System (1.2) with 50-50 treatment, i.e., when
, fab = 0, we choose the same parameters Λ = 10, d = 1, b = 1, q = 0.1, s = 0.3, c = 1.5, h = 0.2, the same initial values x(0) = 0.45, yw (0) = 0.35, ya (0) = 1.4, yb(0) = 0.9, yab(0) = 2.6, and let rw, ra, rb, rab and h vary such that R0 > 1. (i) When rab < min{rw + h, ra + h/2, rb + h/2}, the semitrivial equilibrium Eab is stable;(ii) when ra + h/2 < min{rw + h, rb + h/2, rab }, the semitrivial equilibrium Ea,ab is stable; (iii) when rb + h/2 < min{rw + h, ra + h/2, rab}, the semitrivial equilibrium Eb,ab is stable; (iv) when rw + h < min{ra + h/2, rb + h/2, rab}, the positive equilibrium Ẽ is stable.