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Abstract

Genotype imputation is now an essential tool in the analysis of genomewide association scans.
The technique allows geneticists to accurately evaluate the evidence for association at genetic
markers that are not directly genotyped. Genotype imputation increases power of genomewide
association scans and is particularly useful for combining the association scan results across
studies that rely on different genotyping platforms. Here, we review the history and theoretical
underpinnings of the technique. To illustrate performance of the approach, we summarize results
from several actual gene mapping studies. Finally, we preview the role of genotype imputation in
an era when whole genome resequencing is becoming increasingly common.

Introduction

Identifying and characterizing the genetic variants that impact human traits, ranging from
disease susceptibility to variability in personality measures, is one of the central objectives
of human genetics. Ultimately, this aim will be achieved by examining the relationship
between interesting traits and the whole genome sequences of many individuals. Although
whole genome resequencing of thousands of individuals is not yet feasible, geneticists have
long recognized that good progress can be made by measuring only a relatively modest
number of genetic variants in each individual. This type of “incomplete” information is
useful because data about any set of genetic variants in a group of individuals provides
useful information about many other unobserved genetic variants in the same individuals.

The idea that data on a modest set of genetic variants measured in a number of related
individuals can provide useful information about other genetic variants in those individuals
forms the theoretical underpinning of genetic linkage studies and of haplotype mapping
approaches in founder populations (23,24,50). These studies typically use <10,000 genetic
markers to survey the entire human genome. These markers are used to identify stretches of
chromosome inherited from a common ancestor. The shared stretches will usually span
several megabases and include thousands of genetic variants. Both approaches have been
incredibly successful in the identification of genes responsible for single gene Mendelian
disorders (9). In contrast, both these approaches have had only limited success in the context
of gene mapping studies for complex traits, although success stories do exist (40,42,75,83).

More recently, technological advances have made genomewide association studies possible
(39,67,109). Rather than genotyping <10,000 variants, these studies typically genotype
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100,000 — 1,000,000 variants in each of the individuals being studied. Since >10 million
common genetic variants are likely to exist (104), even these detailed studies examine only a
fraction of all genetic variants. While in traditional genetic linkage and founder haplotype
mapping studies, geneticists expect to identify long stretches of shared chromosome
inherited from a relatively recent common ancestor, in genomewide association studies that
focus on apparently unrelated individuals, geneticists expect to identify only relatively short
stretches of shared chromosome. Remarkably, genotype imputation can use these short
stretches of shared haplotype to estimate the effects of many variants that are not directly
genotyped with great precision.

In this review, we will first attempt to provide the reader with an intuition for how genotype
imputation approaches work and for their theoretical underpinnings. We will start with the
relatively intuitive setting of imputing missing genotypes for a set of individuals using
information on their close relatives. We will then proceed to examine how genotype
imputation works when applied to more distantly related individuals. Next, we will survey
results of studies that have used genotype imputation to study complex disease
susceptibility. We will attempt to provide the reader with critical information to assess the
merits of genotype imputation based analyses and to provide guidance to analysts attempting
to implement these approaches. Finally, we will survey potential uses of imputation based
analyses in the context of whole genome resequencing studies that we believe will soon
become commonplace.

Genotype Imputation in Studies of Related Individuals

Family samples constitute the most intuitive setting for genotype imputation. Genotypes for
a relatively modest number of genetic markers can be used to identify long stretches of
haplotype shared between individuals of known relationship. These stretches of shared
haplotype (or regions of “identity-by-descent”) are typically used to evaluate the evidence
for linkage. Specifically, genetic linkage implies that family members who share a region of
chromosome “identical-by-descent” will be more similar to each other than family members
with the same degree of relatedness who do not share the region “identical-by-descent”. In
the context of genotype imputation, we characterize each of these stretches in detail by
genotyping additional markers in one or more individuals in the family. Genotypes for these
markers can then be propagated to other family members who are only typed at a minimal
set of markers.

The approach is illustrated in Figure 1. In the figure, all individuals have been genotyped for
a set of genetic markers are indicated in red; a subset of individuals in the top two
generations has been genotyped at additional markers indicated in black (Panel A).
Genotypes for the red markers, available in all individuals, can be used to infer the
segregation of haplotypes through the family (Panel B). Finally, most of the missing
genotypes for individuals in the bottom generation can be inferred by comparing the
haplotypes they inherited with copies of the same haplotypes that are “identical-by-descent”
and present in other individuals in the family (Panel C).

We note that the idea that family members share long stretches of haplotype that are
“identical-by-descent” underpins nearly all methods of linkage analysis. Furthermore, many
early approaches for association analysis in pedigree data implicitly impute missing
genotypes by considering the distribution of potential genotypes of each individual jointly
with that of other individuals in the same pedigree (35,45). The extension of this idea to the
imputation of missing genotypes (as outlined above) was first described by Burdick and
colleagues (12), who coined the term “in silico genotyping” to describe the idea that
computational analyses could be used to replace laboratory based procedures in the
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determination of individual genotypes. To illustrate the potential of the approach, they re-
analyzed the data of Cheung and colleagues (17). Cheung and colleagues sought to identify
genetic variants associated with regulation of gene expression by examining RNA transcript
levels and genotype data for individuals in the top two generations of the Centre d'Etude du
Polymorphism Humain (CEPH) pedigrees (21). The CEPH pedigrees are three generation
pedigrees with a structure similar to that of the cartoon pedigree in Figure 1. The top two
generations of several of these pedigrees were genotyped at more than 830,000 genetic
markers in the first phase of the International HapMap Project (103). Using genotypes for
approximately 6,500 genetic markers genotyped by the SNP consortium in all three
generations of the pedigrees (85), Burdick and colleagues proceeded to impute genotypes for
most of these markers in the third generation of these pedigrees (12). They showed that this
imputation based analysis was more powerful than the original analysis which examined
only directly genotyped markers for each individual.

Several formal statistical descriptions of genotype imputation procedures for association
analyses in families have now been published (15,108) and the procedures to support
genotype in imputation are implemented in packages such as MERLIN (2,3) and MENDEL
(52,53). In principle, these procedures can be implemented using the infrastructure of the
Lander-Green (48) or Elston-Stewart (29) algorithms, or one of the many other pedigree
analysis algorithms, including those that are based on Monte Carlo sampling (38,96). An
important observation from these more formal treatments of the problem is that even when
genotypes cannot be imputed with high confidence, partial information about the identity of
each of the true underlying genotypes can be productively incorporated in association
analysis (15,108). For example, when genotypes are measured directly, observed allele
counts are often used in regression analyses to estimate an additive effect for each marker
(1,8,34). These observed allele counts are discrete and indicate the number of copies of the
allele of interest (0, 1 or 2) carried by each individual. When genotypes are not measured
directly, these discrete counts can be replaced with an expected allele count for each marker
(a real number between 0 and 2) (15).

The approach has been successfully used to study several quantitative traits in a sample of
closely related individuals from four villages in Sardinia (77). Among study participants,
1,412 individuals were genotyped with the Affymetrix mapping array set (which assays
~500,000 SNPs) and a further 3,329 individuals were genotyped with Affymetrix 10K SNP
mapping arrays (which assay ~10,000 SNPs) (94). The sample was then used to study the
genetic architecture of a variety of quantitative traits, ranging from body mass index (94) to
fetal hemoglobin levels (106) to personality traits (101). Clearly family based genotype
imputation will be maximally useful in samples that include very large numbers of related
individuals. In these settings, genotypes for a relatively modest number of individuals can be
propagated to many other additional individuals, increasing power. Still, in our view,
imputing genotypes for known relatives of the individuals included in a genomewide
association scan will always increase power (15) and should be considered whenever
individuals to be genotyped in a scan are selected from a larger sample of related individuals
previously collected to facilitate linkage analyses or family-based association testing.

Imputation in Samples of Unrelated Individuals

Analyses of related individuals provide the intuition behind genotype imputation: whenever
a particular stretch of chromosome is examined in detail in at least one individual, we learn
about the genotypes of many other individuals who inherit that same stretch “identical-by-
descent”. When studying samples of apparently unrelated individuals, the exact same
approach can be utilized. The major difference is that, when studying apparently unrelated
individuals, shared haplotype stretches will be much shorter (because common ancestors are
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more distant) and thus may be harder to identify with confidence. The intuition that short
stretches of haplotype provide useful information about untyped genetic markers provides
the justification for the potential power gains suggested for many proposed haplotype
analysis strategies (22,60,91,115).

The mechanics of genotype imputation in unrelated individuals are illustrated in Figure 2.
Here, study samples genotyped for a relatively large number of genetic markers (perhaps,
100,000 - 1,000,000) are compared to a reference panel of haplotypes that includes detailed
information on a much larger number of markers (Panel A). To date, the HapMap
Consortium database has typically served as the reference panel (104), but we expect that in
the future larger sets of individuals characterized at larger numbers of markers will be
available. Stretches of shared haplotype are then identified (Panel B) and missing genotypes
for each study sample can be filled in by copying alleles observed in matching reference
haplotypes (Panel C). In analyses of samples of European ancestry, comparisons with
genotypes for the HapMap CEU panel typically yield shared haplotypes that range from
about 100 — 200kb in length. Thus, in a GWAS that examines 300,000 SNP markers, these
shared stretches will typically include 10 — 20 genotyped markers. When there is ambiguity
about which haplotype stretch should be “copied” to fill in missing genotypes for a
particular individual, imputation programs typically provide an answer that summarizes this
ambiguity (for example, in 60% of reconstructions genotype A/A was observed at a specific
site, whereas in the remaining 40% a different genotype A/C was observed).

In principle, any of the methods typically used to estimate missing haplotypes — whether
based on a simple heuristic (18) or on a E-M algorithm (30) or on more sophisticated
coalescent models (99) could be used to impute missing genotypes. In fact, most
haplotyping programs will automatically “impute” missing genotypes during the haplotype
estimation process. In practice, most researchers now use one of tools that have been
specifically enhanced to facilitate genotype imputation based analyses. These tools typically
provide convenient summaries of the uncertainty surrounding each genotype estimate or,
perhaps, convenient built-in association testing. Genotype imputation tools typically fall into
two categories: (i) computationally intensive tools such as IMPUTE (64), MACH (59) and
fastPHASE/BIMBAM (92,95) that take into account all observed genotypes when imputing
each missing genotype and (ii) computationally more efficient tools such as PLINK (80),
TUNA (71), WHAP (114) and BEAGLE (11) that typically focus on genotypes for a small
number of nearby markers when imputing each missing genotype. Tools in the first category
can be further sub-divided into those that compare the potential haplotypes for each
individual with all other observed haplotypes (e.g. IMPUTE and MACH) and those that
compare potential haplotypes for each individual to a representative set of haplotypes (e.g.
fastPHASE). Typically, tools that consider all available markers and all available haplotypes
can require substantially more intensive computation but do better at estimating missing
genotypes, particularly for rare polymorphisms. Table 1 provides a partial list of recent
genomewide association scans that used genotype imputation, together with the method(s)
used for imputing missing genotypes in each scan.

Accuracy of Genotype Imputation Based Analysis

Our first experience with genotype imputation in the context of a genetic association study
occurred when fine-mapping the Complement Factor H susceptibility locus for age-related
macular degeneration (58). The locus shows evidence for multiple disease associated alleles
and haplotypes (58,63). Since multi-marker association analyses are much more convenient
in the absence of missing genotype data (5), we used the software PHASE (97,98) and early
version of our MACH software (59) to fill in missing genotypes in our sample. In the
absence of missing data, it is much easier to compare the evidence for association at
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different markers and to interpret the results of conditional association analyses that sought
to identify independently associated markers. To validate our imputation approach, we
masked 5% of the genotypes at the locus and showed that these could be imputed correctly
>99% of the time by comparing each individual with a missing genotype to other individuals
who shared a common haplotype or haplotypes.

The first few applications of genotype imputation on a genomewide scale also spent
considerable effort in validating the accuracy of imputed genotypes. For example, in the first
published account of the performance of genotype imputation in the context of a
genomewide scan, Scott et al. (93) genotyped a set of type 2 diabetes cases and controls at
approximately 300,000 SNPs. They then imputed genotypes at an additional >2 million
SNPs to facilitate comparisons with the results of two other genomewide association scans
for type 2 diabetes that relied on a different genotyping platforms (90,117). To evaluate the
accuracy of imputed genotypes, they contrasted imputed genotypes generated “in silico™
with experimental genotypes generated in the lab for >500 SNPs, including 16 SNPs with
imputation based p-values of <107° (see online supplementary material in ref. 93). Their
results showed excellent concordance between genotype calls, estimated allele frequencies
and test statistics for both types of data with an overall allelic discrepancy rate of <1.50%
between genotyped and imputed SNPs.

Similar comparisons with newer genotyping platforms, which can provide better coverage of
the genome because they include larger numbers of tag SNPs, show that imputed genotypes
can achieve even greater accuracy. For example, in the GAIN psoriasis study (69) imputed
and experimentally derived genotypes were compared at >660,000 SNPs in 90 individuals
with an overall allelic discrepancy rate of <0.90% and an r2 correlation between observed
and imputed allele counts that averaged 0.93. The r? correlation coefficient is a particular
useful summary of the impact of genotype imputation on power: in the context of the GAIN
psoriasis study we expect that, on average, imputing genotypes for one of the 660,000
evaluated markers in 1,000 individuals would provide a similar amount of information as
could be obtained by genotyping the same marker in 930 individuals (69).

Power of Genotype Imputation Based Analyses

One obvious use of genotype imputation based analysis is to accelerate fine-mapping
studies. Once an association signal has been identified and confirmed, genotype imputation
can be used to evaluate the evidence for association at each of several nearby SNPs and help
focus the search for potential causal variants. An example of the approach occurs in the fine-
mapping study of Orho-Melander et al. (76). In order to fine-map an association signal
linking SNPs in the glucokinase regulatory protein (GCKR) gene and triglyceride levels in
blood, Orho-Melander examined evidence for association with genotyped and imputed SNPs
in the region and showed that an imputed common missense variant in the GCKR gene was
more strongly associated with triglyceride levels than any other nearby SNP, a result that
was subsequently confirmed by direct genotyping (76).

Although we agree that examining evidence for association at imputed markers can be
extremely useful in the context of fine-mapping association signals, it is important to note
that genotype imputation is also expected to increase the power of genomewide association
studies. For example, Willer et al. (111) and Kathiresan et al. (43) showed that rs6511720, a
common variant in the low density lipoprotein receptor gene (LDLR), was strongly
associated with blood low density lipoprotein (LDL) cholesterol levels (Figure 3). The
association signal was missed in an initial analysis that considered only genotyped SNPs
because rs6511720 is not included in the Affymetrix arrays used to scan the genome in the
majority of their samples and is only poorly tagged by individual SNPs on the chip (the best
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single marker tag is rs12052058 with pairwise r2 of only 0.21). Another example we have
encountered concerns the genomewide association analysis of G6PD activity levels in a
sample of Sardinian individuals (77,94). There, analysis of directly genotyped SNPs
revealed two sets of SNPs strongly associated (p < 5x1078) with G6PD activity levels, one
near the G6PD gene locus on chromosome X and another near the HBB locus on
chromosome 11. Genotype imputation revealed a strong additional signal (also with p <
5x1078) upstream of the 6PGD locus on chromosome 1 (Manuela Uda, Serena Sanna,
David Schlessinger, personal communication; Figure 4). The three signals (near G6PD,
HBB and 6PGD) all fit with our understanding of the biological basis of measurements of
G6PD activity: the role of variants near G6PD in the regulation of G6PD activity in Sardinia
and elsewhere is well established (25), variants in the HBB locus can influence the lifespan
and rate of turnover of red blood cells and it is well established that G6PD activity is higher
in younger cells (70) and, finally, it is well known than 6PGD activity levels impact
commonly used assays for G6PD activity (13,31).

Overall, the LDLR and 6PGD loci, together with many other anecdotal examples, suggest
that genotype imputation can improve the power of genomewide association analyses.
Nevertheless, accurately estimating the impact of genotype imputation on the power of a
genomewide association studies is more challenging. We have tried to accurately quantify
this potential power gain in two ways: first, by generating and analyzing simulated datasets;
and second, by analyzing datasets that combine genomewide genotype data and large scale
surveys of gene expression. The second approach is especially attractive because true
positive associations between genetic variants and transcript levels are easy to identify (they
often map to the locus encoding the transcript). Both approaches suggest that genotype
imputation can increase the power of gene-mapping studies, particularly when the associated
variants have frequencies <10-20%. When we imputed genotypes and then reanalyzed the
gene expression data of Dixon et al. (28) we mapped, on average, 10% more genomewide
association peaks to the locus surrounding each transcript than before imputation (Liang ,
Cookson and Abecasis, unpublished data).

Meta-Analysis of Genomewide Association Scans

Perhaps the most dramatic illustration of the utility of genotype imputation has been the
ability of researchers to conduct meta-analysis of genomewide association scans even in
samples that were originally genotyped using several different platforms. Genotype
imputation was first used to combine genomewide association scans for blood lipid levels
(43,111) and height (89) and soon thereafter to combine data across genomewide scans for
type 2 diabetes (116), body-mass index (62) and Crohn's disease (6). The success of these
meta-analysis can be quite dramatic: in the case of blood lipid levels (43,111) a meta-
analysis of three studies with relatively modest findings (each identifying one to three
strongly associated loci), resulted in a total of 19 strongly associated loci including 7 loci not
previously implicated in regulating cholesterol and lipoprotein levels in humans. Because it
greatly simplifies issues related to examining data collected on multiple different platforms,
genotype imputation also makes it simple for researchers to compare results of genomewide
association studies that target related traits. In this way, it has been possible to contrast
results from genetic studies of blood lipid levels (111) to those of previous studies of
coronary artery disease (105), to compare results of studies of blood glucose levels in non-
diabetic individuals (79) to those of previous case-control studies of type 2 diabetes (116),
and to compare results of studies of height (89) to those of previous studies of osteoarthritis
(68). We expect that these sorts of contrasts between the results of genomewide studies for
different traits will become ever more commonplace and that they will ultimately provide
useful insights about the genetic basis of many complex human traits.

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2010 August 23.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lietal. Page 7

Imputation Based Analysis in Non-European Samples

While most genomewide association studies completed to date have focused on populations
of European ancestry (see Table 1 for examples), we expect that genomewide association
scans will be conducted in much more diverse groups of samples. The success of genotype
imputation depends critically on the choice of reference population from which densely
characterized haplotypes are drawn. For studies of European ancestry samples, it is now
clear that the HapMap CEU samples (102-104) usually constitute an appropriate reference
panel. Similarly, we expect the HapMap CHB+JPT (102-104) samples will constitute a good
reference for imputing genotypes in samples of East Asian ancestry and that the HapMap
YRI (102-104) samples will constitute a good reference for imputing genotypes in
populations of West African ancestry.

Studies of populations that are genetically more distinct from those examined by the
HapMap consortium will require more careful consideration in the design of strategies for
genotype imputation. For example, we expect that when imputing missing genotypes in
Middle Eastern samples, Native American samples or even samples from the Indian sub-
continent, it will be advantageous to use a reference panel that includes all HapMap
haplotypes, rather than just the CEU, just the YRI or just the CHB+JPT haplotypes.
Fortunately, whenever the choice of reference panel is unclear it is possible to mask a subset
of the available genotype data, run genotype imputation using each of the different reference
panels being considered, and finally contrast imputed and masked genotypes to identify the
strategy that provides the most accurate genotypes. Table 2 summarizes the results of a
recent analysis (59) that sought to identify the most appropriate reference panel for a series
of samples in the Human Genome Diversity Panel (19).

An alternative to using the HapMap samples as a reference is to genotype a subset of study
samples for additional markers of interest and then use these as templates for genotype
imputation in the remaining samples. This approach was used by Chambers et al (14) to
combine data across three different platforms in a recent study of the genetics of obesity
focused on individuals of South Asian ancestry. Compared to approaches that use the
HapMap as a reference, this strategy can greatly reduce imputation error (14).

Practical Considerations

In this review, we have tried to provide readers with an intuition about why genotyping
imputation methods work, describe their history in the context of genomewide association
studies, and to summarize some examples of current uses of genotype imputation. For
readers that are encouraged to attempt genotype imputation in their own samples, we would
like to spend a few paragraphs summarizing important practical issues to consider when
carrying out genotype imputation based analyses. In particular, we will focus on issues we
have encountered when developing, implementing and supporting our Markov Chain
Haplotyping (MACH) software package for haplotype estimation and genotype imputation.
As with other analyses of genetic association data, we recommend that a standard set of
quality filters should be used to exclude markers with poor quality genotypes. These quality
filters typically flag markers that have low call rates, significant evidence for deviations
from Hardy-Weinberg equilibrium, a large rate of discrepancies between duplicate
genotypes, or evidence for non-Mendelian inheritance (67).

When using an external reference panel as a template for imputation, the most important
challenge for successfully imputing genotypes in genome scan samples is ensuring that
alleles are labeled consistently (that is, on the same strand) in the reference sample being
used and in the samples where missing genotypes will be imputed. MACH checks that allele
frequencies are similar in the reference panel and in the samples being imputed, but it cannot
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catch all errors. In practice, we have found it extremely useful to genotype a small number
of HapMap samples as part of each genomewide scan — this helps evaluate genotyping error
rates but also ensures that consistency of allele labels can be easily checked.

Once this first hurdle has been surpassed, the next step is to impute missing genotypes for
each sample. As noted in Table 2 and in the previous discussion, a key step is to select an
appropriate set of reference haplotypes. Different choices of reference panel can be assessed
by masking a subset of the available genotypes and checking whether these can be recovered
accurately. After a reference panel has been selected and imputation is complete a key issue
is deciding which markers to take forward for analysis. Typically, not all markers can be
well imputed and several different measures have been proposed to help identify well
imputed markers. The simplest of these measures focus on the average probability that an
imputed genotype call is correct — in this context, one might look for markers where
genotypes are imputed with >90% certainty or so. We don't recommend these types of
measures because they are not very meaningful when comparing markers with different
allele frequencies (for example, if a marker has an allele frequency of <5%, it should be
possible to achieve 90% accuracy by simply assigning the most common genotype to every
individual). Instead, we typically recommend measures that try to capture the correlation
between imputed genotype calls and the true underlying genotypes — typically expressed as
an r2 coefficient. Most often these measures are calculated by comparing the variance in a
set of imputed allele counts to theoretical expectations based on Hardy-Weinberg
equilibrium (because imputed allele counts for poorly imputed markers show less variability
than expected based on allele frequency).

The final step in the analysis of imputed data is to analyze the resulting imputed
“genotypes”. MACH and other genotype imputation programs summarize imputation results
in a variety of forms. Most often, imputed genotypes are not discrete but, instead,
probabilistic. For example, a particular individual might have a 90% probability of carrying
genotype A/A and a 10% probability of carrying genotype A/C at a specific marker —
corresponding to 1.9 expected copies of allele A. We do not recommend transforming these
“probabilistic” genotype calls into discrete genotypes as that can result in a substantial loss
of information — especially so for less common alleles. Most often, imputed allele counts for
each allele (e.g. 1.9 expected copies of allele A) can conveniently be tested for association
with quantitative or discrete traits using an appropriate regression model. Of course, as in
other genetic association analyses, adequate adjustment for potential population
stratification is essential (27,36,78). If ancestry informative principal components are
estimated from genetic data (78), we recommend that these should be estimated before
imputation.

If results from multiple studies are to be combined, we recommend that each study should
be analyzed individually and that results should then be meta-analyzed across studies using
standard approaches — for examples, see (89,111,112,116). We never recommend pooling
data across studies, especially when these have been genotyped using different platforms.

Challenges for the Future

The technologies used in human genetic studies are rapidly improving. We expect several
enhancements to genetic imputation technologies. First, we expect that as better
characterized reference panels are developed, it will become possible to use genotype
imputation methods to study not only single nucleotide polymorphisms but also other types
of genetic variants, such as copy number variants (33,66) or classical HLA types (55).
Second, we expect that improved algorithms for genotype imputation will continue to be
developed, motivated by the desire of geneticists to tackle ever more complex problems.

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2010 August 23.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 9

Similar pressures previously motivated constant development of methods for pedigree
analysis, both for large pedigrees (29,51,54,73) and for smaller ones (2,37,46-48,65). Still,
the most useful advance that we expect, in the context of genotype imputation based
analyses, is the development of larger reference panels. As illustrated in Figure 5, the
accuracy of genotype imputation based analyses should increase substantially as the size of
reference panels increases. This increase in accuracy occurs because haplotype stretches
shared between study samples and samples in the reference panel increase in length and are
easier to identify unambiguously with a larger reference panel.

Imputation and Genomewide Resequencing Data

So far, we have focused our discussion on the analysis of genotype data. However, it is also
clear that genome sequencing technologies are improving extremely rapidly. While the first
two human whole genome assemblies took years to complete (49,107), several additional
genomes have been assembled just in the past 18 months (7,57,110). Many of the advances
in whole genome sequencing have been the result of the deployment of massive throughput
sequencing technologies. These technologies differ from standard Sanger based sequencing
(88) in many ways. For example, the data produced by these new technologies typically has
somewhat higher error rates (on the order of 1% per base). Since these technologies produce
very large amounts of data, one typically accommodates these error rates by re-sequencing
every base of interest many times to achieve a high-quality consensus.

We expect that the continued deployment of these technologies will change how genotype
imputation is used in many different ways. An example of these changes is given by the
1,000 Genome Project (see www.1000genomes.org). The 1,000 Genomes Project aims to
deliver whole genome sequences for >1,000 individuals from several different populations
in next 12-18 months. To deliver these sequences in a cost effective manner, the 1,000
Genomes Project is using a strategy that combines massively parallel shotgun sequencing
technology with the same statistical machinery used to drive genotype imputation based
analyses. Specifically, the project is collecting a relatively modest amount of shotgun
sequence data for each of the individuals being sequenced: each of the target bases will be
re-sequenced only 2-4x on average (statistical fluctuations around this average mean that
many bases will not be covered even once), rather than the 10-20x used in previous
applications of these technologies to whole genome resequencing. To accurately call
polymorphisms in each genome, the Project will then use imputation based techniques to
combine information across individuals who share a particular haplotype stretch. Using
simulations, we have predicted that when 400 diploid individuals are sequenced at only 2x
depth (1x per haploid genome) and the data is analyzed using approaches that combine data
across individuals sharing similar haplotype stretc