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Abstract

The quest to understand why we age has given rise to numerous lines of investigation that have
gradually converged to include metabolic control by mitochondrial activity as a major player. That
is, the ideal balance between nutrient uptake, its transduction into usable energy, and the mitigation
of damaging byproducts can be regulated by mitochondrial respiration and output (ATP, reactive
oxygen species (ROS), and heat). Mitochondrial inefficiency through proton leak, which uncouples
substrate oxidation from ADP phosphorylation, can comprise as much as 30% of the basal metabolic
rate. This uncoupling is hypothesized to protect cells from conditions that favor ROS production.
Uncoupling can also occur through pharmacological induction of proton leak and activity of the
uncoupling proteins. Mitochondrial uncoupling is implicated in lifespan extension through its effects
on metabolic rate and ROS production. However, evidence to date does not suggest a consistent role
for uncoupling in lifespan. The purpose of this review is to discuss recent work examining how
mitochondrial uncoupling impacts lifespan.
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1. Metabolism, ROS, and aging

Early attempts to understand senescence and aging framed lifespan in terms of metabolic rate,
proposing that an organism has a finite metabolic capacity (i.e., number of chemical
transformations), and once it is reached, mortality occurs (Pearl, 1928). This “rate of living”
hypothesis predicts that increased metabolic rate per gram tissue correlates with shorter lifespan
and vice versa. However, multiple examples of size-matched and metabolic rate-matched
animals with significantly different lifespans, both ectothermic and endothermic, have
contradicted rate-of-living as the sole determinant of aging (e.g., rats/pigeons (Barja, 1998),
snakes (Robert et al., 2007), bats/mice (Jirgens and Prothero, 1987), deer mice/lab mice
(Ungvari et al., 2008), naked mole rats (O'Connor et al., 2002).

The free radical theory of aging first arose as a mechanistic explanation for the rate of living
model, by which reactive oxygen species generated during respiration lead directly to aging
(Harman, 1956). Targets of ROS that show accumulated damage or dysfunction over time
include macromolecules, e.g., nuclear and mitochondrial DNA, lipids, and proteins, which in
turn affect mechanisms such as apoptosis, protein turnover, and multiple mitochondrial
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functions (rev. in Kowaltowski etal., 2009). As discussed below, numerous studies have shown
that ROS production and oxidative damage can directly modulate lifespan.

The free radical theory of aging also separates aging from metabolic rate by proposing that it
is the products of metabolism, not metabolic activity, that causes aging. That is, if ROS
production and consequent oxidative damage cause aging, then metabolic rate should be
independent of lifespan as long as intracellular ROS can be mitigated. Therefore, organisms
with long lifespans should display lower ROS levels, through increased antioxidant activity,
decreased ROS production, or both, or have increased resistance to ROS damage (e.g.,Lambert
etal., 2007).

Recently, the importance of metabolic control has also become a major focus of aging research,
beginning with the demonstration that single-gene disruptions of the insulin/IGF pathways in
Caenorhabditis elegans could drastically affect lifespan (Kenyon et al., 1993). However,
although deletion of Daf-2 (part of the insulin signaling pathway) confers resistance to
oxidative stress, concurrent with an increase in lifespan, recent work has shown that oxidative
stress in a Daf2”- worm can be attenuated without any change to lifespan, arguing against a
strictly causal link (Honda et al., 2008). This example and others have renewed interest in the
rate-of living model, defined not simply by basal metabolic rate (measured by oxygen
consumption) but by the homeostasis of energy demand and expenditure during periods of
activity and rest, as regulated by various signals, including nutrients, hormones, and ROS
themselves. This framework imposes an additional facet onto the rate-of-living and
mitochondrial free-radical theories of aging, which is that metabolism must respond effectively
and correctly to fluctuations in nutrient supply and demand. Metabolic rate, ROS production,
and metabolic homeostasis are interconnected factors that are all likely to contribute to the
accumulation of damage and dysfunction, suggesting that a synthesis of these models may be
required to understand the aging process.

2. ROS production during mitochondrial respiration

During oxidative phosphorylation, metabolites are oxidized, donating reducing equivalents to
the carriers NAD* and ubiquinone (Q) to generate NADH and QH,. The electrons then enter
the electron transport chain complexes in the mitochondrial inner membrane and pass down a
decreasing energy potential gradient. The resulting energy release drives proton pumping
across the mitochondrial inner membrane, from the matrix to the intermembrane space, by
complexes I, I11, and IV. The electrochemical gradient, or proton motive force (Ap), that is
established by proton pumping then drives protons back into the mitochondrial matrix through
the ATP synthase to generate ATP. Electrons are ultimately collected by complex 1V,
cytochrome ¢ oxidase, and then donated to molecular oxygen in the coordinated reaction
4H* + 4e” + O, — 2H,0. Electrons can also escape from the electron transport chain at other
sites, singly reducing O to form superoxide, O,°* (HO,*/0O,™). Superoxide itself is relatively
unreactive; however, it can directly damage proteins containing Fe-S centers, which includes
Krebs cycle and electron transport chain components, and lead to the formation of highly
reactive derivatives, such as HO®, that cause widespread oxidative damage.

ROS production in the electron transport chain occurs primarily at complexes I and I11. While
a precise understanding of in vivo ROS generation is incomplete, experiments with isolated
mitochondria have established the major sites and their topology, and that a high Ap is
conducive to high rates of ROS production from particular sites. Experiments with isolated
enzymes have yielded additional information on the sites and mechanisms of ROS production.

Complex | can produce superoxide during both forward (NADH-oxidizing) and reverse
(NAD™-reducing) electron transport (Lambert and Brand, 2004b, 2009). ROS generated by
complex | are released to the matrix. During forward electron transport, two electrons from
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NADH are passed to a flavin mononucleotide (FMN) cofactor and, via a series of iron-sulfur
centers, ultimately reduce Q (Walker, 1992). The principal ROS-generating site during forward
electron transport when reduction of Q is prevented is the fully reduced FMNH, (Kussmaul
and Hirst, 2006). In isolated mitochondria, complex | also catalyses rotenone-sensitive
superoxide production when Q is reduced and Ap is high. This state of reverse electron transport
leads to an observable reduction of the NAD* pool. The pathway of reverse electron flow can
be interrogated with complex | inhibitors to determine where superoxide originates; superoxide
production during reverse electron transport is sensitive to the complex I inhibitor rotenone,
which inhibits the Q-binding site. This finding is consistent with superoxide production from
the Q site during reverse electron transport. However, it remains contentious whether the
dominant site of superoxide from complex | in energized mitochondria is the flavin, the Q
binding site, or elsewhere (Andreyev et al., 2005; Lambert and Brand, 2009; Murphy, 2009).

ROS are also generated by complex I11, which oxidizes QH, to reduce cytochrome ¢ (Zhang
et al., 1998; Darrouzet et al., 2001). Complex Il is capable of producing significant amounts
of superoxide to both sides of the inner membrane in the presence of the Qj site inhibitor
antimycin, but this rate is low in the absence of inhibitors. Additionally, a-ketoglutarate
dehydrogenase, a-glycerophosphate dehydrogenase, and electron transferring flavoprotein
quinone oxidoreductase may also contribute to mitochondrial ROS production under various
conditions (Lambert and Brand, 2009).

3. Mitochondrial uncoupling modulates ROS production

Mitochondrial uncoupling is any process by which electron transport is not used to drive ATP
synthesis or to do other useful work such as net ion translocation. Mechanisms that allow
protons to bypass the ATP synthase while entering the matrix essentially “short-circuit” the
coupling of substrate oxidation to ADP phosphorylation. Why might this be beneficial? One
reason is that a high Ap promotes ROS production. In the “uncoupling to survive” hypothesis,
the attenuation of ROS by partial uncoupling while maintaining sufficient ATP production is
a potential mechanism for delaying cellular senescence (Papa and Skulachev, 1997; Brand,
2000). This model contrasts with the idea first put forth to explain first the rate-of-living model
(and currently sometimes used to explain the effects of dietary restriction (DR)) that a low
metabolic rate should confer a long lifespan. Instead, it argues that mild uncoupling will
decrease ROS production and thereby extend lifespan even if it increases the “rate of living”.
To test this, Speakman et al. (2004) separated mice into quartiles of metabolic intensity (kJ/g)
and then investigated longevity. They found that individual mice in the highest quartile lived
36% longer than those in the lowest. They also displayed higher resting oxygen consumption
rate and a higher rate of proton leak in skeletal muscle. In a different study, a tightly-coupled
muscle group showed greater deterioration with age than a relatively uncoupled one (Amara
et al., 2007). The following sections will discuss in greater detail the proposed role of
uncoupling in direct ROS mitigation, and how this may extend lifespan.

4. Mitochondrial uncoupling lowers ROS by decreasing Ap

Mitochondrial ROS production can be highly sensitive to a decrease in Ap (Korshunov et al.,
1997; Liu, 1997; Papa and Skulachev, 1997; Miwa and Brand, 2003). During forward electron
transport, the dependence of ROS production on Ap is due to the flow of electrons through the
respiratory chain. A high Ap slows electron transfer at specific sites, increasing the
concentration of one-electron species which can react with O, (Brand, 2000). For example,
the membrane potential opposes the oxidation of the transient semiquinone radical at the Qq
site of complex I1l. Lowering the membrane potential by mild uncoupling can therefore
promote the forward flow of electrons through the respiratory chain, decreasing the lifetime
and the steady-state concentration of the semiquinone, and thereby lower ROS production.
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The highest ROS production by isolated mitochondria occurs during reverse electron transport.
This process is critically dependent on Ap, which is needed to drive the electrons from Q
thermodynamically uphill into complex I. ROS generation from complex | during reverse
electron transport is therefore exquisitely sensitive to Ap. This is demonstrated in isolated
mitochondria, where mild uncoupling during reverse electron transport dramatically lowers
superoxide production by complex I. In addition, for undefined reasons linked to the proton-
pumping mechanism of complex I, ROS generation is more dependent on changes in the
transmembrane pH gradient (ApH) than on the membrane potential (Ay,) (Lambert and Brand,
2004a). As mild uncoupling decreases Ap by lowering both ypH and Ay, it is an effective
means to lower mitochondrial superoxide production at the cost of efficient ATP synthesis
(Brand et al., 2004).

Uncoupling also increases respiration, which decreases the local concentration of O and
therefore decreases the rate of ROS production (Papa and Skulachev, 1997). Importantly,
generation of ROS is not directly related to the rate of electron transfer, as inhibitors of the
respiratory complexes can cause either increases or decreases in ROS production depending
on how they modulate the redox state of Q and other ROS-producing sites in the electron
transport chain (Brand, 2000).

5. Distribution and putative functions of the uncoupling proteins (UCPs)

The uncoupling proteins are members of the mitochondrial anion carrier family, which
transport substrates across the mitochondrial inner membrane (Pedersen, 1993; Krauss et al.,
2005). They share a basic tripartite structure with six membrane-spanning a-helices divided
by short helical domains in the matrix and loops in the intermembrane space. This family
includes the adenine nucleotide translocase (ANT), an ATP/ADP antiporter, and multiple other
metabolite and ion transporters.

Proteins in this family, particularly the ANT, mediate the majority of basal proton leak, which
accounts for up to 30% of respiratory O, consumption at rest in a rat (Brand et al., 1994). In
contrast to basal leak, which is unregulated, uncoupling proteins can catalyze inducible proton
leak that is sensitive to inhibitors. UCP1 was the first identified uncoupling protein, and
mediates non-shivering thermogenesis by brown adipose tissue (BAT) (Ricquier and
Bouillaud, 2000; Nicholls, 2001). UCP1 is activated by free fatty acids and inhibited by purine
nucleoside di- and triphosphates (Klingenberg, 2008). It is also present in thymus (Adams et
al., 2008), though its function in this tissue is unclear.

Four other members of this family share the name “uncoupling protein”. (Golozoubova et
al., 2001) . UCP2 (Fleury et al., 1997) and UCP3 (Boss et al., 1997b; Gong et al., 1997; Vidal-
Puig et al., 1997), which are closest in amino acid identity to UCP1 (57% and 59%,
respectively), both display uncoupling activity when activated (Echtay et al., 2002b; Echtay
et al., 2003). Due to their relatively low abundance, the degree of uncoupling by UCP2 and
UCP3in cells is much lower than UCP1 (Harper et al., 2002). The “mild uncoupling” that they
catalyze has been proposed to function as an evolutionarily conserved mechanism to attenuate
ROS production, explaining the presence of uncoupling protein homologs in homeothermic
organisms. Alternatively, UCP2 and UCP3 have been speculated to function as ROS
transporters, substrate sensors or fatty acid transporters, (Himms-Hagen and Harper, 2001;
Jaburek et al., 2004; Schrauwen and Hesselink, 2004; Bouillaud, 2009), but these hypotheses
await experimental confirmation.

UCP?2, identified through its homology to UCP1, is broadly expressed. Ucp2 mRNA can be
found throughout the body, while detectable protein is restricted to specific tissues, including
pancreatic a- and p-cells, kidney, liver, spleen, macrophages, and central nervous system
(Fleury et al., 1997; Pecqueur, 2001). At its highest levels, UCP2 protein is 102-103-fold less
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abundant than UCP1 in brown adipose tissue (Pecqueur, 2001). Post-transcriptional regulation
plays an important role in determining UCP2 protein levels. Translational control occurs
through inhibition by an upstream, untranslated open reading frame; this inhibition is lifted by
physiological concentrations of glutamine (Hurtaud et al., 2006; Hurtaud et al., 2007).
Additionally, UCP2 is rapidly turned over with a half-life of about one hour (Rousset et al.,
2007; Azzu et al., 2008b). Its activity in pancreatic 3-cells dampens glucose-stimulated insulin
secretion and ROS production, making it a well-studied target for diabetes intervention and
treatment. Other proposed roles for UCP2 include the integration of glucose and fatty acid
sensing (Brand and Esteves, 2005; Bouillaud, 2009).

Like UCP2, UCP3 mRNA expression has been reported in many tissues (Bosset al., 1997b;
Vidal-Puig et al., 1997), but protein is prevalent mainly in skeletal muscle and brown adipose
tissue, where its concentration is again very low compared to UCP1 in brown adipose tissue
(Harper et al., 2001). UCP3 overexpression in mice confers increased glucose tolerance, with
lowered glucose and insulin levels (Clapham et al., 2000). Unlike UCP1, UCP3 expression is
upregulated during fasting by fatty acid stimulation of transcription (Boss et al., 1997a; Fleury
et al., 1997) Other modulators of UCP3 expression include thyroid hormone, leptin, and p-
adrenergic signaling (Gong et al., 1997; Barbe et al., 2001). UCP3 activity does not contribute
to adaptive thermogenesis, as it cannot complement ablation of UCP1 (Golozoubova et al.,
2001) and UCP3 gene expression is not upregulated in skeletal muscle by cold (Boss et al.,
1997b). However, UCP3 does appear to partially mediate the pharmacological hyperthermia
induced by 3,4-methylenedioxymethamphetamine (MDMA), or ecstasy (Mills et al., 2003).
Uncoupling by UCP3 likely occurs indirectly through B-adrenergic activation, as MDMA does
not stimulate uncoupling in isolated mitochondria (Rusyniak et al., 2005).

Competing interpretations of UCP3 activity are that it is not a direct uncoupler, but rather a
fatty acid transporter, coordinating fatty acid and glucose catabolism (Schrauwen et al.,
2006). However, export of fatty acid anion from the mitochondrial matrix was recently shown
to be independent of UCP3 (Seifert etal., 2008). Surprisingly, both overexpression and ablation
of UCP3 result in decreased insulin resistance, though it is unlikely to be through the same
mechanism and may also be complicated by compensatory effects (Costford et al., 2006)

The neuronal “UCPs”, UCP4 and BMCP1/UCP5 were identified by sequence similarity to
UCPs 1-3 (Sanchis et al., 1998; Mao et al., 1999), but they share less amino acid sequence
identity with UCP1 (<30%) than do the dicarboxylate and 2-oxoglutarate carriers, and are not
obviously members of the UCP family. Drosophila melanogaster UCP5 had uncoupling
activity that responded to free fatty acids (laurate) and GDP when overexpressed in yeast
(Fridell et al., 2004). However, DmUCP5 ablation in flies did not alter mitochondrial
uncoupling (Séanchez-Blanco et al., 2006). In neuronal cell culture, UCP4 overexpression led
to a surprising increase in ATP levels and resistance to ROS-generating agents, but whether it
represents regulated mitochondrial uncoupling or occurs in vivo is unknown (Chu et al.,
2009; Wei et al., 2009).

6. UCP-mediated life extension through decreased ROS

Multiple recent reviews discuss the putative biochemical and physiological functions of the
uncoupling proteins (Brand and Esteves, 2005; Cannon et al., 2006; Echtay, 2007; Affourtit
and Brand, 2008; Cioffi et al., 2009). Here, we discuss the application of these potential
functions to how they may modulate lifespan.

Uncoupling by UCPs can be activated by superoxide (Echtay et al., 2002a; Considine et al.,
2003; Talbot et al., 2004). The ROS-activated proton leak catalyzed by UCPs is inhibited by
GDP and is absent in mitochondria which either essentially lack UCPs or in which endogenous
UCP has been ablated. The lipid peroxidation product 4-hydroxy-2-nonenal (HNE) can also

Mech Ageing Dev. Author manuscript; available in PMC 2011 July 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Mookerjee et al.

Page 6

stimulate inhibitor-sensitive proton conductance through the UCPs and adenine nucleotide
translocase (ANT) (Echtay et al., 2003). Furthermore, UCP activation by superoxide is blunted
by the spin trap antioxidant phenyl-N-tert-butylnitrone, when targeted to the mitochondrial
matrix (mitoPBN). Importantly, mitoPBN, which reacts with carbon-centered radicals but not
with superoxide itself or lipid peroxidation products, does not affect HNE-induced uncoupling
(Murphy et al., 2003). Taken together, these data suggest that superoxide may activate
uncoupling proteins indirectly by attacking n-6 polyunsaturated acyl groups in the phospholipid
membrane, initiating a chemical cascade to produce reactive alkenals (Brand and Esteves,
2005).

In this way, HNE may transduce high ROS production into a UCP-activating signal (Parola
et al., 2001). HNE is most reactive with cysteine, lysine or histidine residues via Schiff bases
and Michael adducts (Schaur, 2003). As alkenal-stimulated uncoupling requires either an acyl
or carbonyl functional group and a double bond between the C2 and C3 carbons, HNE may
induce uncoupling by covalent modification of UCPs and the ANT (Echtay et al., 2005). In
fact, HNE has been demonstrated to covalently modify other mitochondrial proteins in vivo
(Musatov et al., 2002; Isom et al., 2004). Furthermore, the retinoic acid analog TTNPB, which
contains the same obligatory functional groups, has been shown to stimulate UCP-mediated
proton leak in intact thymocytes (Krauss et al., 2002).

Based on the observations above and other experiments in the literature, a putative function
for all UCPs, including the plant and avian UCPs, is to protect mitochondria from oxidative
damage by lowering Ap through induced proton leak (Brand et al., 2004). A putative
mechanism for UCP activation can be described: high Ap leads to high levels of matrix
superoxide, which peroxidize lipids to form reactive species such as HNE, which then
covalently modify UCP family members, activating mild uncoupling. This lowers Ap,
attenuates ROS production and limits oxidative damage (Brand et al., 2004). Recently, it was
demonstrated that high membrane potential is required for HNE-induced uncoupling and that
the HNE-stimulated proton conductance through ANT is not readily reversible by the potent
inhibitor carboxyatractylate (CAT) (Azzu et al., 2008a; Parker et al., 2008). This suggests that
a sustained high Ap maybe required for mild uncoupling, perhaps forcing ANT (and possibly
UCPs) into a conformation accessible to modification by alkenals.

Some genetic manipulation studies support this model, consistent with ROS as a determinant
of aging and with a role for mild uncoupling in attenuating ROS. Fridell et al. (2005) showed
that neuronal-specific UCP2 expression in Drosophila led to increased rates of oligomycin-
insensitive (i.e., non-ATP generating) respiration and lower rates of ROS production in isolated
mitochondria, a decrease in sensitivity of flies to the radical-generator paraquat, and a lifespan
increase of 11-28%. The increased mitochondrial respiration was GDP-sensitive, although
whether it was solely attributable to UCP2 is unclear. Humphrey et. al. (2009) extended this
work by expressing human UCP3 in Drosophila either ubiquitously or targeted to adult neurons.
They found that moderate levels of pan-neuronal expression (but not ubiquitous expression)
conferred a slight increase in median lifespan in male flies. However, in contrast to Fridell et
al. (2005), when UCP3 was expressed in neurons at sufficient levels to increase proton
conductance, lifespan was significantly shortened. Restricting UCP3 expression to the median
neurosecretory cells, a subpopulation of neurons that secrete several insulin-like peptides
(DILPs), also shortened lifespan, and increased DILP2 protein levels. This suggested that the
neurosecretory cells could be mediating the lifespan shortening effect of high UCP3
overexpression through a mechanism involving DILP2.

UCP ablation in mice also provides supporting evidence for a ROS-limiting function for UCP2
and UCP3. Pancreatic islets from UCP27~ mice display increased ROS production relative to
wild-type (Krauss, 2003), and skeletal muscle mitochondria from Ucp3- mice have greater
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oxidative damage than controls (Vidal-Puig et al., 2000; Brand et al., 2002). In Ucp2”~ mice,
resistance to Toxoplasma gondii infection (Arsenijevic et al., 2000) and atherosclerosis (Blanc
et al., 2003) appears to result from higher ROS levels than their wild-type littermates.

7. Lifespan and ROS production

Is ROS attenuation a credible means for uncoupling to mediate lifespan extension? Recent
findings by Mcdonald, et al. describe no difference in lifespan in either UCP2- or UCP3-ablated
mice relative to wild-type controls (Mcdonald et al., 2008). Moreover, low ROS production
and long lifespan are separable. In Drosophila, Miwa et al. (2004) demonstrated increased
lifespan by calorie restriction without a corresponding decrease in ROS production.
Conversely, overexpressing the adenine nucleotide translocase (ANT) in flies resulted in
greater mitochondrial uncoupling and significantly decreased ROS, but conferred no lifespan
increase.

These data warrant careful interpretation before dismissing the idea entirely, however. First,
mitochondrial uncoupling may control lifespan under metabolic conditions other than those
examined. Second, the interplay of positive and negative effects of UCP ablation may result
in no net change in lifespan, even though the bioenergetics are affected as predicted. Third,
mitochondrial uncoupling may attenuate aging phenotypes without conferring a lifespan
extension.

It is useful also to consider that attempts to mitigate ROS in other ways, namely though
manipulation of antioxidant pathways, have not yielded a clear understanding of the role of
ROS in lifespan determination. ROS production has been extensively linked to cell and tissue
deterioration with age, including a recent investigation in skeletal muscle (Jang et al., 2009a).
But is it a controlling factor in lifespan? In C. elegans, deletion of individual superoxide
dismutase (SOD) isoforms did not affect mean lifespan (Yen et al., 2009). In mice,
overexpression of the mitochondrial matrix MnSOD (Sod2) decreased ROS without a
corresponding lifespan increase (Jang et al., 2009b). Conversely, previous work showed that
mitochondrially-targeted catalase did significantly increase lifespan (Schriner et al., 2005),
suggesting that H,O, production may more directly related to lifespan determination than
O,e". Additionally, mitochondrially-targeted catalase reportedly mitigates multiple age-related
pathologies, including cardiac tissue pathology (Treuting et al., 2008; Dai et al., 2009), hearing
loss (Someya et al., 2009), and comorbidity factors including tumor burden (Treuting et al.,
2008).

In a companion study to Jang, et al. 2009, Perez et al. (2009) collected lifespan data from
multiple studies using mice either under- or overexpressing different antioxidant system
components, including Mn-SOD, CuZn-SOD (Sod1), and glutathione peroxidases 1 and 4. Of
these, only Sod17- mice had a significantly shorter lifespan. However, these mice also
displayed levels of oxidative damage 4-5-fold higher than in aged wild type mice, and had a
high incidence of hepatocellular carcinoma, suggesting that their lifespan deficit may not
represent normal mechanisms of aging. Likewise, the Sod2”~ mouse, with its embryonic
lethality, is unlikely to appropriately model aging.

Two major considerations emerge from these studies; in addition to the amount of ROS, both
the species of ROS and the subcellular location of antioxidant activity, and not simply ROS
levels, can strongly affect whether increased ROS production correlates with decreased
lifespan.
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8. Can uncoupling mimic dietary restriction as ameans of lifespan extension?

Dietary restriction without malnutrition (DR) is a well-tested intervention that prolongs
lifespan in almost all models used to test it (Masoro, 2009). Because mild uncoupling increases
metabolic inefficiency, effectively “restricting” caloric conversion into biological work, it is
sometimes proposed as a mechanism for DR-mediated lifespan extension. Iftrue, then chemical
uncouplers and biological uncoupling proteins may represent effective DR mimetics.

The protonophore 2,4-dinitrophenol (DNP), which enjoyed extensive use as an obesity
treatment in the 1930s prior to its discontinuation due to toxic side effects (Colman, 2007), has
been increasingly utilized as a putative DR mimetic. Promisingly, in flies and mice, DNP has
recently been shown to increase lifespan, accompanied by decreases in oxidative damage
(Padalko, 2005; Caldeira da Silva et al., 2008). In mice, DNP particularly affected respiration
in the brain, though whether this occurred through increased concentration or enhanced activity
is unclear (Caldeira da Silva et al., 2008). However, DNP equilibrates proton concentration
and membrane potential across not only mitochondrial, but also endosome and plasma
membranes, and therefore does more than simply uncouple mitochondria. Additionally, the
small therapeutic range, sub-lethal side effects, high variability of optimal dose, and non-
specific distribution of DNP in the body are important caveats when considering its application
toward lifespan extension.

Does uncoupling effectively impose DR? In multiple studies, dietary restriction was found to
upregulate UCP2 and UCP3 mRNA expression, often interpreted as support for mitochondrial
uncoupling during DR (Bevilacqua et al., 2004; Mcdonald et al., 2008). In contrast, SIRT1, a
histone deacetylase that is also upregulated during DR, has been implicated in the direct
repression of UCP2 transcription (Bordone et al., 2006) by binding to the UCP2 promoter.
SIRT1 also inhibits glucocorticoid-dependent UCP3 transcriptional activation (Amat et al.,
2007). Moreover, mice with targeted SIRT1 overexpression in the pancreas display a ~2-fold
reduction in pancreatic UCP2 protein levels, and enhanced insulin secretion, consistent with
repression of Ucp2 (Moynihan et al., 2005). These data suggest that SIRT-dependent
repression of UCP2 and UCP3 expression may occur during DR, arguing against a role for DR
in inducing uncoupling through these proteins. However, fasting upregulates UCP2 and 3,
making the degree of dietary restriction, among other factors, a potentially key determinant in
whether UCPs are up- or down-regulated (Boss et al., 1997a; Cadenas et al., 1999)

In addition, transcriptional upregulation of uncoupling proteins, though relatively easy to
measure, is a poor indicator of protein uncoupling activity. Multiple examples indicate that
UCP mRNA and even protein can be increased without increased proton conductance. In one
example, UCP2 and UCP3 transcript levels rose several-fold following 24-hour starvation,
accompanied by a doubling in UCP3 protein levels, but with no change in the proton
conductance in skeletal muscle mitochondria (Cadenas et al., 1999). UCP3 protein was also
found to be increased after DR, concurrent with an unexpected decrease in proton leak in
skeletal muscle and liver (Bevilacqua et al., 2004, 2005; Hagopian et al., 2005).

Studies that directly manipulate UCP levels and measure lifespan are limited. Recently,
Andrews and Horvath (2009) showed that while Ucp27- mice showed significantly reduced
survival relative to wild type, transgenic overexpression of UCP2 had no effect on lifespan.
Because UCP2 overexpression partially rescued mice with a lethal Sod2/ genotype, with small
but significant reductions in ROS production, these results are consistent with a role for UCP2
in attenuating ROS production. That UCP2 can be responsible for lifespan extension, however,
cannot be concluded. Other studies found no change in lifespan of Ucp1”-, Ucp27-, Ucp3,
or transgenic UCP3-overexpressing mice relative to wild type (Kontani et al., 2005; Mcdonald
et al., 2008), despite an increased incidence of obesity in the Ucp1™~ mice at thermoneutrality
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(Kontani et al., 2005; Feldmann et al., 2009). However, unlike UCP3, targeted expression of
UCP1 to skeletal muscle confers increased median lifespan, reduced adiposity and increased
energy expenditure (Li et al., 2000; Gateset al., 2007; Katterle et al., 2008). Moreover, Gates
et al. (2007) observed reduced incidence of lymphoma and atherosclerosis in UCP1-
overexpressing mice, suggesting that despite a lack of lifespan extension, an increase in
“healthspan” could be attributed to UCP1-dependent uncoupling. The recent finding of active
brown adipose tissue expressing UCP1 in adult humans may make UCP1 a relevant therapeutic
target (Cypess etal., 2009; van Marken Lichtenbelt et al., 2009; Virtanenet al., 2009; Zingaretti
et al., 2009).

Taken together, these results fail to show that uncoupling proteins can extend maximum
lifespan under “optimal” (i.e., ad libitum, low-fat diet , thermoneutral, non gene-disrupted)
conditions in experimental models, and are therefore unlikely to mediate DR-dependent
lifespan extension. It is possible that uncoupling protein activity in conjunction with other
factors induced by DR may lead to lifespan extension, but existing evidence for this is weak.
Direct investigation of the interaction between uncoupling and DR, for example, by studying
UCP-ablated animals undergoing DR, or determining whether manipulating uncoupling affects
the signaling transduction pathways upregulated in DR, may shed light on this issue.

When considering potential mechanisms of lifespan extension, it is important to distinguish
between factors that slow what we understand as the aging process and those that decrease the
risk of mortality. Since it is hard to conclude that any human population is living under
“optimal” conditions for maximizing lifespan, any interventions that extend lifespan could be
the result of either, or both. Moreover, the controlled contexts (housing and ad libitum feeding
conditions, low risk of infection, highly inbred strains) of most animal studies may not
accurately reflect human populations. The evidence suggesting that uncoupling both
contributes to and can ameliorate metabolic dysfunction is considerable. Metabolic
dysregulation, in turn, can both increase the accumulation of damage that broadly defines aging,
and confer chronic and debilitating disease (Fontana, 2009). As described above, DR is
believed to be one of the few interventions that consistently leads to lifespan extension, though
whether this is through reducing mortality or by slowing the accumulation of age-related
damage is unclear and varies across different animal models. In addition to ROS attenuation,
multiple other mechanisms are implicated in the lifespan-altering effects of DR, including
reduced core body temperature and altered insulin signaling. The following sections will
discuss how uncoupling may play a role in these mechanisms.

9. Uncoupling modulates glucose-stimulated insulin secretion (GSIS)

One particular area of interest in the metabolic control of lifespan is the role that UCP2 plays
in insulin secretion from pancreatic B-cells, where it modulates glucose-stimulated insulin
secretion (GSIS). In GSIS, abundant blood glucose drives respiration to generate ATP,
triggering a cascade that stimulates exocytotic release of insulin-containing granules from p-
cells. Recent evidence suggests that signaling by ROS comprises part of the GSIS response
(Pi et al., 2007).

UCP?2 is expressed in pancreatic B-cells, where its activity attenuates insulin secretion (Chan
et al., 2004; Chan and Kashemsant, 2006; Affourtit and Brand, 2008). Accordingly, Ucp2
deletion or knockdown enhances insulin release (Zhang et al., 2001; Affourtit and Brand,
2008). UCP2 overexpression diminishes GSIS (Chan et al., 1999; Hong et al., 2001), but
conflicting reports exist (Produit-Zengaffinen et al., 2007). Work by Krauss et al. (2003)
suggests that endogenous ROS is sufficient to activate UCP2-mediated uncoupling, consistent
with a role for UCP2 in mild uncoupling.
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UCP2 has been studied in relation to type Il diabetes, as mitochondrial function controls how
pancreatic B-cells transduce nutrient signals into an insulin response. One important
diabetogenic event is the loss of an insulin response by p-cells following chronic exposure to
circulating free fatty acids, concomitant with increased proton conductance. Early findings of
free fatty acid-stimulated uncoupling in B-cells of diabetes models led to investigation of UCP2
as the mediator of this uncoupling. Although upregulation of UCP2 transcription (Medvedev
et al., 2002) and protein levels (Lameloise et al., 2001) by long-term free fatty acid exposure
were observed, consistent with a role for UCP2 in free fatty acid-mediated uncoupling, direct
evidence for free fatty-acid stimulation of UCP2 activity in -cells is weak. There is indirect
evidence for oleate-induced mitochondrial uncoupling that was attributed to UCP2 and the
dicarboxylate carrier (Lameloise et al., 2001). However, later work has found no stimulation
of UCP2-mediated uncoupling in B-cells (Galetti et al., 2009).

As described above, stronger evidence exists for superoxide-mediated activation of UCP2.
Endogenous superoxide activated proton conductance in islet cells that was GDP-sensitive and
dependent on UCP2, directly implicating UCP2 in islet cell uncoupling. Moreover, it also
suggested that UCP2 mediated the phenomenon that, following chronic hyperglycemia, B-cells
are unresponsive to glucose stimulation. Islets isolated from Ucp2- mice retained similar GSIS
to wild-type controls following a 72-hour hyperglycemia treatment (Krauss, 2003). Further
work found that Ucp2/~ mice were resistant to GSIS attenuation caused by a high fat diet
(Joseph, 2004).

Under high-fat and high-glucose conditions, therefore, the presence of functional UCP2
consistently exacerbates dysregulation of insulin and glucose homeostasis, leading to the
development of insulin resistance and diabetes. However, UCP2-mediated uncoupling in
(and other) cells is also predicted to prevent chronic oxidative stress by attenuating ROS
generation. Following backcrossing of the Ucp27- mouse, this genotype conferred unchanged
(Parker et al., 2009) or decreased, not increased, GSIS, which was attributed to B-cell
dysfunction as a result of persistent oxidative stress (Pi et al., 2009).

Interestingly, a recent report proposes that superoxide production is an upstream event in
insulin resistance. By decreasing ROS production via FCCP or rotenone treatment, and by
decreasing ROS damage via transgenic MnSOD overexpression, Hoehn et al. (2009) showed
reversal of insulin resistance in mice fed a high fat diet. Also, Costford et al. (2009) showed
increased oxidative damage upon glucose challenge in satellite cells from previously diabetic
individuals. This was at least partially attributable to an inability of these cells to lower Ay,
following glucose influx, which normally mitigates ROS production. The lack of a decrease
in Ay, correlated with a three-fold drop in UCP3 protein levels.

Taken together, these data suggest that, given the correct balance and supply of nutrient intake,
uncoupling proteins can properly regulate lipid and glucose catabolism and maintain ROS
homeostasis to allow its proper function as a signaling agent while minimizing its ability to
cause cellular damage. However, given the excess fats and sugars that occur in the so-called
“western diet”, it may be that deactivation of UCP activity may have health benefits that
positively affect lifespan under these conditions.

10. Uncoupling-mediated body temperature modulation

The observation that reduced body temperature results in lifespan extension in invertebrates
and vertebrate ectotherms is several decades old (Lamb, 1968; Liu and Walford, 1972).
Importantly, this effect is not dependent on a slower metabolic rate (rev. in Yen et al., 2004),
and, of all the interventions known to increase lifespan, it is hypothesized that only temperature
reduction (Mair et al., 2003) or only DR and temperature reduction actually decrease the rate
of aging, rather than the incidence of mortality (Yen and Mobbs, 2009). How may this be
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usefully applied to endotherms, where manipulation of core body temperature is not as simple
as changing ambient temperature (Vaanholt et al., 2009)?

One way to manipulate mammalian core body temperature is through DR itself (Ferguson et
al., 2007). Another way is through targeted mitochondrial uncoupling. Conti et al. (2006)
targeted transgenic UCP2 expression to hypothalamic neurons in mice. This resulted in an
average 0.65°C temperature increase in the lateral hypothalamus, concurrent with a
compensatory reduction in core body temperature of approximately 0.3°C during the active
phase. These mice displayed a 12%-20% increase in median lifespan. Although UCP2 is
endogenously expressed in the mouse hypothalamus (Richard et al., 2001), it is unlikely that
this finding has physiological relevance or gives insight into the native function of UCP2.
However, along with the overexpression of UCP1 by Gates et al. (2007), it does illustrate the
utility of ectopic UCP expression for manipulating metabolism. While these studies involved
different tissues and did not both measure the same parameters of uncoupling, they demonstrate
how targeted uncoupling can be used to test hypotheses about aging mechanisms. It should be
emphasized that ectopic UCP expression that results in proton conductance should not be
interpreted as native protein function without also determining that it is properly regulated.

11. Perspective and Conclusion

Aging is correlated with changes in many different processes, including DNA replication and
repair, apoptotic signaling, metabolic signaling and sensing, proteasomal and lysosomal
activity, ATP production, and mitochondrial coupling efficiency. The inconsistent effects of
uncoupling interventions on lifespan may reflect the limitations of current experimental
approaches, or that we have not adequately considered the contexts in which mild uncoupling
may be most effective at modulating lifespan. For example, under optimal maintenance
conditions, as in Perez et al. (2009), oxidative damage may not be the determining factor in
mortality; rather, it may be the failure of other mechanisms that triggers senescence.

Ultimately, is mitochondrial uncoupling beneficial or detrimental to health and longevity? The
answer to this question is hampered by an incomplete understanding of both the functions of
uncoupling in maintaining energy homeostasis, and the biological mechanisms of aging.
However, most evidence supports a role for mild uncoupling in ROS attenuation, and also in
maintaining nutrient and energy homeostasis, both of which are likely important for optimizing
lifespan. Conversely, when homeostasis is disrupted, as in insulin insensitivity, uncoupling
may exacerbate dysfunction. An increased understanding of aging, the functions and
physiological roles of the uncoupling proteins, as well as the development of targetable
chemical uncouplers, could further the use of uncoupling as a therapeutic strategy to maintain
healthy aging.
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Examples of different metabolic systems in which biological uncoupling may function. Outer
and inner blue shapes represent plasma and mitochondrial membranes, respectively. Black
arrows and text denote the primary metabolic mechanisms in each system. (i): In brown adipose
tissue, activation of UCP1 by free fatty acids (FFA) dissipates Ap as heat. Loss of UCP1 leads
to cold sensitivity and (at thermoneutrality) obesity. (ii): In the pancreatic B-cell, Ap and ATP/
ADP fluctuate in response to glucose, allowing glucose-stimulated insulin secretion (GSIS).
Uncoupling by UCP2 attenuates GSIS and lowers ROS. UCP2 depletion may therefore lead
to short-term increases in GSIS sensitivity, with long-term dysfunction due to oxidative
damage. (iii) In skeletal muscle, glucose catabolism is tightly regulated to maintain constant
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ATP/ADP. Uncoupling by UCP3 may decrease ROS production when ATP demand and
therefore Ap ishigh (e.g., during exercise). (iv): In all cases, a general hypothesis for uncoupling
is that it may blunt Ap fluctuation to minimize ROS production. Dysfunction may accumulate
faster if the Ap strays from an “optimal” range, while its maintenance within this range may
slow cellular damage over time. Whether uncoupling has an ultimately positive or negative
impact on lifespan therefore depends on the bioenergetic context in which uncoupling occurs,
whether uncoupling acts to maintain or further destabilize metabolic equilibrium, and the
control that metabolic equilibrium has over lifespan in an organism.
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