
Qualitative Analysis of Models with Different Treatment
Protocols to Prevent Antitbiotic Resistance

Hong-Rui Suna,*, Xinxin Lub,†, and Shigui Ruanc,‡
a School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China
b Department of Clinical Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing
100041, China
c Department of Mathematics, University of Miami, P. O. Box 249085, Coral Gables, FL
33124-4250, USA

Abstract
This paper is concerned with the qualitative analysis of two models (Bonhoeffer et al., Proc. Natl.
Acad. Sci. USA 94 (1997), 12106–12111) for different treatment protocols to prevent antibiotic
resistance. Detailed qualitative analysis about the local or global stability of the equilibria of both
models is carried out in term of the basic reproduction number R0. For the model with a single
antibiotic therapy, we show that if R0 < 1, then the disease-free equilibrium is globally
asymptotically stable; if R0 > 1, then the disease endemic equilibrium is globally asymptotically
stable. For the model with multiple antibiotic therapies, stabilities of various equilibria are
analyzed and combining treatment is shown better than cycling treatment. Numerical simulations
are performed to show that the dynamical properties depend intimately upon the parameters.
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1 Introduction
Infections caused by antibiotic-resistant bacteria, such as methicillin-resistant
Staphylococcus aureus (MRSA) and Vancomycin-resistant enterococci (VRE), are
increasing rapidly throughout the world and pose a serious threat to public health (Levy and
Marshall, 2004; Grundmann et al., 2006; Spellberg et al., 2008). The transmission dynamics
of antibiotic-resistant bacteria in hospitals are complex which involve the patients, health
care workers, and their interactions. Antibiotic exposure is crucial to the emergence and
spread of these resistant bacteria (D’Agata et al., 2007). Compared to infections caused by
antimicrobial-susceptible bacteria, infections with antimicrobial-resistant bacteria cause
higher mortality rates, longer hospital stays and greater hospital costs (Daxboeck et al.,
2006). It was estimated that in 2005 the deaths in patients with invasive methicillin-resistant
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S. aureus in the United Sates exceeded the total number of deaths due to HIV/AIDS in the
same year (Klevens et al., 2007).

Recently, mathematical models have been extensively used to simulate the spread of the
antibiotic-resistant bacteria, to identify various factors responsible for the prevalence of the
antibiotic-resistant bacteria, to examine different antibiotic treatments, and to help design
effective control programs (Austin and Anderson, 1999; Bonhoeffer et al., 1997; Bonten et
al., 2001; Bergstrom et al., 2004; Webb et al., 2005; Boldin et al., 2007; D’Agata et al.,
2007). We refer to the survey papers of Grundmann and Hellriegel (2006) and Temime et al.
(2008) for more details and references on this topic.

To generate predictions concerning the effects of various patterns of antibiotic treatment at
the population level, Bonhoeffer et al. (1997) proposed two mathematical models. In the
first model, patients with bacterial infections may be treated with a single antibiotic. The
model consists of three ordinary differential equations:

(1.1)

where x(t), yw(t), and yr(t) denote the density of uninfected patients, infected by
sensitive(wild type) bacteria to the treating antibiotic, and infected by resistant bacteria to
the treating antibiotic at time t, respectively. We refer to Fig. 1A in Bonhoeffer et al. (1997)
for a chart diagram for the three compartment model. Λ is the recruitment rate of the
population, d is the per capita removal rate from the population, b is the transmission rate
parameter, c is the death rate of the infected host, which includes natural and disease-
associated mortality. rw and rr are the rates of patients infected with wild type and resistant
bacteria recover from the infection in the absence of treatment. Patients infected with wild
type bacteria are removed from the wild type infected compartment at a rate fh, where f is a
scaling parameter (between 0 and 1) reflecting the fraction of patients treated and h is the
maximum rate when all patients are treated. A fraction s of treated wt-infected develops
resistance during treatment. Bonhoeffer et al. (1997) considered treatment with a single
antibiotic and resistance to that antibiotic and analyzed the model to predict the
consequences of different usage patterns.

In the second model, two antibiotics A and B are used. The model takes the following form:

(1.2)

where the variables are x(t) for the susceptible, yw(t), ya(t), yb(t) and yab(t) for patients
infected with wild type(wt), A-resistant(A-res), B-resistant(B-res), and AB-resistant(AB-res)
bacteria, respectively (see Fig. 1B in Bonhoeffer et al. (1997) for a chart diagram for the
model). Λ is the recruitment rate of the population, d is the per capita removal rate from the
population, b is the transmission rate parameter, c is the death rate of the infected host,
which includes natural and disease-associated mortality. rw, ra, rb and rab are the recovery
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rates of wt, A-res, B-res and AB-res infected, respectively; fa, fb and fab reflect the fraction
of patients treated with antibiotic A, B, or AB, they fulfill the relation 0 ≤ fa, fb, fab ≤ 1, and
fa + fb + fab ≤ 1. h is the maximum rate when all patients are treated. A fraction s or q of
treated wt-infected develop resistance with single antibiotic treatment or two antibiotics
treatment. Bonhoeffer et al. (1997) analyzed the population-level consequences of different
usage patterns of the two antibiotics and made various conclusions based on numerical
analysis of their models. In this paper we provide detailed qualitative analysis of the two
mathematical models (1.1) and (1.2), including the existence and stability of all possible
equilibria, and numerical simulations to support these conclusions.

We would like to make some remarks about the comparisons of models (1.1) and (1.2) with
the competition models of resources (see, for example, Amarasekar [1] and Smith and Li
[22]) and the multi-strain models in epidemiology (see Bremermann and Thieme [9] and
Webb et al. [25]). Firstly models (1.1) and (1.2) are not competition models since the two
strains of bacteria, sensitive and resistant, are not competitors. Secondly, patients infected
with the sensitive strain can be infected with the resistant strain due to the treatment of
antibiotics or the interaction from the contaminated health-care workers, and patients
infected with the resistant strain can be cleaned due to treatment. So models (1.1) and (1.2)
are different from the multi-strain models in epidemiology (see Bremermann and Thieme
[9]) and the two-resistant strains model studied by Webb et al. [25]. Moreover, our results
are not about which strain will win, it is about how the resistant strains establish in the
patients and how to control that.

The paper is organized as follows. In section 2, we consider the compartment model (1.1)
with a single antibiotic therapy and evaluate a threshold, the basic reproduction number R0
(Brauer and Castillo-Chavez, 2000), for two cases: (i) in the absence of treatment fh = 0 and
(ii) with treatment fh > 0. The disease-free equilibrium always exists and is globally stable if
R0 < 1 and the disease-endemic equilibrium exists and is globally stable if R0 > 1. Section 3
is devoted to discussing the existence and stability of equilibria of the model (1.2) with
multiple antibiotic therapies. In order to understand how antibiotic usage patterns may be
optimized to preserve or restore antibiotic effectiveness, we consider four different modes of
antibiotic therapy, namely, (i) in the absence of treatment fa = fb = fab = 0; (ii) cycling
treatment fa = 1, fb = fab = 0 or fb = 1, fa = fab = 0; (iii) 50-50 treatment , fab = 0; and
(iv) combination treatment fa = fb = 0, fab = 1. We present stability results for all different
cases. In section 4, we present some numerical simulations to illustrate the obtained results
and present a brief discussion.

2 The Model with a Single Antibiotic Therapy
In this section, we discuss the existence and stability of equilibria of the compartment model
(1.1). In this model, we assume that the fitness cost associated with resistance is manifest by
a higher rate of clearance of the infection (recovery) of hosts infected with resistant bacteria
relative to those infected with sensitive (rr > rw) and the death rate of infected patients is
higher than that of susceptible one, that is c > d (Bonhoeffer et al., 1997).

Because of the biological meaning of the components (x(t), yw (t), yr(t)), we focus on the
model in the first octant of R3. We first consider the existence of equilibria of system (1.1).
By some calculation, we find that system (1.1) has at most three equilibria:
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and

under certain conditions (to be specified later).

We define the basic reproduction number as follows

First we determine the stability of the disease-free equilibrium E0. The Jacobian matrix of
system (1.1) at E0 is given by

We can see that E0 is locally stable if R0 < 1.

In the following, we shall study the existence and stability property of other equilibria of
model (1.1). We consider two cases.

2.1 In the absence of treatment
fh = 0

We first consider the case of absence of therapy, that is fh = 0. To deduce the threshold for
the antibiotic resistance in the patient, we analyze the existence of equilibria and their
stability for model (1.1). Now the basic reproduction number is . By examining the
linearized form of system (1.1) at the equilibrium, we obtain the following result.

Theorem 2.1—Assume fh = 0, then .

i. If R0 < 1, then system (1.1) has a disease-free equilibrium E0 = (Λ/d, 0, 0), which is
locally asymptotically stable.

ii. If R0 > 1, then system (1.1) has two or three equilibria, the disease-free equilibrium
E0 = (Λ/d, 0, 0), which is a saddle point and unstable, the nontrivial equilibrium

which is locally asymptotically stable, and another nontrivial equilibrium

Sun et al. Page 4

Math Biosci. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



which is unstable if it exists.

2.2 With treatment
fh > 0

We first consider the case rr < rw + fh. In this case

and system (1.1) has at most two equilibria, the disease-free equilibrium E0 and the

semitrivial equilibrium  if R0 > 1.

The Jacobian matrix of system (1.1) at Er is

It follows that Er is locally asymptotically stable under the assumption of R0 > 1.

From the above discussion, we have the following result.

Theorem 2.2—Suppose rr < rw + fh, then . If R0 < 1, then system (1.1) has a
disease-free equilibrium E0 = (Λ/d, 0, 0), which is locally asymptotically stable. If R0 > 1,

then E0 is unstable, and the semitrivial equilibrium  exists and is
locally asymptotically stable.

Next we discuss the case rr > rw + fh. In this case

and system (1.1) may have three equilibria, the disease-free equilibrium E0, the semitrivial
equilibrium with the resistant strain Er and a positive equilibrium Ẽ = (x,̃ ỹw, ỹr). For
convenience, we denote
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From the expressions of ỹw and ỹr, we know that Ẽ exists if and only if R0 > 1. The Jacobian
matrix of system (1.1) at Ẽ is

Therefore, the corresponding characteristic equation is

(2.1)

where

Furthermore, by the relation

we have

Thus, in view of the new expression of a2, it is easy to see that a1, a2, a3 > 0 and a1a2−a3 >
0. By Routh-Hurwitz criteria (see Korn and Korn, 2000, Section 1.6-6(b)), all roots of
equation (2.1) have negative real parts. Therefore, when R0 > 1, the positive equilibrium Ẽ is
locally stable. Thus, we have the following conclusion.

Theorem 2.3—Assume rr > rw + fh, then . If R0 < 1, then system (1.1) has a
disease-free equilibrium E0 = (Λ/d, 0, 0), which is locally asymptotically stable. If R0 > 1,
then E0 is unstable and the disease endemic equilibrium

is locally asymptotically stable. Furthermor, if , then the semitrivial equilibrium
with the resistant strain
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exists and is unstable.

To explore the global stability of the positive equilibrium, we define the new variables

and parameters

Using these changes of variables and parameters, system (1.1) becomes

(2.2)

with Ñ(t) = X(t) + Yw(t) + Yr(t). The equation for the total population Ñ is

(2.3)

Clearly, Ñ∈ (0, 1] since at the disease-free equilibrium Ñ = X = 1 and the natural expectation
is that the spread of the disease in the population will reduce Ñ (that is Ñ < 1). Therefore, we
study the stability of the model (2.2) in the region

Consider the subset D* of D given by

From (2.3), it is obvious that  in D*. If X + c̃Yw + c̃Yr > 1, then  and if X + c̃Yw +

c̃Yr < 1, then . It follows that D* is a positively invariant set in D. Thus the ω-limit set
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of each solution of model (2.2) is contained in D*. Moreover, it is easy to see that Ẽ0 attracts
the region D0 = {(X, Yw, Yr) ∈ D : Yw = Yr = 0}.

In the next result, we will show that there cannot be any closed orbit around the equilibrium.

Lemma 2.4—The model (2.2) has no periodic orbits, homoclinic orbits or polygons in D*.

Proof—Let f1, f2, f3 denote the three functions on the right hand sides in system (2.2),
respectively. Denote f = (f1, f2, f3)T (T denotes transpose), , (where r
= (X, Yw, Yr)T), then

By straightforward calculation, we have in the interior of domain D that

Using the normal vector n= (1, c,̃ c)̃ on D*, it can be shown that

In view of the assumption of c ̃> 1, we have that curlg · (1, c,̃ c)̃ is negative on D\∂D. From
Corollary 4.2 in Busenberg and van den Driessche (1990), there are no solutions of the
stated type in D\∂D. The desired result is obtained.

From Theorems 2.1, 2.2, 2.3 and Lemma 2.4, the following theorem can be obtained.

Theorem 2.5—For system (1.1), the following results hold.

i. Assume fh < rr − rw, then system (1.1) has at most three equilibria E0, Er, Ẽ with
. If, R0 > 1 then the DFE E0 is globally asymptotically stable, if R0 < 1,

E0 is unstable, the positive equilibrium Ẽ is globally asymptotically stable, the
semitrivial equilibrium Er is unstable if it exists.

ii. Assume fh > rr − rw, then system (1.1) has at most two equilibria E0, Er with
. If R0< 1, then the DFE E0 is globally stable, if R0> 1, E0 is unstable, the

semitrivial equilibrium Er is globally asymptotically stable.

The above results can be summarized in the following chart (see Table 1. BRN=Basic
Reproduction Number).

3 The Model with Multiple Antibiotic Therapies
In this section we consider model (1.2), where we assume that the fitness cost associated
with resistance is manifest by a higher rate of clearance of the infection (recovery) of hosts
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infected with resistant bacteria relative to those infected with sensitive bacteria (rr > rw) and
the death rate of infected patients is higher than that of susceptible one, that is c > d
(Bonhoeffer et al., 1997).

Because of the components of (x(t), yw (t), ya(t), yb(t), yab(t)) have to be nonnegative, we
focus on the model in the first octant of R5. We first consider the existence of equilibria of
system (1.2). For any values of parameters, model (1.2) always has a disease-free
equilibrium E0 = (Λ/d, 0, 0, 0, 0).

We first determine the stability of the disease-free equilibrium E0. The Jacobian matrix of
system (1.2) at E0 is

where

The eigenvalues of J0 are −d, j22, j33, j44, j55. So from the expressions of jii(i = 2, 3, 4, 5),
we can see that the steady state E0 is locally asymptotically stable if

and unstable if

By using the next generation operator approach as described by Diekmann, Heesterbeek,
and Metz (1999), we obtain the basic reproduction number as follows

Observe that
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We have the following result.

Theorem 3.1—For model (1.2), the disease-free equilibrium E0 is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

In order to analyze the stability of other equilibria of model (1.2), we consider four cases.

3.1 In the absence of treatment
fa = fb = fab = 0.

Theorem 3.2—When fa = fb = fab = 0, for system (1.2), there are at most five possible
steady state

The existence and stability of equilibria are described in Table 2.

Proof—When fa = fb = fab = 0, the Jacobian matrix of system (1.2) at the nontrivial
equilibrium Ew is

We can see that the eigenvalues of JEw are rw − ra, rw − rb, rw − rab, and the roots of the
polynomial equation
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Thus, under the condition rw < min{ra, rb, rab}, if R0 < 1, namely , the equilibria Ew,
Ea, Eb, Eab do not exist and the trivial equilibrium E0 is locally stable. If R0 > 1, all
eigenvalues of JEw have negative real parts, so Ew is locally stable. Equilibria Ea, Eb, Eab are
unstable, since their corresponding Jacobian matrices have positive eigenvalues ra − rw, rb −
rw, rab − rw, respectively.

For the other cases, the discussion is similar, we omit it here.

3.2 Cycling treatment
fa = 1, fb = fab = 0 or fb = 1, fa = fab = 0

When fa = 1, fb = fab = 0, system (1.2) becomes

(3.1)

It has at most five possible steady state

The basic reproduction number is defined by

Theorem 3.3—When fa = 1, fb = fab = 0, the existence and stability of equilibria are
described in Table 3.

Proof
i. When fa = 1, fb = fab = 0, the Jacobian matrix of system (1.2) at the semitrivial

equilibrium Ea is
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It follows that ra − rw − h, ra − rb − h, ra − rab are the eigenvalues of JEa, the other
two eigenvalues of JEa are the roots of the quadratic polynomial equation

In view of the assumption and above discussion, the existence and stability the
equilibrium Ea can be obtained. For the other equilibria, the discussion is similar,
we omit it here.

ii. The existence and stability of Eab is similar to that of Ea, we omit it.

iii. By the expression of Ew,a, we find that when rw + h < ra and Λ < d(c + rw + b)/b,
the semitrivial equilibrium Ew,a exists. For the convenience of discussion, we
denote

Then the Jacobian matrix of system (3.2) at the equilibrium Ew,a = ((c+rw +f h)/b,
ŷw, ŷa, 0, 0) has the form

It is easy to see that rw − rb and rw + h − rab are the eigenvalues of JEw,a. After
some algebra, we can find that the other three eigenvalues of JEw,a are the roots of

with

From the expressions of a1, a2, a3, it is easy to see that under the assumption rw + h
< min{ra, rb + h, rab}, we have a1, a2, a3 > 0 and a1a2 − a3 > 0. Therefore, by
Routh-Hurwitz criteria (Korn and Korn, 2000), the local stability of Ew,a is
obtained. Equilibria Ea, Eab and Eb,ab are unstable since their corresponding
Jacobian matrices have positive eigenvalues ra − rw − h, rab − rw − h, rb − rw
respectively.

iv. The existence and stability discussion of Eb,ab is similar to that of Ew,a, we omit it
here.
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The case that fb = 1, fa = fab = 0 can be analyzed similarly and analogue results can be
obtained.

3.3 50-50 treatment , fab = 0
When , fab = 0, system (1.2) becomes

(3.2)

It has at most five possible steady state

where

The basic reproduction number is defined by

Theorem 3.4—When fa = fb = 1/2, fab = 0, the existence and stability of equilibria can be
summarized in Table 4.

Proof—We find the steady states of system (3.2) by equating the derivatives on the left-
hand sides to zero and solving the resulting algebraic equations. The discussion
(acquirement) of the trivial or semitrivial equilibria are easy, we omit it here. Now we
consider the existence of the positive equilibrium.

From the corresponding second equilibrium equation of (3.2), we obtain the solution
. Substituting  into the corresponding third, fourth, fifth equilibrium

equations of (3.2), we obtain
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(3.3)

(3.4)

(3.5)

Combining equations (3.3), (3.4), (3.5) with the first one of (3.2), after some calculation we
obtain that

Thus, when rw + h < min{ra + h/2, rb + h/2, rab} and , system (3.2) has a
unique componentwise positive equilibrium Ẽ.

Linearizing system (3.2) about the positive equilibrium (x,̃ ỹw, ỹa, ỹb, ỹab) yields the
Jacobian matrix

Substituting x ̃= (c + rw + h)/b into JẼ and expanding the determinant of the obtained matrix
λI−JẼ by the second row, after some calculation, it can be seen that the eigenvalues are

, and the roots of

where
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It is noted that in the expression of a3, we have used the relation

From the expressions of a1, a2, a3, it is clear that under the assumption rw + h < min{ra + h/
2, rb + h/2, rab}, we have a1, a2, a3 > 0 and a1a2 − a3 > 0. Therefore, by Routh-Hurwitz
criteria (Korn and Korn, 2000), the stability of the positive equilibrium Ẽ is established.

3.4 Combination treatment
fa = fb = 0, fab = 1.

When fa = fb = 0, fab = 1, system (1.2) becomes

(3.6)

The basic reproduction number is defined as

It has at most five possible steady state

Similar to the discussion of the case fa = 1, fb = fab = 0, we have the following conclusion.

Theorem 3.5—When fa = fb = 0, fab = 1, the existence and stability of equilibria of system
(3.6) are described in Table 5.

4 Numerical Simulations
In this section, we perform some numerical simulations on the two models to illustrate the
results obtained in sections 2 and 3. For the purpose of simulations, we fix most of the
parameters in the models and let the other parameters vary.

For the model with single antibiotic therapy, we fix the values of Λ, d, b, s, c as Λ = 10, d =
1, b = 2, s = 0.3, c = 1.5 and initial values x(0) = 1.4, yw (0) = 1.0, ya(0) = 0.4, let the
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parameters rw, rr, f, h vary such that R0 > 1. When rr > rw and f h = 0, the semitrivial
equilibrium with the wild type strain Ew is stable (Figure 4.1(i)). When rr < rw + f h and f h
> 0, the semitrivial equilibrium with the resistant strain Er is stable (Figure 4.1(ii)). When rr
> rw + f h and f h > 0, the endemic equilibrium with both the wild type strain and resistant
strain Ẽ is stable (Figure 4.1(iii)).

For the model with multiple antibiotic therapies, we first consider the case in the absence of
treatment, that is, fa = fb = fab = 0. We choose parameters Λ = 10, d = 2, b = 1, q = 0.1, s =
0.3, c = 1.5, h = 0.2 and initial values x(0) = 0.65, yw (0) = 0.35, ya(0) = 2.4, yb(0) = 1.5,
yab(0) = 0.2, and let rw, ra, rb, rab and h vary such that R0 > 1. When rw < min{ra, rb, rab},
the semitrivial equilibrium with the wild type strain Ew is stable (Figure 4.2(i)). When ra <
min{rw, rb, rab}, the semitrivial equilibrium with the resistant strain A Ea is stable (Figure
4.2(ii)). When rb < min{rw, ra, rab}, the semitrivial equilibrium with the resistant strain B Eb
is stable (Figure 4.2(iii)). When rab < min{rw, ra, rb}, the semitrivial equilibrium with the
resistant strains A and B Eab is stable (Figure 4.2(iv)).

Next we consider the case with cycling treatment, that is, fa = 1, fb = fab = 0. Choose
parameters Λ = 10, d = 2, b = 1, q = 0.1, s = 0.3, c = 1.5, h = 0.2 initial values x(0) = 0.65, yw
(0) = 0.35, ya(0) = 2.4, yb(0) = 0.5, yab(0) = 0.2, and let rw, ra, rb, rab and h vary such that R0
> 1. When ra < min{rw + h, rb + h, rab}, the semitrivial equilibrium with resistant strain A
Ea is stable (Figure 4.3(i)). When rab < min{rw + h, ra, rb + h}, the semitrivial equilibrium
with the resistant strains A and B Eab is stable (Figure 4.3(ii)). when rw + h < min{ra, rb + h,
rab}, the semitrivial equilibrium with wild type strain and resistant strain A Ew,a is stable
(Figure 4.3(iii)). (iv) when rb + h < min{rw + h, ra, rab}, the semitrivial equilibrium with
resistant strain B and both strains Eb,ab is stable (Figure 4.3(iv)).

Now we consider the case with 50-50 treatment, that is, , fab = 0, Choose the
parameters Λ = 10, d = 1, b = 1, q = 0.1, s = 0.3, c = 1.5, h = 0.2, initial values x(0) = 0.45,
yw (0) = 0.35, ya(0) = 1.4, yb(0) = 0.9, yab(0) = 2.6, and let rw, ra, rb, rab and h vary such that
R0 > 1. When rab < min{rw + h, ra + h/2, rb + h/2}, the semitrivial equilibrium with both
resistant strains A and B Eab is stable (Figure 4.4(i)). When ra +h/2 < min{rw +h, rb +h/2,
rab}, the semitrivial equilibrium with resistant strain A and both resistant strains A and B
Ea,ab is stable (Figure 4.4(ii)). When rb + h/2 < min{rw + h, ra + h/2, rab }, the semitrivial
equilibrium with resistant strain B and both resistant strains A and B Eb,ab is stable (Figure
4.4(iii)). When rw +h < min{ra +h/2, rb +h/2, rab}, the positive equilibrium with all strains Ẽ
is stable (Figure 4.4(iv)).

Finally we consider the case with combining treatment, that is, fa = fb = 0, fab = 1. Choose
parameters Λ = 10, d = 1, b = 1, q = 0.1, s = 0.3, c = 1.5, h = 0.2, initial values x(0) = 0.45,
yw (0) = 1.5, ya(0) = 1.0, yb(0) = 0.5, yab(0) = 1.6, and let rw, ra, rb, rab and h vary such that
R0 > 1. When rab < min{rw + h, ra + h, rb + h}, the semitrivial equilibrium with both
resistant strains A and B Eab is stable (Figure 4.5(i)). When ra + h < min{rw + h, rb + h,
rab}, the semitrivial equilibrium with resistant strain A and both resistant strains A and B
Ea,ab is stable (Figure 4.5(ii)). When rb + h < min{rw + h, ra + h, rab}, the semitrivial
equilibrium with resistant strain B and both resistant strains A and B Eb,ab is stable (Figure
4.5(iii)). When rw + h < min{ra + h, rb + h, rab}, the semitrivial equilibrium with the wild
type strain and both resistant strains A and B Ew,ab is stable (Figure 4.5(iv)).

5 Discussion
We provided qualitative analysis of models for different treatment protocols to prevent
antibiotic resistance. For the model with a single antibiotic therapy, we carried out a global
qualitative analysis and studied the existence and stability of the disease-free and endemic
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equilibria. In terms of the basic reproduction number , our results indicate
that when R0 < 1, then the disease-free equilibrium is globally asymptotically stable. If R0 >
1, when the rate of patients infected with wild type bacteria recover from the wild type
infected compartment (f h) is less than the difference of the rates of patients infected with
resistant bacteria (rr) and wild type (rw) recover from the infection in the absence of
treatment, the endemic equilibrium with both strains is globally stable; when f h > rr − rw,
the semitrivial equilibrium with the resistant strain is globally stable. Which shows that
preventing the initiation or enhancing the discontinuation of unnecessary antibiotic therapy
will have a great impact to preserve antibiotic effectiveness (Bonhoeffer et al., 1997).

For the model with multiple antibiotic therapies, stability of various equilibria are analyzed.
The model allows quantification of the consequences of different therapy regimens and
hospital controls in terms of the complex dynamics of competing bacterial strains
(Bonhoeffer et al., 1997). The results show that, in the absence of treatment, when R0 < 1,
the disease free equilibrium is stable, when R0 > 1, the semitrivial equilibrium with the
strain which has the lowest recovery rate is stable. The results for the cases with 50-50
treatment, cycling treatment and combining treatment demonstrate the essential difficulties
in controlling the advance of resistant bacterial infections in hospitals. When more than one
antibiotic is employed, as shown by Bonhoeffer et al. (1997), Bergstrom et al. (2004),
Reluga (2005), D’Agata et al. (2008), cycling use of different antibiotics is not as good as
that with a combination of antibiotics.

An ultimate goal is to validate these models by applying it to a particular hospital to
compare the predicted endemic states with the prevalence data. We leave this for future
study.
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Figure 4.1.
Solution trajectories of the model with a single antibiotic therapy, the parameters Λ = 10, d
= 1, b = 2, s = 0.3, c = 1.5 and initial values x(0) = 1.4, yw (0) = 1, yr (0) = 0.4 are fixed and
the parameters rw, rr, f, h vary such that R0 > 1. (i) When rr > rw and f h = 0, the semitrivial
equilibrium Ew is stable; (ii) when rr < rw + f h and f h > 0, the semitrivial equilibrium Er is
stable; (iii) when rr > rw + f h and f h > 0, the endemic equilibrium Ẽ is stable.
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Figure 4.2.
System (1.2) with no treatment, i.e. fa = fb = fab = 0, we choose parameters Λ = 10, d = 2, b
= 1, q = 0.1, s = 0.3, c = 1.5, h = 0.2, initial values x(0) = 0.65, yw (0) = 0.35, ya(0) = 2.4,
yb(0) = 0.5, yab(0) = 0.2, and let rw, ra, rb, rab and h vary such that R0 > 1. (i) When rw <
min{ra, rb, rab}, the semitrivial equilibrium Ew is stable; (ii) when ra < min{rw, rb, rab}, the
semitrivial equilibrium Ea is stable; (iii) when rb < min{rw, ra, rab}, the semitrivial
equilibrium Eb is stable; (iv) when rab < min{rw, ra, rb}, the semitrivial equilibrium Eab is
stable.
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Figure 4.3.
System (1.2) with cycling treatment, i.e., when fa = 1, fb = fab = 0, we choose parameters Λ
= 10, d = 2, b = 1, q = 0.1, s = 0.3, c = 1.5, h = 0.2, initial values x(0) = 0.65, yw (0) = 0.35,
ya(0) = 2.4, yb(0) = 0.5, yab(0) = 0.2, and let rw, ra, rb, rab and h vary such that R0 > 1. (i)
When ra < min{rw + h, rb + h, rab}, the semitrivial equilibrium Ea is stable; (ii) when rab <
min{rw + h, ra, rb + h}, the semitrivial equilibrium Eab is stable; (iii) when rw + h < min{ra,
rb + h, rab}, the semitrivial equilibrium Ew,a is stable; (iv) when rb + h < min{rw + h, ra,
rab}, the semitrivial equilibrium Eb,ab is stable.
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Figure 4.4.
System (1.2) with 50-50 treatment, i.e., when , fab = 0, we choose the same
parameters Λ = 10, d = 1, b = 1, q = 0.1, s = 0.3, c = 1.5, h = 0.2, the same initial values x(0)
= 0.45, yw (0) = 0.35, ya (0) = 1.4, yb(0) = 0.9, yab(0) = 2.6, and let rw, ra, rb, rab and h vary
such that R0 > 1. (i) When rab < min{rw + h, ra + h/2, rb + h/2}, the semitrivial equilibrium
Eab is stable;(ii) when ra + h/2 < min{rw + h, rb + h/2, rab }, the semitrivial equilibrium
Ea,ab is stable; (iii) when rb + h/2 < min{rw + h, ra + h/2, rab}, the semitrivial equilibrium
Eb,ab is stable; (iv) when rw + h < min{ra + h/2, rb + h/2, rab}, the positive equilibrium Ẽ is
stable.
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Figure 4.5.
System (1.2) with combining treatment, i.e., when fa = fb = 0, fab = 1, we choose the same
parameters Λ = 10, d = 1, b = 1, q = 0.1, s = 0.3, c = 1.5, h = 0.2, the same initial values x(0)
= 0.45, yw (0) = 1.5, ya(0) = 1.0, yb(0) = 0.5, yab(0) = 1.6, and let rw, ra, rb, rab and h vary
such that R0 > 1. (i) When rab < min{rw + h, ra + h, rb + h}, the semitrivial equilibrium Eab
is stable; (ii) when ra + h < min{rw + h, rb + h, rab}, the semitrivial equilibrium Ea,ab is
stable; (iii) when rb + h < min{rw + h, ra + h, rab}, the semitrivial equilibrium Eb,ab is stable;
(iv) when rw + h < min{ra + h, rb + h, rab}, the semitrivial equilibrium Ew,ab is stable.
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