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Abstract
It is now commonly agreed that the human genome is not the stable entity originally presumed.
Deletions, duplications, inversions, and insertions are common, and contribute significantly to
genomic structural variations (SVs). Their collective impact generates much of the inter-individual
genomic diversity observed among humans. Not only do these variations change the structure of the
genome; they may also have functional implications, e.g. altered gene expression. Some SVs have
been identified as the cause of genetic disorders, including cancer predisposition. Cancer cells are
notorious for their genomic instability, and often show genomic rearrangements at the microscopic
and submicroscopic level to which transposable elements (TEs) contribute. Here, we review the role
of TEs in genome instability, with particular focus on non-LTR retrotransposons. Currently, three
non-LTR retrotransposon families – long interspersed element 1 (L1), SVA (short interspersed
element (SINE-R), variable number of tandem repeats (VNTR), and Alu), and Alu (a SINE) elements
– mobilize in the human genome, and cause genomic instability through both insertion- and post-
insertion-based mutagenesis. Due to the abundance and high sequence identity of TEs, they
frequently mislead the homologous recombination repair pathway into non-allelic homologous
recombination, causing deletions, duplications, and inversions. While less comprehensively studied,
non-LTR retrotransposon insertions and TE-mediated rearrangements are probably more common
in cancer cells than in healthy tissue. This may be at least partially attributed to the commonly seen
global hypomethylation as well as general epigenetic dysfunction of cancer cells. Where possible,
we provide examples that impact cancer predisposition and/or development.
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1. Introduction
Less than a decade ago, with the availability of the first human draft genome sequence, the
human genome was considered to be a very stable entity [1]. However, with the identification
of structural variations (SVs) as a major cause of inter-individual variation, it is now evident
that the human genome is distinguished by a high inter-individual variability [2–6]. SVs are
usually at the submicroscopic level and include insertions, deletions, duplications,
translocations, and inversions. It is now commonly believed that SVs comprise more
nucleotides than single nucleotide polymorphisms (SNPs) in the human genome [3]. Cancer
cells are notorious for their genome instability. It is generally accepted that structural
rearrangements at the microscopic level are common features of the genome of most human
cancers. Recently the full impact of SVs, including those at the submicroscopic level in cancer
cells, has become more apparent. Inherited rearrangements have also been associated with
cancer predisposition and will be discussed in more detail in this review.

Transposable elements (TEs) are often involved in the genesis of SVs due to their inherent
ability to mobilize, their abundance, and their high sequence identity. About half of the human
genome is comprised of repetitive sequences, with TEs being the largest contributors [1,7].
The repeat content of the human genome is likely even higher, given that the decay of TEs
over time makes the identification and characterization of ancestral TEs difficult if not
impossible, and sequencing and assembly is less than perfect in repeat (and transposon)-rich
regions [8,9]. Altogether, the impact of TEs onto the human genome has been underappreciated
for some time; only recently are we beginning to comprehend the impact of TEs upon genome
architecture and, consequently, onto the evolution of the human genome [10].

A recent comparative genomics study of two human genomes found that TEs are associated
with ~10% of all SVs larger than 100 bp [11]. TEs impact genome integrity in several ways,
including TE insertions and rearrangements. TEs are now commonly recognized in genetic
diseases (reviewed in [7,12–16]). They have also been associated with cancer genesis; this is
not unexpected, as a typical characteristic of cancer cells is their genomic instability. Here, we
discuss the impact of TEs – in particular, non-LTR retrotransposons – upon the architecture of
the genome; and review how and to what extent TEs have been associated with the genesis of
cancer.

2. TE background
2.1 TE classification and activity

To understand the role of TEs within genome instability, it is important to review several key
aspects of TE biology. For more detailed information we refer to other reviews (e.g. [7,12,
15,17,18]). TEs may be categorized by their mobilization mechanism into DNA transposons
and retrotransposons. DNA transposons propagate via a cut-and-paste mechanism. While
active in very early primate evolution, these elements have essentially ceased activity in the
primate lineage approximately 37 million years ago [19]. In contrast, retrotransposons use an
RNA intermediate; are reverse transcribed; and move within the genome through a copy-and-
paste mechanism [15,20]. Retrotransposons are further subdivided into two groups on the basis
of presence or absence of long terminal repeats (LTRs). The most prominent members of LTR-
retrotransposons are endogenous retroviruses (ERVs), which comprise about 8% of the human
genome [1]. There is very little (if any) evidence of ongoing ERV retrotransposition in humans
[1,7,21]. Their potential role in tumorgenesis is subject to an ongoing debate and covered
elsewhere (e.g., [22]). The other group encompasses non-LTR retrotransposons, and is
discussed in more detail in this review.
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2.2 Non-LTR retrotransposon biology
Three different families of non-LTR retrotransposons are actively mobilized in the human
genome. These are long interspersed elements 1 (LINE1s, L1s); Alu elements (a short
interspersed element, or SINE); and SVAs (named after their composite parts: SINE-R, VNTR
(variable number of tandem repeats), and an Alu-like sequence) [1,7,12,15,23]. Their success
is evident through the fact that non-LTR retrotransposons occupy about one third of the human
genome, making them the most populous TE group in the human genome [1].

L1s are the only currently known autonomous (providing its own enzymatic machinery for
retrotransposition) retrotransposons that are currently mobilizing within the human genome.
They comprise about 17% (~500,000 copies) of the human genome with evidence of ongoing
activity dating back roughly 160 million years [1]. A full-length L1 is about 6 kb in length and
contains an internal Polymerase II promoter, two open reading frames (ORFs), and ends in a
polyadenylation signal followed by a homopolymeric tract of Adenosines (also known as a
polyA-tail; see Fig. 1) [24,25]. ORF1 protein is an RNA-binding protein [26] while ORF2
encodes a protein with both endonuclease and reverse transcriptase activity [27–29]. The
majority of L1 insertions are retrotranspositionally incompetent due to variable truncation upon
insertion and debilitating mutations [1]. Consequently, only about 80–100 retrotransposition
competent L1s have been identified in the human genome [30]. Of those, a few (6–8) “hot”
L1s appear to be responsible for the bulk of new insertions [30].

The human genome contains two actively mobilizing non-autonomous non-LTR
retrotransposons: Alu elements (member of the SINE family) and SVAs. Non-autonomous
elements are believed to rely on the enzymatic machinery of L1s for retrotransposition; e.g.,
as shown for Alu elements [31,32]. With more than 1,000,000 insertions, Alu elements are the
most successful TE in the human genome by number [1]. This accomplishment is even more
remarkable given that Alu elements are primate-specific and originated only about 65 million
years ago [15]. Alu elements are heterodimers made of two non-identical monomers connected
by an Adenosine-rich linker [15,33,34]. As shown in Fig. 1, an approximately 300 bp long
Alu element contains an internal Polymerase III promoter at its 5′ end, and ends in a polyA-
tail.

SVA elements, which are altogether less well characterized than other non-LTR
retrotransposons, represent the second group of currently mobilizing non-autonomous
elements in the human genome. Similar to L1s, SVA insertions are often truncated and
terminate in a polyadenylation signal followed by a polyA-tail (Fig. 1) [35,36]. It is now
generally believed that SVA elements are transcribed by Polymerase II. However, an internal
promoter has not been detected, and SVA transcription might – at least occasionally – take
place through promoter activity in the vicinity of the SVA [35–37]. Due to their relatively
recent origin (originating less than 25 million years ago), with ~3000 copies, SVA elements
show the lowest retrotransposon density in the human genome [7,36].

Non-LTR retrotransposons are thought to typically insert into the human genome through a
mechanism referred to as Target Primed Reverse Transcription (TPRT) [7,12,38,39]. During
TPRT, the L1-derived endonuclease cuts the minus strand of the host DNA at a loosely
recognized target site (5′-TTTT/AA-3′) [28,40]. The polyA-tail of the non-LTR
retrotransposon mRNA is proposed to bind to the free 3′ end of the host DNA, and the mRNA
is reverse transcribed by the reverse transcriptase encoded by L1 [41]. The next steps of second
strand cleavage, second strand synthesis, and ligation are the subject of ongoing research.
However, host repair systems have been implicated in the later stages of L1 retrotransposition
[42–46]. A recent tissue culture based study further supports this, as proteins of the Non
Homologous End-Joining (NHEJ) pathway were shown to be involved in L1 retrotransposition
[47]. Due to a staggered break of the host DNA at the insertion site, the non-LTR
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retrotransposon insertion is flanked by short stretches (usually between 6–20 bp) of identical
host DNA, referred to as Target Site Duplications (TSD) [27,48].

3. Insertional mutagenesis
3.1 Potential impact upon the human genome

Inherited de novo TE insertions occur in the germline and/or during early embryogenesis
[49–52]. De novo retrotransposon insertions account for about 0.3% of all human mutations
[7]. The retrotransposition rate compatible with live birth varies greatly between the three
retrotransposon families. Alu elements have the highest estimated retrotransposition rate, with
~1 in 20 live births, followed by L1 with about 1 in 200, and SVA with ~1 in 900 [7,11].
Consequently, non-LTR retrotransposons have a remarkable impact on genome plasticity and
stability.

With few exceptions, retrotransposon insertions are neutral or in some cases even deleterious
to the host [53]. Due to the unique properties of non-LTR retrotransposon insertions, an
independent de novo insertion can be easily discriminated from a shared TE insertion that has
been passed down over generations. These include random insertion site (apart from the loose
recognition motif of the endonuclease cleavage site), unique TSDs, and identity of subfamily
affiliation [15,54]. In the case of L1, the length of the insertion is yet another discriminating
factor to discern shared from separate insertions [55]. Because the precise excision of non-
LTR retrotransposons is exceedingly rare, the ancestral state is known to be the absence of the
element; thus, TEs are generally homoplasy free ([56], reviewed in [57]). Consequently, an
insertion shared between two humans at exactly the same genomic location with identical TSDs
is testimony to an inherited insertion and a common ancestor.

Deleterious insertions include the disruption of coding or regulatory sequences (reviewed in
[12–14,16]). The coding sequence of genes can be disrupted when a non-LTR retrotransposon
inserts into an exon, but also can be affected if the insertion occurs within an intron. While the
impact of the latter event is often more difficult to demonstrate and may be overlooked, these
insertions can potentially disrupt splice sites and cause exon skipping. It has also been
implicated that an intronic TE insertion can alter the expression of a gene through introduction
of alternative splice sites or polyadenylation signals [58–61]. Intronic insertions have also been
associated with destabilization of the mRNA resulting in reduced expression [62]. In addition,
insertions into the 5′ and 3′ prime region of genes can possibly alter their expression [63–65],
reviewed in [66].

Alterations in gene expression increase the potential for altering equilibrium of regulatory
networks, and thus augment susceptibility to certain diseases – including cancer.

3.2 Insertional mutagenesis and disease
All three currently actively mobilizing non-LTR retrotransposon families – L1, SVA, and
Alu –have been identified as the causative agent of several genetic disorders. These include
hemophilia, Alpert syndrome, familial hypercholesterolemia, and colon and breast cancer
(reviewed in [7,12,13,16]). Several cancer predisposing mutations caused by retrotransposon
insertions are shown in Table 1. Of all TE-causing genetic disorders identified to date, X-linked
diseases are disproportionally over-represented compared to the autosomal diseases [7,12,
62]. The X-chromosome is particularly enriched in inherited diseases caused by L1. The
underlying reasons are the subject of ongoing debate (e.g. [7,12,62,67]). An ascertainment bias
likely contributes (at least in part) to this finding, as the insertion on autosomes is commonly
masked by the wild-type allele when standard PCR procedures are used. In particular, this is
the case for longer TE insertions (L1 and SVA) where the wild-type allele has a much shorter
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PCR amplicon. However, an insertional bias of L1 insertions toward the X-chromosome has
also been reported [67].

The coding sequence of some genes has been disrupted more than once by independent non-
LTR retrotransposon insertions [14]. An example is the BRCA2 gene, which is associated with
breast/ovarian cancer susceptibility [68,69]. Moreover, some genes have been targeted twice
at exactly the same location. The APC gene (associated with colon cancer predisposition) is
an intriguing example, as one insertion was caused by an L1 and the other by an Alu element
(Table 1) [14]. The fact that different genes have been identified with recurrent disease-causing
retrotransposon insertions indicates that insertions do not solely occur by chance. Instead, this
implies varying susceptibility to non-LTR retrotransposon insertions. The exact reasons for
this finding are elusive. However, certain characteristics of these genes likely contribute to
their predisposition for multiple retrotransposon insertions. For example, the presence of TEs
and the nucleotide composition of introns prone to recurrent de novo TE insertions might play
a pivotal role. The TE content of genes might be a contributing factor, as genes enriched in TE
sequences harbor, on average, more sequences that resemble endonuclease cleavage sites,
possibly increasing the proliferation of TEs.

For example, Alu elements have been shown to insert upstream of another element or within
the polyA-tail of an existing element containing a less than perfect endonuclease cleavage site
[70]. The TSD itself, created by classical TPRT, is a source for an additional endonuclease
cleavage site. The spacer region (see Fig. 1) of Alu elements also closely resembles an
endonuclease recognition site. Thus, one byproduct of Alu insertions is the creation of
additional L1 endonuclease target sites suitable for the insertion of non-LTR retrotransposons.
Also, recently inserted full-length L1s in particular contain several nucleotide sequences
closely resembling endonuclease cleavage sites. However, TE density alone is likely not a
sufficient explanation, as some genes with high TE density do not encounter recurrent de
novo insertions. The methylation status and expression level of a gene may be other
contributing factors as the DNA of genes that are actively transcribed may exist in more open
chromatin structures that are more accessible to retrotransposition machinery and, therefore,
may be more prone to de novo non-LTR insertions. The origin of a TE insertion can be
reconstructed based on the geographical distribution of a TE insertion and its frequency within
a population. In the case of cancer, several founder mutations involving Alu elements have
been identified. For example, an Alu insertion into the BRCA2 gene has been identified in the
Portuguese population [69]. The Alu insertion disrupts exon 3 which results in exon skipping.
This skipping of exon 3 has also been found in individuals without the Alu insertion, and thus
an association of the Alu insertion and cancer susceptibility has been questioned. However, a
recent study convincingly linked the Alu founder mutation in the Portuguese population with
cancer susceptibility [71].

3.3 Insertional mutagenesis of TEs in somatic cells
The investigation of TE retrotransposition activity in somatic cells at a comprehensive level
was until recently out of reach. Advancements in detection technologies, in particular high-
throughput sequencing approaches, are on the verge of changing this. While knowledge about
somatic retrotransposition is still sparse, there is increasing evidence of ongoing L1
mobilization in healthy somatic tissues. For example, L1 protein has been identified in adult
cells [72], and ongoing retrotransposition causing somatic mosaicism has been demonstrated
in embryogenesis and within developing neuronal precursor cells [49–51]. In vitro assays using
an L1 cassette with an adenovirus vector further indicate that L1 retrotransposition can occur
in differentiated human primary cells in G1/S-arrested cells but not in G0-arrested cells [73].
Another study found that L1 retrotransposition under use of its endogenous L1 promoter
requires cell divisions [74].
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Furthermore, this research indicates that L1 retrotransposition occurs at (very) low levels in
primary human fibroblast cell lines [74]. On the basis of these initial results, it appears likely
that the retrotransposition frequency varies individually and also between different tissues. The
TE mobilization rate in cancer cells is likely more pronounced in comparison to “normal” tissue
due to the likely activation of L1s through demethylation of their promoters (see section 7). In
addition, deleterious retrotransposon insertions might not underlie the same selection criteria
in cancer cells compared to healthy tissue. For example, retrotransposon insertions that might
typically result in apoptosis in normal cells may not cause cell death in cancer, given that the
apoptosis pathway is often impaired in cancerous cells [75]. However, in vitro studies of human
carcinoma cells suggest that apoptosis is positively correlated with the presence of
retrotransposition-competent L1 [76]. Conceivably, the cell reaction to L1 reactivation is
dosage-dependent.

3.4 TE insertions associated with deletion of host DNA
The deletion of host DNA associated with the de novo insertion of an L1 or Alu element was
first demonstrated for L1 in tissue culture and confirmed by comparative genomics studies for
both L1 and Alu insertions [77–82]. SVA elements have not been sufficiently studied in this
context, but probably are equally involved in this mechanism. Two vastly different
mechanisms, each with characteristic properties, have been identified causing deletions upon
the insertion of non-LTR retrotransposons. These are TPRT-dependent insertion-mediated
deletions and endonuclease-independent insertions [41,77,79–82]. The primary difference
between the two mechanisms is the dependence on the L1 endonuclease.

3.4.1 Insertion-mediated deletions—Insertion-mediated deletions are endonuclease-
dependent and are thought to make use of TPRT [41,77,79,80]. In these instances, an
endonuclease cleavage site can be commonly identified at the insertion site. In addition, the 3′
end of non-LTR retrotransposon insertions involved in insertion-mediated deletions (the
insertion ends in a polyA-tail) is generally intact [77,79,80]. However, due to the deletion of
the host sequence, TSDs are absent in these insertion-mediated events (see Fig. 2). While the
precise insertion mechanism(s) of endonuclease-dependent TE insertion-mediated deletions
remains elusive, two different mechanisms have been proposed depending on the size of the
deleted host DNA [77]. Small deletions of only a few nucleotides could be caused through a
nick of the top strand of the DNA to the right of the initial cleavage site resulting in a 5′ overhang
[77]. Larger deletions have been proposed to occur when a TE inserts downstream of a double
strand break (DSB) [77].

A new line of evidence using in vitro assays indicates that disruption of the NHEJ pathway
commonly results in deletion of host DNA upon endonuclease-dependent L1insertion [47].
This part of the study was performed with zebrafish L1s in DT40 cells deficient in Ku70.
Intriguingly, Ku70 is associated with the protection of DNA from exonucleolytic degradation
[83]. This indicates that the host DNA of insertion-mediated deletions is not sufficiently
protected from degradation at the endonuclease cleavage site. It is the subject of future studies
to determine if this finding represents a typical in vivo mechanism of human L1
retrotransposition. However, it strongly supports the hypothesis of competition between the
retrotransposon insertion event itself and an attempt by the host to repair the nascent insertion
site [10,41].

A number of genetic disorders caused by TE insertion-mediated deletions have been identified
(reviewed in [13,14]). Alu insertion-mediated deletion has been suggested as a mechanism for
deletion in the APC gene, which is associated with colon cancer predisposition [14,84]. Somatic
mutations involving this mechanism have not yet been identified. Altogether, the combination
of host sequence deletion and a de novo retrotransposon insertion represents a large threat to
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the integrity of the human genome and has a higher potential to be deleterious to the host than
insertional mutagenesis alone.

3.4.2 Endonuclease-independent TE insertions—While the bulk of retrotransposon
insertions are endonuclease-dependent and thus show the typical hallmarks of TPRT, a small
fraction of endonuclease-independent L1 insertions has been observed in tissue culture cells
deficient in NHEJ [78]. Although these insertions are also often associated with deletions of
host DNA, these insertion events are not thought to be the products of the retrotransposition
pathway; rather they occur by other mechanisms such as DSBs. Recently, comparative genomic
studies have shown that endonuclease-independent L1 insertions are not tissue culture artifacts
and also occur in vivo [81,82]. Up to 0.5% and 0.7% of L1 and Alu insertions respectively
could be attributed to endonuclease-independent insertion mechanisms [7,81,82]. Apart from
the deletion of host sequence and absence of a typical endonuclease-cleavage site, these non-
LTR insertions are commonly 3′ and 5′ truncated and do not contain TSDs (Fig. 2) [78,81,
82]. The average size of endonuclease-independent insertions is also in general smaller (e.g.
572 bp for L1 [81]) than that of recent classical non-LTR retrotransposon insertion events (e.g.
900 bp for L1 [1]) that are thought to have inserted using TPRT.

The deletion of host DNA in conjunction with the structure and mechanism of the TE insertion
and the commonly found microhomology between the L1 insertion and the host DNA indicates
that endonuclease-independent TE insertions are involved in DSB repair [78,81,82]. Hence, a
very small fraction of TEs potentially contribute to cell integrity. A few endonuclease-
independent L1 insertions have been identified in genetic disorders (reviewed in [62]). It
remains an unanswered question if endonuclease-independent insertions occur only in the
germline or if they are also common in somatic cells. While these insertions are probably
involved in DNA repair and thus stabilizing, the deletion of host sequence can still be
deleterious to the host and (for example) be associated with cancer predisposition. In cancer
cells their contribution could be similar to other DSB repair mechanisms that can cause new
oncogenes through fusion of two genes or disrupt tumor suppressor genes.

4. Inverted Alu elements cause genomic instability
On average, the human genome contains approximately one Alu insertion per every 3 kb [1].
However, Alu elements are not evenly distributed throughout the human genome [1]. Areas of
higher than average Alu density have been particularly associated with genomic instability.
The abundance of Alu insertions and high sequence homology between Alu elements (average
71%) [85] makes them targets for genome rearrangements (see section 5). Moreover, inverted
Alu elements in close proximity to each other are less frequently identified in the human genome
than Alu insertions in the same orientation [86,87]. This can only partially be attributed to
insertional bias of Alu insertions in the same orientation [65,83]. Instead, inverted repeats likely
represent hotspots of genomic instability, as seen in studies with yeast [86].

Inverted Alu elements that are closely spaced appear to build hairpin structures, which can
cause DSBs of the DNA and excision of inverted Alu elements from the human genome [86,
88]. Moreover, hairpin structures involving Alu elements appear to cause replication stalling
and collapse of the replication fork, which can lead to DSBs and/or intra- or intermolecular
template switch [88]. Apart from the distance of two inverted Alu insertions, the size of
sequence identity between two Alu insertions seems to be an important contributing factor
[87]. Despite their underrepresentation in the human genome, inverted repeats continue to
cause genomic instability. Moreover, de novo Alu insertions can generate new inverted loci,
which pose a potential threat for rearrangements in future human generations. Conceivably,
these rearrangements can also occur in somatic cells and potentially contribute to cancer
development.
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5 TE-mediated recombination and genomic instability
5.1 Role of TE-mediated recombination in the human genome

Chromosomal structural variation is caused by two different general mechanisms: homologous
recombination (HR) and NHEJ [89]. HR is highly conserved in a wide array of species,
including prokaryotes and eukaryotes, suggesting that HR is a fundamental biological
mechanism. Deficiencies involving HR have been associated with cancer development [90,
91]. While programmed HR occurs only once during chromosomal crossover in meiosis, HR
is commonly involved in the repair of DSBs, preventing an individual from DNA damage
(reviewed in [92]). For further information regarding DSB repair mechanisms, we refer to other
recent reviews (e.g. [10,92]). If performed accurately, HR will repair the DNA without a trace.
However, the process is often undermined by abundant and/or highly homologous sequences
including TEs [10,93]. In these instances, two homologous sequences from different genomic
locations recombine in a process called Non-Allelic Homologous Recombination (NAHR) and
consequently cause deletions, duplications, or inversions, as illustrated in Fig. 3 [93–95].

In addition, TE-mediated NAHR can also result in translocations. It would seem reasonable to
assume that given the abundance of TEs in the human genome, TE-mediated NAHR
translocations would commonly occur by chance. TEs, in particular Alu elements, are often
found in the vicinity or even within the breakage points of translocations [96]. However, few
disease-associated translocations have been identified that clearly suggest the involvement of
TE-mediated NAHR (e.g. [97]). This may be due to the requirements of the DSB repair
pathways that cause translocations: NHEJ and Single Strand Annealing (SSA) [98]. SSA –
which can create Alu-mediated NAHR translocations – is likely rarely utilized due to higher
sequence homology requirements than usually found between two TEs [98,99]. Instead, NHEJ
appears to be the main mechanism in the creation of translocations.

While insertional mutagenesis caused by TEs is occasionally deleterious to the host resulting
in genetic disorders including cancer, post-insertional rearrangements of TEs pose altogether
a far greater threat to the integrity of the genome [10]. While a TE insertion may disrupt the
function of one gene, recombination between two TEs might result in the deletion of a
functional region –including several genes, especially if two distant (not necessarily
consecutive) TEs are involved. So far, most of our knowledge regarding TE-mediated
recombination events is based on germline mutations, some of which cause genetic diseases
(also referred to as genomic disorders). Rearrangements involving the germline can be de
novo or inherited and passed on to future generations [100]. However, somatic structural
variation also does occur [101]. TE-mediated NAHRs – both somatic and inherited – have been
associated with cancer predisposition and development (e.g. [102–105]). Still, TE-mediated
NAHR events are most likely underrepresented in studies involving cancer susceptibility,
development, and progression as a consequence of detection challenges.

Comprehensive comparative genomics studies of the human and chimpanzee genomes have
shown that L1 and Alu elements are commonly involved in TE-mediated recombination events
causing deletions [93,94,106]. Alu elements are also often involved in NAHR-mediated
duplications, as they have been found at chromosomal breakpoints of segmental duplications
with a higher frequency (~27%) compared to the average Alu density (~10%) in the human
genome [107]. Beyond genomic instability caused by Alu-mediated NAHRs that cause
duplications, segmental duplications themselves represent hotspots for structural variation and
genomic instability as they share a very high homology. As a result, they can lead to genetic
disease and altered gene expression of genes located within these regions [58,92].

Analysis of the human genome using the chimpanzee genome as a reference indicates that
deletions caused by Alu-mediated NAHR occur about 9 times more often (492 versus 55) than
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L1-mediated NAHRs in the human genome [93,94]. The analysis of L1-mediated
recombination deletions revealed also 18 chimeric L1s showing hallmarks of NHEJ, raising
the number of recombination events to 73. In terms of frequency, L1 recombination plays a
relatively minor role in the human genome. However, L1-mediated recombination events are
significantly larger in size than Alu-mediated NAHRs (6132 bp versus 806 bp) [93,94]. L1
recombination-mediated deletions have deleted more DNA sequence from the human genome
than the sum of all other TE deletion related events [94]. This includes DNA loss of Alu
insertion-mediated deletions, L1 insertion-mediated deletions, and Alu-mediated NAHR
deletions from the human genome over the last 5–6 million years [94]. Thus, L1 recombination-
mediated deletions – even though less frequent – are a major contributor to genome instability.
In addition, larger recombination events are more likely to involve greater disruption of
functional genomic regions, making them more deleterious to the host. Consequently, these
events are likely under significant negative selection, which commonly results in the loss of
these events from the human population. These deletion events may commonly be so
deleterious that affected individuals do not survive to birth. Indeed, to date only a few L1-
mediated recombinations have been detected (reviewed in [14]).

5.2 TE-mediated NAHRs in human genetic disorders
TE-mediated NAHR events, in particular those involving Alu elements, have been identified
in a variety of genetic disorders and play an important role in their genesis (reviewed in [13,
16]). Also, several Alu-mediated NAHRs with implications for cancer susceptibility have been
identified; a subset is shown in Table 2. With few exceptions, NAHR-mediated deletions are
more commonly detected than duplications. While in part this might be caused by a detection
bias, as deletions are more easily identified compared to duplications, there is also evidence
that overall deletions occur more often than duplications (reviewed in [92]). This may in part
be explained by the intrachromatid NAHR mechanism which causes only deletions (see Fig.
3). Through advancements in detection methods for SVs, genomic rearrangements are now
recognized in a number of genetic disorders. However, SVs are likely still severely
underrepresented due to the required use of more complicated, lengthier, and resource
consumptive methods to detect genomic rearrangements. The analysis of the CDH1 gene –
associated with hereditary diffuse gastric cancer (HDGC) – is an intriguing example. Up until
2009, only germline single nucleotide or small frameshift mutations were associated with
HDGC [108,109]. Yet in individuals with HDGC, mutations were identified in only 30–50%
of the cases. Oliveira and colleagues [108] have convincingly shown that some individuals
with HDGC harbor structural variations including two Alu-mediated NAHRs that disrupt the
CDH1 gene. The identification of all mutations including structural variations in genes
associated with cancer is of great importance for the identification of carriers, counseling,
appropriate individualized screening and preventive measures. Counseling of breast cancer
patients is another intriguing example, as a recent retrospective study found that close to 50%
of breast cancer patients with BRCA1 mutations eventually develop contra-lateral breast cancer
[110].

5.3 Predisposition to TE-mediated NAHRs
It appears that some genes are more prone to TE-mediated NAHRs than others, as multiple
recurrent independent recombination events have been identified in these genes [16]. For
example, the BRCA1 (and to a lesser extent BRCA2), VHL, MLL1, MLH1, and MSH2 genes
encountered recurrent Alu-mediated NAHRs (e.g. [102,111,112]). In some genes, 25% or more
of cancer predisposing mutations in certain demographic populations are caused by Alu-
mediated NAHRs (e.g [102,113]). The overall density of Alu elements seems to be a
contributing factor to recurrent Alu-mediated NAHRs as genes with higher than average Alu
density in general show evidence of a higher Alu-mediated NAHR rate. Another factor could
be the absence of epigenetic constraints such as CpG methylation and/or histone acetylation.
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MLH1 and MSH2, both involved in the mismatch repair system, are two intriguing examples.
Point mutations, small insertions and deletions, and genomic rearrangements within these
genes are associated with hereditary non-polyposis colorectal cancer, the most common form
of inherited colon cancer (e.g. [111,114]). Both genes have a higher than average Alu density
within their intronic sequence (20% MLH1 and 40% MSH2 compared to 10% genome average)
[111]. In the MSH2 gene ~3/4 of rearrangements are caused by Alu-mediated NAHRs [111].
In contrast, only about a fourth of the rearrangements of the MLH1 gene contained hallmarks
of unequal Alu recombination [111]. The majority of the other events show characteristics of
NHEJ often with involvement of TEs (in particular Alu elements). Another contributing factor
to multiple independent Alu-mediated NAHRs is the age of the involved Alu insertions, as
members of the youngest Alu subfamily, AluY, have been disproportionately detected in
NAHRs relative to their density in the genome [93]. Occasionally, the same (often young)
Alu element is involved in several independent NAHRs [102]. This is likely due to a higher
homology of the Alu element, as younger insertions have on average accumulated fewer point
mutations. This is further supported by a recent study that showed that AluY elements that are
fixed in the human genome are associated with an increased local recombination rate [115].

The majority of TE-mediated rearrangements are sporadic and specific to the individual in
whom the event was detected, and possibly also in immediate family members. However, some
Alu-mediated NAHRs founder mutations have been identified in certain populations. For
example, out of more than 60 reported BRCA1 rearrangements, the majority of which were
caused by unequal recombination of Alu elements, six founder mutations have been identified
[113,116]. One Alu-mediated NAHR event – identified in the Dutch population – accounts for
about a quarter of all variations identified in the BRCA1 gene in this demographic population
[113]. Due to this founder mutation, the Dutch population has to date the largest fraction of
mutations caused by structural variation in the BRCA1 gene. Analysis of the breakage point
at the DNA sequence level can discriminate between identical and independent
rearrangements. Inherited genomic rearrangements share identical DNA breakage points. The
occurrence of two separate identical NAHRs is extraordinarily unlikely. In addition, SNP and/
or microsatellite information in the vicinity of the rearrangement can be used as further support
for a shared or separate event.

Rearrangements in the MLL gene are in several ways intriguing. SVs involving this gene are
commonly identified in acute myeloid leukemia (AML) [103,104,117]. Beside the recurrence
of translocations in certain AML cancers, partial Alu-mediated NAHR duplications commonly
occur within the coding sequence of this gene [103,117]. The most common in-frame
duplication events create in-frame fusions of exons 11 or 12 upstream of exon 5 [103,117]. At
the same time, partial deletions involving this region of the genome have not been identified
[104]. Thus, it seems likely that another recombination mechanism is involved in the genesis
of these partial duplications. Synthesis –dependent strand annealing (see [10]), a repair
mechanism of DSBs in mammalian cells, could generate a partial duplication in the MLL1
gene. This mechanism was suggested for the creation of somatic tandem duplications in MYB,
a transcription factor that can be associated with T-cell acute lymphoblastic leukemia (T-ALL)
[118]. In addition, the MLL gene represents one of a few genes in which several independent
somatic Alu-mediated NAHRs have been detected. While partial duplications show a high
prevalence in patients with AML [103,117], these events have also been identified in
hematopoietic cells of healthy blood donors [119]. More recently, it has been shown that
suppression of the wild-type allele with expression of the MLL partial duplication allele
contributes to the leukemic phenotype [120].
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6. L1 induces double strand breaks
Another mechanism by which L1s potentially contribute to genome instability in their human
host, is the observation that the L1 endonuclease creates far more DSBs than required for
retrotransposition in mammalian cells [43]. To what extent these tissue culture observations
will translate to human genomic instability remains elusive, as L1 expression under these
experimental conditions was also far greater than under normal physiological conditions. It
may not be possible to confirm or refute this mechanism in vivo because DSBs caused by L1
are indistinguishable from DSBs caused by other mechanisms [10,43]. Regardless, DSBs
compromise DNA integrity, are highly recombinogenic, and exacerbate genomic instability.

7. Methylation status and retrotransposition
In various tumors studied, global demethylation with site-specific hypermethylation has been
associated with cancer development and progression (reviewed in [121]). Hypomethylation
varies considerably between different cancers, and in some tumor cells hypomethylation is
associated with cancer development, while in others with progression [121]. The current model
correlates global demethylation with an elevated mutation rate and chromosomal instability
[122–124]. TEs including the promoters of L1 elements are often demethylated in cancer cells
([125,126], reviewed in [121]). The methylation of retrotransposons is believed to be a host
defense mechanism in somatic cells against ongoing retrotransposition [127]. Indeed, for
several cancer cell lines an increased L1 transcription rate has been detected in hypomethylated
cancer cells [125,128]. One possible exception may be hepatocellular carcinoma cells, as these
cells did not show evidence of this correlation [129].

Several points of evidence further support a correlation between hypomethylation and TE
activation and increased recombination rates. The lack of regular de novo methylation of LTR
and non-LTR retrotransposons through Dnmt3L (DNA methltransferase 3-like) in non-
dividing precursors of spermatogonial mouse stem cells resulted in high transcription levels
of these TEs and meiotic failure in spermatocytes [130]. Hypomethylated thymic lymphomas
in transgenic mice carrying a hypomorphic DNA methyltransferase Dnmt1 allele showed
evidence of chromosomal instability [123]. Moreover, somatic retrotransposition of an
Intracisternal A Particle, an endogenous retrovirus, into the Notch1 gene was detected in
several lymphomas in mice, indicating an activation of endogenous retroviruses through
hypomethylation [131]. Finally, a somatic de novo L1 insertion into the APC gene has been
identified in a human colon tumor [132].

The demethylation of TE promoters (e.g. L1 and ERVs) has possible implications beyond the
activation of TE retrotransposition. Through activation of potent TE promoters, transcription
factor levels might be globally modified and/or the expression of genes might be altered in the
vicinity of demethylated promoters [121]. Moreover, demethylation might result in the
activation of the L1 antisense promoter that is also located within the 5′ UTR of a full-length
element and which in turn can create chimeric transcripts [133]. Cancer-specific chimeric
transcripts derived from L1 antisense promoters have been recently detected [134].
Intriguingly, these transcripts were derived from fixed, older L1s that are likely no longer
capable of retrotransposition [134].

9. Conclusions
We have discussed the known manifold roles of TEs with respect to genome instability. Among
other things, we have shown that TEs are major contributors to genomic rearrangements. We
are just beginning to understand the full impact of TEs upon the genome architecture. It is now
recognized that TEs play a role in cancer predisposition, development, and progression. The
comprehensive use of recently available technologies such as second-generation sequencing
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and advanced computational algorithms will allow us to understand the role of TEs in the
human genome more deeply. Moreover, it seems highly likely we will soon enter an era of
personal genomics. Future projects will greatly increase our understanding of human inter-
variability, hotspots of alteration in the human genome, and disease associations. Soon, medical
diagnostics and treatment decisions will greatly rely on the analysis of the individual’s genome.
We are already witnessing the emergence of personalized cancer treatments. In addition,
detailed analyses of single cells and/or different tissues are about to become possible for the
first time. Using these advancements, we will likely discover a great deal of variation within
individual humans. Cancer in particular seems a prime candidate for detailed structural
variation studies, as genomic instability and dynamics in genome structure are typical
characteristics of cancer cells. A fascinating era employing use of these rapidly evolving
technologies lies ahead of us, along with the opportunity to deepen our understanding of TE
biology and genome evolution.
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Fig. 1. Structure of non-LTR retrotransposons
Shown is structure of actively mobilizing retrotransposons in the human genome: an Alu
element (blue), a full-length L1 (purple), and a full-length SVA (dark green). The non-LTR
retrotransposons are not drawn to scale. All full-length non-LTR retrotransposons end in a
homopolymeric tract of Adenosines (polyA-tail, yellow). SVA and L1 contain a
polyadenylation signal (pA) immediately before the polyA-tail. Insertions are flanked by target
site duplications (TSDs, green). Alu (blue): The A and B stand for the A and B boxes of the
internal promoter. The left and right monomers are linked by a spacer sequence A5TACA5.
L1 (purple): Pro stands for the internal Polymerase II promoter within the 5′ untranslated region
(UTR). A full-length L1 element contains two open reading frames (ORF1, ORF2). SVA (dark
green): A full-length composite element contains from 5′ to 3′ a hexamer (CCCTCT), an Alu-
homologous region of two antisense Alu fragments including other sequence of unknown
origin, a variable number of tandem repeat (VNTR) region, and ends in a SINE region from
parts of HERV-K10, an human endogenous retrovirus.
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Fig. 2. Illustration of non-LTR retrotransposon insertion mechanisms
TSDs are shown in green; AAAAA stands for polyA-tail; A) Illustrates a typical non-LTR
retrotransposon insertion. These insertions are thought to occur via TPRT. The insertion is 3′
intact (contains a polyA-tail) and is flanked by TSDs. No host sequence is deleted. B) Shown
are the typical hallmarks of an insertion-mediated deletion. The non-LTR retrotransposon is
3′ intact, indicated by the polyA-tail. TSDs are absent; upstream (left) of the element, host
DNA is deleted. C) Illustrated is an endonuclease-independent insertion with deletion of host
DNA 3′ and 5′ of the insertion. However, deletions can be limited to 3′ or 5′ host DNA sequence.
The non-LTR retrotransposon usually does not contain a polyA-tail and is not flanked by TSDs.
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Fig. 3. Typical TE-mediated NAHR models
The colored arrows represent non-LTR retrotransposons of a given family; e.g. Alu elements.
The tip of the arrow indicates the 3′ end of the TE. TE-mediated NAHRs create a chimeric TE
element (indicated by two different colors within element). The breakage point can be
anywhere within the TE. While TE-mediated NAHRs are here shown for two adjacent
elements, these events can occur between far removed TE elements in the geography of the
chromosome. For A) to C) TEs are in the same orientation; for D) TEs involved in NAHR are
inverted. Del stands for deletion, dup for duplication, and inv for inversion. A) Interchromosal
TE-mediated NAHR results in reciprocal deletion and duplication. (If two non-homologous
chromosomes are involved a translocation can occur.). B) Intrachromosomal TE-mediated
NAHR between two sister chromatids creates reciprocal deletion and duplication. C)
Intrachromosomal, intrachromatid TE-mediated NAHR produces only a deletion. D) NAHR
between two inverted TEs results in inversion of DNA between involved TEs.
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