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Abstract

The lymphatic vascular system is actively involved in tissue fluid homeostasis, immune surveillance and fatty acid
transport. Pathological conditions can arise from injury to the lymphatics, or they can be recruited in the context
of cancer to facilitate metastasis. Protein tyrosine kinases are central players in signal transduction networks and
regulation of cell behavior. In the lymphatic endothelium, tyrosine kinases are involved in processes such as the
maintenance of existing lymphatic vessels, growth and maturation of new vessels and modulation of their identity
and function. As such, they are attractive targets for both existing inhibitors and the development of new inhibi-
tors which affect lymphangiogenesis in pathological states such as cancer. RNAi screening provides an opportunity
to identify the functional role of tyrosine kinases in the lymphatics. This review will discuss the role of tyrosine
kinases in lymphatic biology and the potential use of inhibitors for anti-lymphangiogenic therapy.

Introduction

A number of human diseases have been linked to abnor-
mal or defective lymphatic vessels [1]. While the theory
of anti-angiogenesis therapy has been extensively studied
[2], the concept of targeting lymphangiogenesis to gain a
therapeutic advantage in human disease is only a recent
development [1]. Advances in our understanding of the
molecular signaling pathways that control lymphatic
vessel formation therefore provide an opportunity to
explore the value of inhibiting these processes.

A good example of this is cancer biology, where the
spread of tumor cells appears highly dependent on the
vessels of the lymphatic system and the protein factors
which drive their growth and differentiation [3]. As a
consequence, therapeutic options which target these cel-
lular pathways may provide a means to prevent growth
or metastasis from the primary tumor. Therapeutics
may be either anti-lymphatic (targeting functions of the
existing vessels) and/or anti-lymphangiogenic (targeting
the generation of new lymphatic vessels). An under-
standing of the key signaling components and cellular
processes that are critical for lymphatic vessel function
and growth is essential to enable the rational design of
effective inhibitors.
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One family of molecules, the protein tyrosine kinases,
are known to be key drivers of angiogenesis [4], and stu-
dies have shown they also play a pivotal role in lympha-
tic biology/lymphangiogenesis [5]. In this review we
explore the potential for this family of molecules to be
used as targets for anti-lymphatic/anti-lymphangiogen-
esis and the ways in which we can gain insight into how
these family members might contribute to key signaling
pathways within the lymphatic endothelium.

The lymphatic system in health and disease

While blood vessels carry oxygenated blood and nutri-
ents to cells within the body, the lymphatic vessels act
to maintain fluid homeostasis by draining excess fluid
from the tissues, as well as contributing to immune sur-
veillance and fatty acid transport. Fluid and cells
released by the blood vessels are returned to the circula-
tion via protein-rich lymph fluid that is drained by
blind-ended capillaries in the superficial dermis. This is
fed into the deeper, larger caliber lymphatic collecting
vessels via lymph nodes and the thoracic duct and back
to the circulation. All of these vessels have a specialized
lining of endothelial cells. Both blood and lymphatic
endothelial cells originate from common developmental
precursors. Yet, it is now clear that the lymphatic
endothelial cells differ in their molecular and physiologi-
cal behavior to the “classical” blood endothelial cell
[6,7].
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Similarly, the endothelial cells of small lymphatic
capillary vessels are distinct in function and gene
expression from the lymphatic endothelial cells (LEC)
that line the major collecting lymphatic vessels [8].
Interestingly, Baluk et al. recently described the presence
of unique cell-cell junctions in lymphatic vessels [9].
They found lymphatic capillaries had discontinuous
‘button-like’ junctions that would allow flaps of the ves-
sel to open and allow fluid entry. In contrast, collecting
lymphatics had continuous ‘zipper’ junctions, yet in both
vessel types the junctions appeared to have the same
molecular components. How this organisation is
achieved is unknown, but it presumably stems from the
functional differences of the lymphatic vessel subtypes.

Florence Sabin’s pioneering work of the early 20™ cen-
tury mapped the development of the lymphatic vascula-
ture by injecting blue dye into pig embryos, allowing the
vessels to be visualized [10,11]. This foundation led to
recent discoveries showing that early in embryonic
development, lymphatic progenitor cells migrate away
from the cardinal vein [12]. The process of developmen-
tal lymphangiogenesis proceeds with vessels sprouting
from the lymph sacs formed from the progenitor cells.
Many molecular signals are required to stimulate the
correct lymphatic network development and maturation,
some of which are discussed below.

In the context of human disease, both blood and
lymphatic vessels play important roles. For example, in
cancer, tumor progression relies on the angiogenic
switch, or the induction of new blood vessel growth
[13,14] for the supply of oxygen required for the
tumor to grow. Blood vessels also provide a route for
tumor dissemination to distant sites, via invasion of
the bloodstream and homing to organs such as the
brain, lungs, liver and bone [15]. Tumor angiogenesis
(the growth of new blood vessels in a tumor) is there-
fore a valid target for cancer therapeutics. Recent work
has shown that the lymphatic network also plays a
central role in the metastasis of cancer, allowing
spread to draining lymph nodes [16-18]. Clinically,
many carcinomas are commonly seen to metastasize
initially via the lymphatic vasculature to the lymph
nodes [15], with the lymphatic vessels providing a key
initial entry point for metastatic cancer cells. Numer-
ous studies have shown a significant correlation
between levels of the lymphangiogenic vascular
endothelial growth factor C (VEGEF-C), lymphatic ves-
sel invasion, lymph node metastasis and/or overall sur-
vival (reviewed in [3,15,19]). Targeting the induction of
tumor lymphangiogenesis (the generation of new lym-
phatic vessels within a tumor), and the signaling that
drives functional changes in both new and existing
lymphatic vessels (Figure 1), may help to prevent a
route for tumor metastasis.
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In addition to cancer, there are a range of pathological
conditions associated with defective or abnormal lym-
phatic vessels. Lymphedema results from inadequate
drainage of fluid from a limb, and can be primary or
acquired. Primary lymphedema is rare, but patients are
often found to harbour point mutations in key lympha-
tic genes such as vascular endothelial growth factor
receptor 3 (VEGFR-3). Acquired lymphedema can be
caused by damage or trauma to the lymphatic vessels
(eg sentinel lymph node biopsy), or infection with the
parasitic worms that cause filariasis (elephantiasis).
Recent work by Tammela et al. [20] demonstrated that
by stimulating the VEGFR-3 tyrosine kinase by treat-
ment with the lymphangiogenic vascular endothelial
growth factors C or D (VEGF-C or VEGEF-D) it is possi-
ble to regenerate functional collecting lymphatic vessels
in mice following lymph node dissection.

Lymphangioma or lymphangiectasia can result from a
build up of fluid, causing an excessive dilation/disten-
sion of the lymphatic vessels that is not resolved.
Patients (often children) may present with a group of
skin lesions that discharge milky fluid, or cystic masses
of the head, neck or genitals. Current treatments rely on
compression bandages or surgery, although more
recently sclerosing agents have been used with some
success to induce fibrous obliteration of the vessel [21].

Therefore, understanding the biology of the lympha-
tics and lymphatic endothelium may provide new
options for the treatment of diseases involving the lym-
phatics, such as cancer, lymphangioma, lymphedema
and wound healing.

Tyrosine kinases in vascular biology
Tyrosine kinase signaling in the cell
Protein phosphorylation is an important mechanism of
reversible protein modification, allowing the cell to
respond to a stimulus, and then turn the signaling path-
way off when it is no longer required. The protein tyro-
sine kinase (PTK) family is a diverse group, that, when
activated, catalyze the transfer of a phosphate group to
specific tyrosine residues of their substrates. There are a
total of 90 protein tyrosine kinases in humans, divided
into the 58 receptor tyrosine kinases (RTKs) that bind
extracellular ligands, and the 32 cytosolic (or non-
receptor) tyrosine kinases [22,23]. The members of the
PTK family are important signaling molecules in all
eukaryotic cell types, enabling responses to growth,
differentiation, cell-cell contact and apoptotic signals.
PTKs allow the rapid transfer of a stimulus from the
cell surface through to the nucleus; binding of a specific
ligand by the cognate tyrosine kinase receptor causes
dimerization and auto-phosphorylation at key residues
of the intracellular domain. Once the receptor’s kinase
domain is activated this allows binding and
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Figure 1 Different functions of LECs in active lymphatic vessels. This schematic outlines some of the cellular processes that occur in
lymphatic vessels under pathological conditions such as cancer. In this diagram a tumor (and/or infiltrating immune cells) secretes factors that
induce changes in the lymphatic vasculature. Growth factors binding to the different receptors expressed on the surface of the LECs may induce
sprouting of new lymphatic vessels from existing lymphatic capillaries. The leading 'tip cell’ detects a gradient of growth factors by means of cell
surface receptors, and migrates towards the tumor. Behind the tip cell are the stalk cells, responding to proliferation stimuli. The formation of a
lumen and maturation of the vessel is required to create a functional vessel. Other aspects of the vessel such as vessel dilation and vessel
permeability to fluid and cells may also be altered. These characteristics may be exaggerated in the context of a tumor, to create the abnormal
vessels often associated with cancer and enhance the ease with which lymphogenous metastasis occurs. Many of these responses are induced
by signaling pathways involving tyrosine kinases.
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Figure 2 Protein tyrosine kinase signaling pathways are potential targets in lymphatic endothelial cells. Protein tyrosine kinases are a
diverse group of proteins that act in different subcellular compartments of the cell. Outlined in the diagram are some examples of the types of
signaling pathways involving tyrosine kinases: a) Receptor tyrosine kinases are expressed on the cell surface and bind their specific ligands.
Ligand binding activates the intrinsic protein tyrosine kinase domain and triggers the signaling cascade. (For example VEGFR-3 signalling). b)
Non-PTK cell surface receptors can be associated with cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinase may be brought into contact
with the receptor by direct binding, an example of which is the JAK kinases. Alternatively, the PTK may be tethered to the plasma membrane
allowing it to rapidly interact with the activated receptor. The Src family kinases act in this manner. ¢) Other cytosolic PTKs act downstream in
the signaling pathway or more broadly throughout the cell. The c-Abl kinase is an example of a PTK with activity in various subcellular locations.
d) In some circumstances, the intracellular domain of a receptor tyrosine kinase may be cleaved and translocate to the nucleus where it is able
to phosphorylate different targets. (For example ErbB4 can signal in this manner). e) Nuclear associated tyrosine kinases are localized to the
nucleus; their activity may be modulated in response to signaling pathways. (An example of this is the fyn-related kinase). The types of inhibitors
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phosphorylation of substrate proteins (Figure 2). Sub-
strates are often activators or adaptors for cytosolic tyr-
osine kinases, such as the Src family kinases [24,25]
which are directly involved in stimulus-induced signal
transduction cascades. Cytosolic tyrosine kinases propa-
gate the signal by driving the numerous downstream
effector proteins, or inactivation of negative regulators.
Non-receptor tyrosine kinases may be directly associated
with a membrane receptor, located in the cytoplasm, or
in the nucleus (Figure 2). It has also been reported that
the intracellular portion of some RTKs can be cleaved,
after which it can shuttle to the nucleus to alter gene
expression [26].

Tyrosine kinases have been shown to play a role in the
progression of cancer, where they resemble the prototy-
pical oncogene. Aberrant expression, oncogenic fusion
proteins or spontaneous mutations resulting in a consti-
tutively active kinase domain are common in many PTK
genes that have been linked to malignancy. This results
in excessive signaling through a pathway in the absence
of the ligand, which may drive the cell to proliferate
unchecked and to ignore apoptotic stimuli. Given the
important role of kinases as drivers of cancer, coupled
with the reasonable ease with which they can be inhib-
ited, it is not surprising that a significant proportion of
anti-cancer therapeutics currently in trials are kinase
inhibitors [27].

However, it is important to note that tumors also
secrete ligands that act on RTKs expressed on the vas-
culature, thereby driving angiogenesis and/or lymphan-
giogenesis (Figure 1). As discussed below, preventing
the stimulation of the (non-mutated) vascular tyrosine
kinase pathways may also have significant therapeutic
benefit [28].

The vascular endothelial growth factor receptors

In lymphatic endothelial cells (LECs) the vascular
endothelial growth factor receptors (VEGERs) are highly
important tyrosine kinases due to their essential role in
cell survival and proliferation (reviewed in [4,29]).
VEGER-1, VEGFR-2 and VEGEFR-3 are mainly expressed
on endothelial cells, with signaling through VEGFR-2
generally being angiogenic, and VEGFR-3 signaling
being lymphangiogenic (Table 1). VEGFR-1 has been
shown to regulate the migration of leukocytes, but its
precise role in the vasculature is unclear. The receptors
each have different affinities for the VEGF ligands;
VEGEF-A is a ligand for VEGFR-2 [30], as well as bind-
ing to VEGFR-1 [31], while VEGF-C and VEGF-D bind
both VEGFR-2 and VEGFR-3 [4,32,33]. The other family
members VEGF-B and placental growth factor (P1GF)
are ligands for VEGFR-1 [4]. Binding of the VEGFs
causes dimerization and autophosphorylation of the
receptors, leading to activation of downstream kinases
such as Ras-MAPK and PI3K-Akt pathways [34]. Both
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VEGEF-C and VEGEF-D overexpression has been shown
to lead to lymphangiogenesis and lymphatic metastasis
[17,18,35]. Significantly, deletion of both VEGF-C and
VEGE-D together does not result in the embryonic
blood vasculature defects seen in VEGFR-3" mice [36].
VEGEF-C and VEGEF-D are the only known ligands for
VEGEFR-3 [32,33], yet this finding suggests that there
may be other additional ligands or a ligand-independent
signaling mechanism. Work from Dixelius et al. [37]
indicates that VEGFR-2 and VEGFR-3 can heterodimer-
ize, and this may actually allow VEGF-A to induce sig-
naling through VEGFR-3 [38]. However this VEGF-A
induced VEGFR-3 activation is different to that seen
with VEGF-C or VEGE-D; the two most carboxy-
terminal tyrosine sites of VEGFR-3 are not phosphory-
lated by VEGFR-2 [37]. Interestingly, coreceptors such
as Neuropilin-1 (NRP1) and NRP2 have been show to
modulate the signaling pathways activated in response
to VEGFs, enabling signals to elicit context dependent
responses [39-41]. Both VEGF-C and VEGF-D have
been shown to interact with NRP1 and NRP2 [42], but
it is generally thought the neuropilins are unable to
transduce VEGF signals without the VEGF receptors,
although a recent study disputes this [43]. Clearly
further work is required to elucidate the complexities of
VEGER-3 signaling.

Other tyrosine kinases in lymphatic biology

A number of other growth factor receptor families are
suggested to play a role in LEC biology [44] and are
summarized in Table 1. Hepatocyte growth factor, the
ligand for the receptor tyrosine kinase c-Met, has been
implicated in lymphangiogenesis, though whether this is
acting directly on lymphatic endothelial cells or indir-
ectly is not clear [45,46]. The lymphatic transcription
factor Prox1 has been shown to upregulate fibroblast
growth factor receptor 3 (FGFR3) [47]. This suggests
that fibroblast growth factor (FGF) signaling is funda-
mentally important for LEC biology. The insulin-like
growth factors 1 and 2 also induce LEC proliferation
and migration [48] in a VEGFR-3 independent manner,
presumably through insulin-like growth factor receptor
1 (IGEF1R).

Another signaling system with specificity to endothe-
lial cells consists of the Tie receptors (Tiel and Tie2)
and the Angiopoietin ligands (Angl and Ang2) [49,50].
This is probably also one of the more complex systems
in terms of the contributions of each receptor. Both
Angl and Ang2 bind the Tie2 receptor, but no ligand
has yet been shown to bind Tiel. Knockout mice have
shown that deletion of the Tie2 receptor results in leth-
ality at embryonic day 10.5 (E10.5), due to vascular
defects and cardiac failure [51,52]. A similar phenotype
is seen in Angl knockout mice [53]. The Tiel”” mouse
also dies during embryonic development [54], but at a
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Table 1 PTKs and their role in lymphatic biology
Gene  Role in lymphatic vessels Inhibitors Effect of pathway inhibition References
available*
VEGFR-  Receptor for the VEGF family of ligands. Can also  Yes Secreted VEGFR-2 is a naturally occurring inhibitor of ~ [132,133]
2 heterodimerize with VEGFR-3. lymphatic vessel growth.
However, Sorafenib’ did not block VEGF-C/D induced
tumor lymphangiogenesis.
VEGFR-  Predominant receptor for the lymphangiogenic Yes Cediranib® blocks VEGFR-3 activity and inhibits [32,33,88,134-136]
3 growth factors VEGF-C and VEGF-D, transduces lymphangiogenesis.
survival, proliferation and migration signals. Anti-VEGFR-3 antibody prevented tumor
lymphangiogenesis with no effect on preexisting
vessels.
Tiel Not critical for lymphatic cell commitment during ~ None Tiel knockout mouse has lymphatic vascular [55]
development, and no ligand has been shown. reported abnormalities that precede the blood vessel
phenotype.
Tie2 Receptor for Ang-1 and Ang-2, appears to control  Yes Tie2”" mice are embryonic lethal due to vascular [49,50,137]
vessel maturation. defects.
Inhibition of Ang-2 leads to tumor blood vessel
normalization.
EphB4  Expressed on lymphatic capillary vessels, involved  Yes Mice expressing a mutant form of ephrinB2 lacking [60]
in vascular patterning, binds to the ephrinB2 the PDZ binding domain show major lymphatic
ligand. defects in capillary vessels and collecting vessel valve
formation.
SRC Signal transduction downstream from receptors. Yes Src inhibitor AZM475271 was effective at blocking [103]
VEGF-C driven lymphangiogenesis in vivo.
FGFR3  The ligands FGF-1 and FGF-2 promote Yes Knockdown of FGFR3 reduced LEC proliferation. [47]
proliferation, migration, and survival of cultured
LECs. FGFR3 is direct transcriptional target of
Prox1.
IGFIR Both of the IGF1R ligands, IGF-1 and IGF-2, Yes None reported. [48]
significantly stimulated proliferation and migration
of primary lymphatic endothelial cells.
PDGFRB The ligand PDGF-BB stimulated MAP kinase activity Yes None reported. [138]
and cell motility of isolated lymphatic endothelial
cells.
MET The ligand for c-Met, hepatocyte growth factor has Yes May be indirect effect. [45,46]

lymphangiogenic effect, but it is unclear if c-Met is
expressed on LECs.

*For reviews detailing available inhibitors see [71,139]. TSorafenib inhibits B-Raf, PDGFRB, VEGFR-2 and c-Kit. *Cediranib inhibits VEGFR-1, -2, -3, PDGFRf and c-Kit.

much later stage (E13.5-E18.5), and displays altered
lymph sac morphology [55]. These mice show ruptured
microvessels and edema, indicating lymphatic dysfunc-
tion. This contrasts with the early lethality of VEGFR-
27" mice, which die around E9.0 [56]. Interestingly, the
deletion of the Ang2 ligand does not cause death until
postnatal day 14 [57], with significant defects in the
lymphatic vasculature and retinal blood vessels. This
clearly suggests an important role for Ang/Tie signaling
in the latter stages of both blood and lymphatic vessel
remodeling and the recruitment of mural cells to the
mature vessels.

The Eph receptors are widely expressed RTKs,
involved in patterning, morphology and intercellular
adhesion. The Eph receptors are divided into A and B
subtypes, and mostly bind only the membrane-bound
ephrin ligands of the same type. EphB4 is selective for
the ephrinB2 ligand, and in vascular patterning, it is this
pair that are important [58,59]. EphB4 is found
expressed on the venous endothelium, and ephrinB2 on

the arteries. The lymphatic vessels also express these
two molecules, with EphB4 distribution on the lympha-
tic capillaries, and ephrinB2 on the larger collecting
lymphatics [60]. How these two molecules regulate vas-
cular patterning is not entirely clear, however there is
evidence to suggest VEGF regulates expression and the
Notch pathway balances their effects [61]. Signaling
through the Eph receptors is bidirectional; forward sig-
naling is typical of receptor tyrosine kinases, following
activation of the Eph receptor its kinase domain phos-
phorylates downstream targets such as Abl, though little
is known about these pathways in endothelial biology.
Reverse signaling occurs in the ephrin-expressing cell,
and may involve Src family tyrosine kinases. The intra-
cellular PDZ domain of ephrinB2 was deleted by Maki-
nen et al. [60] and resulted in mice with lymphatic
vasculature defects. Lymphatic capillary formation was
affected, while collecting lymphatic vessels exhibited
lack of valve formation. Additionally, alterations in the
expression pattern of lymphatic vessel endothelial
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hyaluranon receptor 1 (LYVE-1) and abnormal smooth
muscle cell recruitment indicated a failure to correctly
specify the lymphatic vessel subtypes in the mutant
mice. Potential PDZ binding partner proteins have been
identified; it will be interesting to clarify the roles they
play in vascular patterning.

Other tyrosine kinases are key regulators of molecules
that control migration or survival. Cytosolic PTKs such
as focal adhesion kinase (FAK), FES and FER are impor-
tant for signals relating to interactions between the
cytoskeleton and the extracellular matrix by integrins.
Integrin a9 has been shown to be an important mole-
cule in lymphatic endothelial cell biology, and is upregu-
lated by the key lymphatic transcription factor
Prox1 [62].

While most of the PTK family is now characterized to
some extent, much of the endothelial cell work has been
done in blood vasculature. In addition there are a num-
ber of PTKs that still are not well understood. It
remains to be determined what, if any, role many of the
PTKs have in LEC biology.

Current strategies for targeting tyrosine kinases
Therapeutic targeting of PTKs has been approached
from a number of angles, with varying success. Huma-
nized monoclonal antibodies (mAb) raised against the
extracellular domains of an RTK have been used. The
first FDA approved PTK inhibitor was trastuzumab, a
mADb directed to the HER2/neu RTK [63,64] for use
against metastatic breast cancer. Since then, several
others have made their way into the clinic; bevacizumab
[65,66], and cetuximab [67,68] being the most significant
examples. Monoclonal antibody inhibitors of RTKs act
via prevention of receptor dimerization and ligand bind-
ing, and in some cases may cause receptor internaliza-
tion and immune cell recruitment [64]. Antibodies
generally allow much more specific blocking and thus
have the advantage of specificity that small molecule
inhibitors tend to lack. Inhibitory antibodies are how-
ever, only effective against cell surface receptors, and
not against non-receptor tyrosine kinases.

Recent developments in medicinal chemistry and crys-
tallography have led to the possibility of tailor-made
small molecule inhibitors that are designed to fit per-
fectly into the active site of the kinase. These small
molecules are able to enter the cell and it is therefore
possible to target them to either the intracellular kinase
domain of RTKs or the cytoplasmic tyrosine kinases.
However one of the caveats of small molecule PTK inhi-
bitors is that kinase domains are highly similar across
the families, making selective inhibition difficult. This
does mean that multiple pathways may be blocked
simultaneously, which may have therapeutic benefit in
some cases [27,69]. The disadvantage of a less selective
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small molecule PTK inhibitor is greater toxicity and risk
of adverse effects. Some PTK inhibitors are well toler-
ated, however reported effects are anemia, rash, diar-
rhea, nausea, fatigue, weight loss and hypertension
[70,71].

The prototype small molecule PTK inhibitor is imati-
nib; targeted to the chimeric protein that occurs in 95%
of chronic myeloid leukemia patients as a result of the t
(9;22)(q34;q11) translocation [72]. This fusion of the
BCR gene to ABL, creates a constitutively active kinase
[73]. Imatinib is able to selectively inhibit BCR-ABL dri-
ven cell proliferation at submicromolar concentrations,
while having minimal effects on cells that do not have
the translocation [74,75]. Imatinib’s mechanism of
action is now thought to be one of allosteric inhibition
[76], binding to a site adjacent to the ATP pocket. More
‘Type II’ allosteric inhibitors are now being designed,
that act by locking the kinase into an inactive state and
preventing signal transduction (reviewed in [77]).

Available strategies for anti-lymphangiogenesis therapy
via PTK family

First proposed by Folkman in 1971 [2], anti-angiogenic
therapy has now become accepted for cancer treatment
[78]. Current strategies for targeting the blood vascula-
ture are focused on inhibition of VEGF and/or blockade
of the VEGFRs which activate the downstream pathways
[71,79]. Bevacizumab, also known as Avastin (Genen-
tech), is a monoclonal anti-VEGF antibody that has
been approved in combination with chemotherapies for
colorectal cancer, non-squamous non-small cell lung
cancer, metastatic renal cell carcinoma and metastatic
HER2-negative breast cancer [65,66]. Despite this, there
is a risk of side effects such as gastrointestinal perfora-
tion, bleeding and impaired wound healing. Bevacizu-
mab’s exact mechanism of action is somewhat unclear,
and while it may have some anti-angiogenic properties,
the key may actually lie in the stabilization of tumor
vessels. By normalizing the tumor vessels, the blood
flow is increased and interstitial pressure is reduced
allowing conventional chemotherapy better access to the
tumor.

Other approaches have used soluble forms of VEGFR
to create the “VEGF-trap’ (Regeneron), a recombinant
chimeric decoy receptor which is in clinical trials
[80,81]. Similarly, ImClone has developed inhibitory
antibodies for VEGFR-1 [82] and VEGFR-2 [83-86],
both of which are in clinical trials. A human neutraliz-
ing anti-VEGFR-3 antibody has also been generated
[87]; in mouse experiments an equivalent antibody to
mouse VEGFR-3 was shown to completely block tumor
lymphangiogenesis with no effect on preexisting vessels
[88] (Table 1). Soluble VEGFR-3 and antibodies targeted
to VEGF-C and VEGF-D are in commercial
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development. Recently, several groups have had success
creating peptidomimetics in a form that are resistant to
degradation [89,90]. One of these is targeted to VEGFR-
1 and NRP1, and appears effective at blocking angiogen-
esis in mouse models of retinopathy and cancer [90].

In contrast there are a large number of small molecule
inhibitors available that inhibit VEGEFR signaling [71].
However many of them also inhibit the activity of other
related RTKs such as platelet derived growth factor
receptors (PDGEFRs), c-KIT and colony stimulating fac-
tor 1 receptor (CSF1R) due to similarity in the kinase
site, and it is not uncommon to show activity against a
wider range of kinases. The VEGF receptor inhibitors
that have been FDA approved as chemotherapeutics are
sorafenib (Bayer) [91,92], sunitinib (Pfizer) [93-95] and
pazopanib (GlaxoSmithKline) [96]. One of the com-
monly seen issues associated with all anti-VEGF treat-
ments is resistance, as alternative proangiogenic
pathways are switched on. Small molecule inhibitors
that target multiple pathways (e.g. VEGFRs, FGFRs and
PDGEFRs) simultaneously may avoid this problem, but
also increase the risk of associated side-effects. Sorafenib
was originally designed to inhibit B-Raf, and was found
to be effective in renal and hepatocellular cancers. How-
ever, this is now attributed not to the inhibition of B-
Raf, but to its activity against VEGFR-2 and PDGFRp
[69]. This leads to blockade of angiogenesis through
VEGEFR-2, and PDGFRJ inhibition prevents the recruit-
ment of pericytes for vessel stabilization. Recently Mur-
phy et al. [97] reported a second generation ‘Type II’
inhibitor, designed to be highly selective for PDGFRP
and B-Raf. Oral administration of this compound was
able to suppress growth of orthotopic kidney and pan-
creatic tumors in mice, with significant anti-angiogenic
effects.

Eph-Ephrin signaling is a promising anti-angiogenic/
anti-lymphangiogenic target. A number of small mole-
cule inhibitors are available [59], including EXEL-7647.
EXEL-7647 is currently in clinical trials, and inhibits
epidermal growth factor receptor (EGFR), ErbB2,
VEGFRs and EphB4 [98,99]. Other inhibitors in the
form of peptidomimetics, inhibitory monoclonal antibo-
dies, and soluble receptors are being tested [59]. It also
remains to investigate in more detail the contribution of
other Eph receptors to vascular biology; EphA2 signaling
has been shown to contribute to tumor angiogenesis,
while the ligand ephrinAl can be upregulated by VEGF
[100]. This complex field of Eph signaling, if well under-
stood, could give rise to a range of useful therapeutics.

The nine Src family kinases are cytoplasmic PTKs clo-
sely associated with the cell membrane and both RTKs
and non-PTK receptors (Figure 2). Src family kinases
mediate signal transduction pathways relating to many
critical functions of a cell; proliferation, apoptosis, cell
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adhesion and migration [25]. A number of small mole-
cule inhibitors are available, and several are in clinical
trials [25]. Inhibitors of Src family kinases may be useful
both to reduce the expression of growth factors in
tumor cells [101], as well as having direct effects on the
endothelium. Src is known to interact with VEGF recep-
tors, and a selective Src inhibitor significantly reduced
human umbilical vein endothelial cell (HUVEC) prolif-
eration and migration in vitro [102]. Recently Ischenko
et al. showed that the Src inhibitor AZM475271 was
effective at blocking VEGF-C driven lymphangiogenesis
in vivo [103] (Table 1). Previously this inhibitor had
been demonstrated to have potent anti-tumor and anti-
angiogenic effects in mouse pancreatic cancer models
[104]. This suggests a common mechanism that could
be targeted to simultaneously block lymphangiogenesis,
angiogenesis and tumorigenesis.

Currently there are no PTK inhibitors specifically tar-
geting the lymphatics. Even VEGFR-3, which was
thought to be specific to LECs, has now been shown to
be expressed at the leading edge of sprouting blood vas-
culature [105]. Therefore this remains an attractive tar-
get for dual inhibition of blood and lymphatic growth
[105]. Encouragingly, it was recently shown that inhibi-
tion of the coreceptor NRP2 specifically blocked lym-
phatic vessel sprouting and migration but did not affect
cell proliferation [40,106]. As many of the trials of PTK
inhibitors have been focused on anti-angiogenic efficacy,
it remains to be determined whether any possess signifi-
cant anti-lymphangiogenic potential. Evaluation of speci-
fic inhibitors will be required to identify those that have
activity in in vitro and in vivo lymphangiogenesis assays.

Identifying new targets for anti-lymphatic treatment

In order to identify new targets for anti-lymphangio-
genic treatments efficiently, screening strategies must be
successfully employed. The recent and exciting advent
of RNAi technology and high throughput screening sys-
tems have allowed researchers to investigate the func-
tional importance of a large number of genes in in vitro
assays [107-109]. RNAi screens have been successfully
used to identify new molecules involved in many pro-
cesses including cell cycle [110,111], apoptosis [112],
endocytosis [113], cell migration [114-116], morphology
[117], neural outgrowth [118] and drug resistance [119].
It has also been useful in dissecting molecular pathways
to identify new regulators and downstream mediators
[120-124]. Yet this powerful technique has hardly been
utilized in studying endothelial cell biology. RNAi
screens could potentially identify new anti-lymphangio-
genic targets by screening for LEC migration and prolif-
eration genes, or by screening for regulators of key
molecular pathways. Many commercial companies now
offer siRNA libraries covering the human kinome,
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making RNAIi screening feasible for research labora-
tories. RNAI screens are primarily considered a target
identification tool, as there are still some obstacles to be
overcome to the clinical application of siRNA therapy.
In addition, hits from a screen may not be easily drug-
gable, or a drug may give a different phenotype to the
siRNA [27]. Nonetheless, a recent study does show that
there are feasible and effective methods for specific tar-
geting and delivery of siRNAs in humans [125], suggest-
ing the RNAi screen may soon be used as a direct
therapeutic agent identification tool.

High throughput screening of chemical libraries offers
the opportunity to screen thousands of compounds to
identify small molecule inhibitors of a cell process of
interest [126-129]. If a key kinase target is known, the
assay readout can be set to indicate whether the com-
pound is on-target [130]. Chemical library screens are
commonly performed in vitro, however the use of
model organisms such as Xenopus and Zebrafish has
enabled high throughput chemical screens to be carried
out in vivo. Kilin et al. recently screened 1280 com-
pounds looking for modulators of angiogenesis and lym-
phangiogenesis in Xenopus [131]. Interestingly, several
compounds known to inhibit tyrosine kinases were iden-
tified as having selective anti-lymphangiogenic activity.

Alternatively, once a target has been identified, rational
drug design can be used to develop a compound that
binds with high specificity [77]. This approach has been
used to create drugs such as imatinib, but also more
recently a selective inhibitor of both B-Raf and PDGFRf
[97]. Finding the balance between highly selective com-
pounds and still inhibiting the multiple necessary
pathways to see maximal effect without causing severe
side-effects will require a combination of approaches.
RNAi screening allows the entire genome to be screened,
including the thousands of virtually unannotated genes.
Similarly, chemical libraries now comprise hundreds of
thousands of compounds, many of which are unknown.
These platform technologies may soon provide targets
and lead compounds, and eventually give rise to reagents
targeting protein tyrosine kinases for anti-lymphangio-
genic therapy that have clinical application.

Conclusions

The recent renaissance in lymphatic endothelial biology
has led to a better understanding of the important role
these vessels play in health and disease. It is now appar-
ent that specific targeting of protein tyrosine kinases is
an effective way to elicit anti-angiogenic responses in
the context of cancer therapy. Similar approaches could
be used to target lymphatics to prevent metastasis, while
in other pathological conditions such as lymphedema,
targeted therapy may be used to restore their growth
and subsequent function. Some of these treatments have
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been developed to existing targets such as the VEGFRs
and their ligands. Further testing will be required to
fully determine their efficacy, but there are also poten-
tially many novel targets not yet discovered or not cur-
rently associated with lymphatic biology.
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