs within the gene and correlations among
genes within the pathway and found that correlations among SNPs
and genes cannot be ignored (owing to space limitation, data were not
shown). However, the current popular statistical methods are designed
for only combining independent P-values and hence are not appro-
priate for gene and pathway-based GWAS. Therefore, we developed
three novel statistics, which are able to combine dependent P-values of
SNPs within the gene or genes within the pathway. We examined the
distribution of the suggested statistics under the null hypothesis of no
association of the gene or pathway with the disease and calculated
their type 1 error rates by simulations. Our results have shown that
type 1 error rates were close to nominal significance levels. Third, to
assess their merit and limitations, we applied the developed statistical
methods for gene and pathway-based association analysis to GWAS of
RA in the WTCCC and NARAC studies. The results have shown that
the new paradigm of GWAS not only confirmed previous association
findings, but also discovered a number of new genes and pathways
that were significantly associated with RA. Although the results were
preliminary, they indeed showed that identification of pathways
associated with disease allows us to much easier uncover pathogenesis
of disease.

Gene and pathway-based GWAS offer several remarkable features.
First, the new paradigm not only can identify the genes that have large
genetic effects and can be found by single SNP association analysis, but
also can detect new genes in which each single SNP confers small
disease risk, but their joint actions can be implicated in the develop-
ment of diseases. Second, the results of application of pathway analysis
to RA strongly show that pathway-based analysis can add structure to
genomic data and allows us to gain deep understanding of cellular
processes as intricate networks of functionally related genes and to
unravel the functional bases of the association finding. Third, replica-
tion of association findings at the gene or pathway level is much easier
than replication at the individual SNP level. Risk SNPs (or genes) for

different individuals may be different, but may be in the same gene (or
pathway). Fourth, the new paradigm for GWAS will open a novel
avenue to integrate GWAS with other functional analyses such as gene
set enrichment analysis for gene expression data and hence will
facilitate uncovering the mechanism of complex diseases. Our results
strongly challenge the paradigm of GWAS that only tests the associa-
tion of single SNPs.

The developed statistics for testing association of genes or pathways
also have serious limitations. First, presence of both positive and
negative correlations among SNPs will dramatically reduce the power
to discover association of genes or pathways. Second, when the
number of SNPs within the gene or number of genes within the
pathway is large, numeric instability will increase the error in calcula-
tion of the inverse matrix of the correlation matrix, which in turn will
increase the false-positive rate of association finding. We should
overcome these limitations in the future.

Millions of dollars are spent for GWAS. Data from GWAS are very
expensive, but also contain rich information. Simple statistical meth-
ods based on single SNP association analysis might not be the best
strategy for deciphering the path from genomic information to clinical
phenotypes. Taking full advantage of rich information and huge
opportunities provided by GWAS raises great conceptual and technical
challenges. To unravel the true nature of complex diseases, we need to
integrate multiple approaches and multiple types of data. In the
coming years, we will witness the development of a variety of novel
methods for GWAS, rapid progress in GWAS and their great success.
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