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Abstract

The objective was to test three motor system-specific hypotheses in multiple sclerosis patients: (i) corticospinal tract and

primary motor cortex imaging measures differ between multiple sclerosis patients and controls; (ii) in patients, these

measures correlate with disability; (iii) in patients, corticospinal tract measures correlate with measures of the ipsilateral

primary motor cortex.

Eleven multiple sclerosis patients with a history of hemiparesis attributable to a lesion within the contralateral

corticospinal tract, and 12 controls were studied. We used two advanced imaging techniques: (i) diffusion-based pro-

babilistic tractography, to obtain connectivity and fractional anisotropy of the corticospinal tract; and (ii) FreeSurfer, to

measure volume, thickness, surface area, and curvature of precentral and paracentral cortices. Differences in these

measures between patients and controls, and relationships between each other and to clinical scores, were investigated.

Patients showed lower corticospinal tract fractional anisotropy and smaller volume and surface area of the precentral

gyrus than controls. In patients, corticospinal tract connectivity and paracentral cortical volume, surface area, and

curvature were lower with increasing disability; lower connectivity of the affected corticospinal tract was associated

with greater surface area of the ipsilateral paracentral cortex.

Corticospinal tract connectivity and new measures of the primary motor cortex, such as surface area and curvature,

reflect the underlying white and grey matter damage that contributes to disability. The correlation between lower

connectivity of the affected corticospinal tract and greater surface area of the ipsilateral paracentral cortex suggests

the possibility of cortical adaptation. Combining tractography and cortical measures is a useful approach in testing

hypotheses which are specific to clinically relevant functional systems in multiple sclerosis, and can be applied to

other neurological diseases.
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Introduction

Recent advances in MRI acquisition and analysis
permit the in vivo investigation of pathological changes
occurring in the white matter (WM) pathways and in
the grey matter (GM) regions. These developments
have important clinical implications in multiple sclero-
sis (MS), as WM and GM damage contributes to dis-
ability. One of the most useful techniques for the
assessment of WM damage is diffusion-based tracto-
graphy, which offers the possibility of reconstructing
entire WM pathways in vivo and quantifying damage in
neurological diseases in a tract-specific way.1

Tractography may, therefore, increase the clinical

specificity of MRI in MS, relating tract dam-
age to impairment of its associated function.
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Using probabilistic tractography, a voxel-based esti-
mate of the probability of connection between two
regions, called connectivity, can be obtained.2,3

Connectivity, which is thought to reflect the integrity
of WM fibres,4 is an informative measure that has been
used in clinical investigations,4–6 although less often
than fractional anisotropy (FA). FA is a well estab-
lished measure of axonal loss and demyelination,7,8

which is derived from the diffusion tensor. Although
it has been shown to be lower in the
tractography-derived tracts of patients with MS and
amyotrophic lateral sclerosis (ALS) when compared
to healthy subjects, it does not correlate with clinical
scores as strongly as connectivity.4–6,9

Recently, evidence has been reported for extensive
and clinically relevant GM damage in MS.10,11 The cal-
culation of the density (or volume) of a cortical region
obtained with a voxel-based morphometry (VBM)
approach is most commonly performed in clinical stu-
dies, and has been interpreted as reflecting cortical atro-
phy.10 However, a reduction in GM volume can be due
to thinning of the cortex, reduction in the cortical area,
change of its folding, or to a combination of these pro-
cesses. The FreeSurfer cortical surface-based method-
ology (http://surfer.nmr.mgh.harvard.edu/) allows us
to estimate all these GM measures within specific
brain regions in an automated way, leading to a com-
prehensive in vivo assessment of the cortical GM
damage. Among these cortical measures, thickness has
been investigated in a few studies in MS,12–14 while cor-
tical surface area of each hemisphere of MS patients
has been reported in one study only,15 and cortical cur-
vature has not been investigated in MS so far.

The causes of cortical GM damage in MS are
unclear.16 One possible mechanism is that GM axonal
loss is secondary to Wallerian and retrograde axonal
degeneration occurring in the WM.17 It is important
to understand the relationship between WM and GM
damage in MS, since pathology in both tissues has a
clinical impact. A recent investigation of the relation-
ship between GM volume and WM FA across the
whole brain in patients with early primary progressive
MS, demonstrated a link between the pathological pro-
cesses occurring in both tissues.18 However, patients
with relapsing–remitting MS (RRMS) and cortical
measures were not included in this study, and the
whole brain was tested without an a priori hypothesis.

Here, we focused on the motor system, investigating
changes in the connectivity and FA of tractography-
derived corticospinal tract (CST), and in volume, thick-
ness, surface area, and curvature of the precentral gyrus
and paracentral lobule, which are the lateral and medial
part of the primary motor cortex (PMC). In order to
maximize the possibility of detecting abnormalities in
these regions, we studied patients with a history of

hemiparesis, and a corresponding lesion in the CST.
We tested the following hypotheses: (i) patients show
lower FA and connectivity in the CST, and lower
volume, thickness, surface area, and curvature of the
PMC, when compared to controls; (ii) patients who
show lower CST connectivity and lower volume, thick-
ness, surface area, and curvature of the PMC, have
greater disability; (iii) in patients, lower CST FA and
connectivity correlate with lower volume, thickness, sur-
face area, and curvature of the ipsilateral PMC.

Methods

Subjects

We recruited patients who attended the outpatient MS
clinics at the National Hospital for Neurology and
Neurosurgery in London (NHNN), and fulfilled the
following criteria: (i) diagnosis of MS,19,20 and (ii) at
least 7 months history of hemiparesis, which was attrib-
utable to a lesion within the contralateral CST visible
on conventional MRI (Figure 1). The 7-month interval
from relapse onset ensured that patients had sufficient
time to improve clinically.21 On the day of their scan,
all patients were scored on the Expanded Disability
Status Scale (EDSS),22 including the pyramidal func-
tional system (FS) score, the 25-foot Timed Walk
Test (TWT), and the timed 9-Hole Peg Test
(9-HPT).23 Age- and gender-matched healthy controls
were also studied.

Figure 1. Axial T2-weighted MRI in a patient. The arrow indi-

cates a lesion in the right corticospinal tract (CST).
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All subjects gave written informed consent before
the study, which was approved by the Joint Ethics
Committee of the Institute of Neurology and The
National Hospital for Neurology and Neurosurgery.
All patient MRI scans were formally reported by a spe-
cialist neuroradiologist at the NHNN.

MRI protocol

Imaging was performed on a 1.5TGEMRI scanner with
an eight-channel phased array head coil and a maximum
gradient strength of 33mT/m. All subjects underwent
T2-weighted fast spin-echo brain images (TR¼ 2.5 s,
TE¼ 102ms, field of view (FOV) 24� 18 cm2, matrix
256� 256, in-plane resolution 0.94� 0.7mm2, 28 con-
tiguous axial slices, 5mm slice thickness). T1-weighted
brain images were acquired, using a 3D inversion recov-
ery prepared spoiled gradient recall (IR-SPGR)
sequence (TI¼ 450ms, TR¼ 2 s, TE¼ 53ms, FOV
310� 155 mm2, matrix 256� 128, voxel resolution
1.2� 1.2� 1.2mm3, 156 contiguous axial slices).

Diffusion tensor imaging (DTI) data were acquired
using a single-shot, diffusion-weighted (DW) echo
planar imaging sequence [FOV 220� 220mm2, matrix
96� 96 reconstructed as 128� 128, in-plane resolution
2.3� 2.3mm2 reconstructed to 1.7� 1.7mm2, 60 con-
tiguous axial slices, 2.3mm slice thickness, cardiac
gating (TR¼ 20RR� 20 s), diffusion gradients applied
along 61 optimized directions with a maximum b factor
of 1200 s/mm2, 7 b� 0 s/mm2 images].24

MRI processing

Diffusion tensor imaging and tractography
analyses. All the following steps were done using
tools from the FMRIB Software Library (FSL;
www.fmrib.ox.ac.uk/fsl) and applying default param-
eters, unless otherwise specified. Non-brain structures
were removed from DW and T1-weighted images.25

The individual DW images were corrected for eddy cur-
rent distortions and movement artefacts, and the DT
was fitted on a voxel-by-voxel basis. FA maps, and all
the information necessary to run probabilistic tracto-
graphy, were obtained.

The aim of our tractography analysis was to calcu-
late (i) the mean voxel-based connectivity, and (ii) the
mean FA of the tractography-derived CST, in each sub-
ject. We used a probabilistic tractography algorithm2 to
track the CST, from the cerebral peduncles to the
PMC, and obtain a voxel-based connectivity map.
Our analysis, which has been reported in detail else-
where,5 included the following steps:

(i) Definition of cerebral peduncle and cortical areas
masks. To ensure that the masks of cerebral

peduncles and cortical regions were drawn in the
same way in all subjects, the individual T1 images
were registered into a standard space (Montreal
Neurological Institute, MNI152), using affine
transformations.26 For each side, a mask of the
cerebral peduncle was designed on the standard
brain, on the lowest slice where the whole cerebral
peduncle was visible (z¼ 29). On the same stan-
dard brain, the PMC on the lateral and medial
part of the hemisphere was drawn for each side
of the brain using the MRIcro Brodmann’s atlas
as a guide (http://sph.sc.edu/comd/rorden/mri-
cro.html). A mask of the remainder of the cortex
(i.e excluding the PMC) was created for each side.
The masks of the cerebral peduncle and the cortical
areas were then transferred back to the individual
T1 images, and their correct location was con-
firmed visually in all cases.
Probabilistic tissue type segmentation and partial
volume estimation were then performed on the
individual T1 images.27 The output images were
used to mask the cortical regions to obtain the
final cortical masks (i.e. the right and left PMC,
and the remainder of the right and left cortex).
Affine registration was then performed in each sub-
ject to transform the individual T1 images into the
averaged seven b0 volumes. The transformation
parameters were then applied to the previously
generated masks of the cerebral peduncles and of
the cortex. The correct location of these masks in
diffusion space was visually confirmed in all
subjects.

(ii) Connectivity-based segmentation of the cerebral
peduncles.5,28,29 From each voxel in the mask of
the cerebral peduncle, we drew samples from the
connectivity distribution to each cortical mask.
The probability of connection to a cortical mask
was obtained from the proportion of samples that
reached each of the cortical masks. Therefore, two
classes of voxels in the cerebral peduncle were clas-
sified: those with higher probability of connection
to the PMC, which constituted the ‘seed’ region in
the next step, and those with higher probability of
connection to the remainder of the cortex.

(iii) Tracking the CST. Using the probabilistic tracto-
graphy algorithm, we delineated the CST in each
side, from the seed region to the PMC. The tracto-
graphy algorithm drew 5000 samples from each
voxel in the seed region to the PMC, producing a
probabilistic map of the CST (Figure 2). Within
this map, each voxel had a connectivity value,
which corresponded to the number of samples
that had passed from the seed region, through
this voxel, to the target region. A threshold of 50
was applied, in line with previous work,5,30 and the
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mean connectivity of the supra-threshold voxels
was calculated. The thresholded connectivity map
was then binarized and used to mask the FA map,
to obtain the mean value of FA within the CST, for
each side, in each subject.

Measures of the primary motor cortex. Cortical
reconstruction and volumetric segmentation was per-
formed with the FreeSurfer image analysis suite
(http://surfer.nmr.mgh.harvard.edu/) The technical
details of these procedures have been described pre-
viously.31–39 A fully automated parcellation of the cere-
bral cortex into units based on gyral and sulcal
structure was performed (Figure 3).36,40 From this ana-
lysis, the volume, thickness, surface area, and curvature
of the precentral gyrus and paracentral lobule were
automatically obtained. The somatotopic, motor repre-
sentation of the different body parts in the PMC, from
which the majority of CST fibres originate, includes the
face, hand, arm, and trunk in the lateral part of the
precentral gyrus, and the lower limb in its medial part
(i.e. the paracentral cortex).41,42

Statistical analysis

Differences between the affected and unaffected
side. In patients, the Wilcoxon signed rank test was
used to investigate the differences in the
tractography-derived CST (i.e. connectivity and FA)
and in the GM measures (i.e. volume, thickness, surface
area, and curvature), between the side affected by the
lesion and the unaffected side. The same test was used
to test for differences in the imaging measures between
the left and right sides in the control group.

Differences between groups and association with
disability. As no differences in imaging measures were
found between the affected and unaffected side

(see results section for details), we computed the
mean of the two sides for each MRI measure, and
entered it in the next analysis step. This reduced the
number of comparisons and simplified the interpreta-
tion of the findings. The Mann–Whitney U-test was
performed to assess differences in connectivity, FA,
cortical thickness, and curvature between patients and
controls. Since the volume and surface area variables
were normally distributed, an independent samples
t-test was used to compare them between the two
groups. In patients, associations between all the MRI
measures for each side and the clinical scores (EDSS,
pyramidal FS score, TWT, and 9-HPT) were

Figure 2. Axial fractional anisotropy images of the same patient as in Figure 1 that show the tractography-derived corticospinal tract

(CST) on the right side of the brain. A: CST in the cerebral peduncle (z¼ 22), B: in the posterior limb of the internal capsule (z¼ 30),

and C: adjacent to the right PMC (z¼ 49).

Figure 3. Results of the cortical parcellation overlaid onto

the T1-weighted scans of the same patient as in Figures 1 and 2.

The arrowhead indicates the R precentral cortex and the arrow

indicates the L paracentral cortex (z¼ 58).
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investigated using the Spearman’s rank correlation
coefficient (two-tailed).

Relationship between white matter and grey matter
measures. In patients, we assessed the relationships
between connectivity and FA of the
tractography-derived CST and volume, thickness, sur-
face area, and curvature of the precentral and paracen-
tral cortices for each side using the Spearman’s rank
correlation coefficient (two-tailed). The results were
confirmed with bootstrap analysis.

All the analysis was performed using SPSS 15.0
(SPSS, Inc., Chicago, Illinois, USA) except bootstrap
analysis which was done using Stata 9.2 (http://
www.stata.com/) (StataCorp LP, College Station,
Texas, USA) A p-value of �0.05 was chosen to
denote statistical significance.

Results

Subjects’ characteristics

The patients’ clinical and radiological characteristics
are reported in Table 1. Of the 11 patients recruited,
seven patients had a chronic lesion in the left CST and
four in the right CST (Figure 1). The location of the
lesion responsible for the hemiparesis was considered to
be the CST within the brain as five patients had history
of facial involvement at the onset of the limb weakness,
and in the remaining six patients, radiological findings
provided evidence; in particular, out of these six
patients, one showed a gadolinium enhancing lesion
in the CST at the symptom onset, two showed a reduc-
tion in lesion size at 1 and 6 months follow-up,

respectively, which was concomitant with clinical
improvement, and three had cervical cord MRI at
symptom onset which did not show any MS lesion.
The contralateral brain CSTs did not show a T2
lesion in any patient, and none of the lesions had fea-
tures suggestive of Wallerian degeneration.43

Twelve age- and gender-matched healthy controls
[mean age 39.7 years (SD 14.2), six female] were
studied.

Differences between the affected and unaffected
side

In patients, there were no significant differences in any
of the WM and GM measures between the affected and
unaffected side. In controls, there were no differences
between the left and right side in any of the measures.

Differences between groups and association with
disability

Patients had significantly lower CST FA than controls
(p¼ 0.007) (Table 2, Figure 4). There was a trend towards
lower CST connectivity in patients (p¼ 0.065) (Table 2,
Figure 4). Patients had a smaller volume and surface
area of the precentral cortex than controls (p¼ 0.028
and p¼ 0.038, respectively) (Table 2, Figure 5). The
thickness and curvature of the precentral cortex, as
well as the volume, thickness, surface area, and curva-
ture of the paracentral cortex, although lower in patients
than in controls, did not reach statistical significance.

In patients, there was a negative correlation between
CST connectivity and EDSS (rho �0.71, p¼ 0.015)
(Figure 6A). Although there is a suggestion that lower

Table 1. Patients’ characteristics

Age Mean: 46 years (SD: 13.2)

Gender 5 female, 6 male

Disease type 10 relapsing–remitting MS, 1 secondary progressive MS

EDSS Median 4.5 (range 2–6)

Pyramidal FS score Median 3 (range 1–4)

25-foot Timed Walk Test (TWT) Mean 8.23 s (SD: 2.15)

9-Hole Peg Test (9-HPT) Mean 25.4 s (SD: 4.9)

Side of the lesion 7 left, 4 right

Location of the lesions 2 lesions in the WM adjacent to the precentral cortex

2 lesions in the corona radiata

2 lesions in the posterior limb of the internal capsule

2 lesions in the cerebral peduncle

2 lesions extending from the cerebral peduncle to the internal capsule

1 lesions extending from the cerebral peduncle to the corona radiata

Time from hemiparesis Mean: 14 months (SD: 16)

EDSS, Expanded Disability Status Scale; FS, functional system; WM, white matter.
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CST connectivity correlates with greater pyramidal FS
score (rho �0.58, p¼ 0.06), and lower CST FA with
greater EDSS (rho �0.47, p¼ 0.074), these relationships
were not statistically significant [95% confidence interval
(CI): �0.875 to 0.03 and �0.834 to 0.18, correspond-
ingly]. In patients, a smaller volume of the paracentral
cortex was associated with an increasing time to com-
plete the TWT (rho �0.71, p¼ 0.022) (Figure 6B).
Furthermore, the surface area and the curvature of the
paracentral cortex in patients were lower with increasing
pyramidal FS score (rho �0.65, p¼ 0.030, and rho
�0.63, p¼ 0.037, respectively) (Figure 6C, D). Cortical
thickness did not correlate with disability (cortical thick-
ness and EDSS: rho �0.51, p¼ 0.11, 95% CI: �0.849 to

0.129; cortical thickness and TWT: rho �0.56, p¼ 0.093,
95% CI: �0.868 to 0.06; thickness paracentral and
EDSS: rho �0.55, p¼ 0.083, 95% CI: �0.864 to 0.074;
cortical thickness and TWT: rho �0.54, p¼ 0.093, 95%
CI: �0.86 to 0.088).

Relationship between grey matter and white matter
measures

In patients, lower connectivity of the CST affected by
the lesion correlated with greater surface area of the
ipsilateral paracentral cortex (rho �0.6, p¼ 0.05).
This association was also significant with bootstrap
analysis. Conversely, lower connectivity in the

Table 2. CST and PMC measures in patients and controls

Patients

[mean (SD)]

Healthy Controls

[mean (SD)] p-values

Controls-Patients

[difference (%)]
95% CI

lower upper

Connectivity 2047.7 (546.3) 2413.5 (812.5) n.s.a 365.8 (17.8%) �100.9 832.5

FA 0.334 (0.012) 0.355 (0.023) p¼ 0.007 0.021 (6.3%) 0.059 0.378

Thickness (mm)

Precentral 2.3054 (0.1369) 2.3445 (0.1076) n.s. 0.0391 (1.7%) �0.0609 0.1558

Paracentral 2.2155 (0.1611) 2.2744 (0.1678) n.s. 0.0589 (2.7%) �0.0792 0.2108

Volume (mm3)

Precentral 11,045 (915) 12,169 (1580) p¼ 0.028 1124 (10.2%) 161 2378

Paracentral 3,019 (114) 3,139 (269) n.s. 120 (4%) �134 389

Surface area (mm2)

Precentral 4,395 (487.5) 4,866 (542.8) p¼ 0.038 471 (10.7%) 33 944

Paracentral 1,279 (114.5) 1,328 (106.5) n.s. 49 (3.8%) �54 140

Curvature

Precentral 0.114 (0.0043) 0.115 (0.006) n.s. 0.001 (0.9%) �0.0041 0.0047

Paracentral 0.096 (0.009) 0.099 (0.0068) n.s. 0.003 (3.1%) �0.0041 0.0102

ap¼ 0.065. CI, confidence interval; CST, corticospinal tract; FA, fractional anisotropy; n.s., not significant; PMC, primary motor cortex.
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Figure 4. Fractional anisotropy and connectivity of the corticospinal tract (CST) in patients (in red) and healthy controls (in blue).

Error bars represent the SEM. **p¼ 0.007.
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unaffected CST correlated with lower surface area of
the ipsilateral paracentral cortex (rho 0.6, p¼ 0.05).
None of the remaining correlations between WM and
GM measures were significant.

Discussion

In this study, we combined two advanced imaging
techniques, probabilistic tractography and FreeSurfer
cortical surface-based methodology, to perform a com-
prehensive in vivo assessment of the motor system,
including the CST and the PMC, and investigate
the contribution of WM and GM damage to disability
in MS.

With regard to the WM assessment, we found that
patients had significantly lower CST FA than controls,
but CST connectivity correlated with EDSS and pyra-
midal FS score better than CST FA. This suggests that
connectivity is a measure complementary to FA. These
findings extend previous investigations, which have
either assessed the FA along the CST9,44,45 or tested
for correlations between connectivity and disability in
MS4,6 and ALS.1,5 Furthermore, a recent study that
specifically investigated the relationship of MRI
abnormalities in the CST with lower limb weakness,
revealed a moderate but significant quantitative associ-
ation between disability and tract-specific MRI
changes, in keeping with our results.46

A novelty of our study is that we obtained several
measures of the PMC, other than the volume and tested
motor-system specific hypotheses. The most interesting
results from these analyses are: (i) patients had lower
surface area and volume of the precentral cortex than
controls; this finding gives insight into the mechanisms
of cortical atrophy in MS, indicating that the loss of
volume may occur due to the reduction in the sur-
face area rather than in the thickness; (ii) the surface
area and curvature of the paracentral cortex correlated
with motor disability, being lower in patients with
higher pyramidal FS score; (iii) smaller paracentral
cortex volume was associated with worse walking abil-
ity, as measured by the TWT. These results suggest that
new cortical measures of the PMC, such as surface
area and curvature, reflect damage that contributes to
functionally relevant impairment. These GM measures
should, therefore, be used in future studies to
quantify clinically relevant abnormalities in cortical
morphology in MS.

The potential relationship of these novel measures
with the underlying pathological abnormalities known
to occur in MS is interesting, and deserves further stu-
dies that compare imaging measures with histological
findings. Surface area and curvature may reflect
changes in cortical architecture due to either intrinsic
GM pathology or WM abnormalities. In terms of GM

pathology, neuronal loss is the major determinant of
cortical atrophy, while focal cortical demyelination is
less relevant.47 Importantly, loss of dendritic and
axonal projections of the surviving axons also contri-
butes to cortical atrophy.48 It is therefore possible that
the reduction in surface area detected in patients when
compared with controls is driven by the loss of neurons
and dendritic arbors, while the corresponding correla-
tion with disability reflects the functional consequences
of these pathological processes. Conversely, it seems
more likely that cortical curvature is driven by loss of
volume in the underlying WM. However, at present, it
is not possible to distinguish between these processes
using MRI alone, and it is likely that a combination
contributes to the observed changes in cortical mea-
sures. An important consideration is that a method-
ological bias during segmentation/parcellation of the
cortex may have contributed to the observed changes
in cortical surface and curvature between patients
and controls and their correlation with disability.
For example, one could hypothesize that the
automated definition of specific cortical areas, which
uses sulcal and gyral anatomy, would be less accu-
rate in patients than controls, if the cortical surface
anatomy in patients is grossly abnormal. However,
the results of our cortical segmentation were checked
visually for each subject, and were considered to be
correct and consistent between groups. Furthermore,
it should be noted that the FreeSurfer methodology
has been validated in previous studies using phantom
and post-mortem material,31–40 and that the results
from a large number of studies using this technique
for cortical segmentation in vivo in different patient
groups, including MS, appears remarkably
reproducible.49–51

With respect to the PMC thickness, we did not find
differences between groups, which may be related to the
moderate disability of our patients, compared with a
previous study.14 However, the patient sample size
was small and may well have limited the detection of
subtle group differences. On the other hand, the lack of
correlation between the PMC thickness and disability is
in agreement with another study.12 Further studies are
needed to clarify the contribution of focal thinning of
the PMC to motor disability.

Our investigation of the relationship between CST
and PMC measures in patients gave intriguing results.
On the affected side, the surface area of the paracentral
cortex increased as tract connectivity decreased, while
the opposite was true for the unaffected side, where the
surface area increased with increasing tract connectiv-
ity. This may imply that a lesion in the CST causes
significant structural changes in the morphology
of the PMC. Functional MRI studies in MS provide
evidence for both inter- and intrahemispheric
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reorganization of PMC activation,52–54 and our results
possibly reflect the structural correlates of this func-
tional adaptation.55 This important issue warrants fur-
ther investigation: future studies will permit a better
understanding of the relationship between (i) the
mechanisms of WM and GM damage in specific brain
regions and (ii) the mechanisms of functional and struc-
tural adaptation in the motor system in MS. In parti-
cular, our understanding of the way in which WM
pathology drives cortical atrophy and reorganization
will benefit greatly from longitudinal studies, which
will assess cortical measures, including the newly devel-
oped techniques that are introduced here, in relation to
functionally relevant WM lesions over time.

Our study has some limitations. First, our sample
size was relatively small, although carefully selected to
represent patients with a previous episode of hemipar-
esis. It is possible that the sample size may be too small
to detect a true finding, and, therefore, some of our
non-significant results could be false negatives. For
example, as shown on Table 2, connectivity in the
CST of patients decreases by as much as 17.8% when
compared to controls, though this remains non-signifi-
cant; indeed, the 95% CIs associated with this sample
difference were quite wide (�100.9, 832.5). Similarly,
we cannot exclude the possibility that some of the
non-significant correlations of the MRI measures with
disability represent false negative results. In particular,
in the case of the non-significant correlations between
FA and EDSS or thickness of the PMC and both EDSS
and TWT, although the magnitude of the coefficient
suggests a negative association between FA or cortical
thickness and disability, the corresponding 95% CIs
were again quite wide. Therefore, in the future, larger
studies will be required to confirm the results reported
here. Second, a large number of statistical tests (about
90) were performed, without formal correction for mul-
tiple comparisons. Nevertheless, for an alpha level of
0.05, one would expect on average 4.5 out of 90 false
positive results. However, we reported 10 significant
results for a p-value of �0.05, making a type I error
very unlikely to account for all these significant results.
Furthermore, this is a hypothesis-driven rather than an
exploratory study, making the need for multiple com-
parison corrections less relevant.56

Notwithstanding these limitations, the present study
has demonstrated the utility of applying advanced MRI
to assess structural damage in the WM and GM of the
motor system in MS and provide possible markers of
structural damage that is clinically relevant. Imaging
functional systems that are important for disability,
and, in particular, the assessment of both the WM
and GM damage within these systems, may emerge as
a reliable method to test specific hypotheses in MS and
in other neurological diseases.
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