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Abstract
Many sources of fluctuation contribute to the functional magnetic resonance imaging (fMRI)
signal, complicating attempts to infer those changes that are truly related to brain activation.
Unlike methods of analysis of fMRI data that test the time course of each voxel against a
hypothesized waveform, data-driven methods, such as independent component analysis and
clustering, attempt to find common features within the data. This exploratory approach can be
revealing when the brain activation is difficult to predict beforehand, such as with complex stimuli
and internal shifts of activation that are not time-locked to an easily specified sensory or motor
event. These methods can be further improved by incorporating prior knowledge regarding the
temporal and spatial extent of brain activation.

Introduction
In addition to providing a non-invasive, indirect measure of neuronal activity, the blood
oxygen level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI)
includes contributions from many other sources including the heart beat, breathing and head
motion artifacts. There are also less well understood sources, such as low frequency drifts
that can also be recorded from cadaver brains [1] and high amplitude oscillations caused by
pulse effects that induce localized motion of brain tissue [2].

In contrast to positron emission tomography (PET), in which the measurement represents
physiological quantities that can be compared quantitatively with other measurements [3]
(e.g. μmol/100 g tissue/min), the fMRI signals have no simple quantitative physiological
interpretation. As a consequence, in most fMRI experiments the signal at a given spatial
location (or voxel) during the performance of a task is compared with its value during a
period of rest, despite the fact the baseline condition itself contains ongoing cortical activity
[4]. Isolating signals of interest is thus a very important problem. In this review we briefly
explore traditional and more recently developed methods used to infer task-related changes
in fMRI data with a focus on independent component analysis (ICA).
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During a neuroimaging experiment, volumetric fMRI signals, acquired as individual slices
having a spatial resolution of a few millimeters, are typically sampled with a repetition time
(TR) of around 1 Hz. The fMRI signal has temporal and spatial structure at many time and
length scales and can be analyzed by different signal processing strategies that emphasize
either the spatial or the temporal aspects [5]. One of the most direct ways to estimate
whether a given voxel is affected by the behavioral performance or not is to simply cross-
correlate the pixel time series with a reference time course describing the sequence of
behavioral events. The cross-correlation method can be adapted to take account of the
hemodynamic response by first convolving the reference time course with an estimate of the
hemodynamic response [6], followed by a voxel-wise t test for significant difference
between baseline and activation. Although this method remains popular, its specificity has
recently been questioned [7].

Correlation is an example of an hypothesis driven, or confirmatory analysis method, which
tests one or more specific hypotheses regarding the time courses of a voxel. By far the most
popular software package that uses this approach is statistical parametric mapping (SPM),
which employs the general linear model (GLM), an instantiation of multivariate linear
regression, and associated methods to deal with violations of the assumptions of the
multivariate regression framework, such as the lack of independence among voxels [8].
Studies looking at `null' datasets, in which a subject does not perform a pre-specified task
but merely lies quietly in the scanner, have been valuable in determining the false positive
rates that can arise from these approaches [9].

Explorative approaches, which seek to uncover the features of the data themselves, are
complementary to hypothesis-driven methods and can help to generate new hypotheses,
separate and understand the nature of confounds and find non-trivial components of interest.
The main benefit of using a purely data-driven approach to determine the underlying
structure of the data is that often the expected time course of brain activation is difficult to
specify a priori. Two popular data-driven techniques include ICA [10] and different types of
clustering in the temporal domain [11–16]. With clustering, a measure is used that estimates
the `similarity' between waveforms, and then all voxels with similar waveforms are
collected together within a cluster.

Independent component analysis
The methodology of ICA

Blind signal separation is a class of explorative tools developed for the analysis of images
and sound. They are called `blind' because they aim to recover source signals from mixtures
with unknown mixing coefficients. In the cocktail party problem, for example, several
microphones in a room record signals from multiple speakers (sources) that arrive with
different relative amplitudes at each microphone. ICA is a family of methods for blind signal
separation formed on the basis of assumed statistical independence of the source signals
[17,18]. The diverse nature of the signals that contribute to fMRI recordings suggests that
blind signal separation techniques could be used to isolate these different sources [10,19•,
20–22]. Here, we review recent contributions and discuss their results in the context of the
basic assumptions of the applied ICA methods.

Let the fMRI signal be represented by the space-time data matrix of measurements Xj,t,
where j = 1,…,J (J is the number of pixels/voxels [the three dimensional equivalent of a
pixel]); and t = 1,…, T, (T is the number of time samples). In the linear mixing case we
assume that the matrix can be modeled as follows:
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(1)

where A and S (where the columns of A represent component maps, and the rows of S
represent time courses of the respective component maps) are formed by the K independent
components of the process, and E is spatially and temporally white noise.

In spatial ICA we assume that the columns of the matrix A = ⌊Ajk⌋ are statistically
independent processes, whereas in temporal ICA the rows of S = ⌊Sjk⌋ are assumed
independent. From the very first application of ICA to fMRI there has been a lively
discussion of spatial versus temporal independence, for example see Peterson et al., Friston,
Calhoun et al. and McKeown et al. [23–26]. To appreciate the difference between the two
approaches it is interesting to contrast briefly ICA with principal component analysis (PCA).

The basic tool for PCA is singular value decomposition (SVD):

(2)

where U and V are orthogonal matrices that are best understood as basis sets that span the
spaces of spatial and temporal patterns respectively. The columns of U are the eigenvectors
of the Q-mode covariance matrix, which investigates the inter-relationships between voxels:

, with the columns of V being the eigenvectors of the R-mode covariance
matrix, which investigates inter-relationships between volumes at different timepoints:

. SVD does not allow identification of a mixing matrix. Note, however,
that if the model in equation 1 is correct, if the number of sources, K, is small (relative to J
and T), and if the variance of the additive noise is small, the important signal variance
components will be confined to spatial or temporal subspaces spanned by the K first vectors
of either U or V as identified by SVD. Hence, SVD can be used to reduce the dimensionality
of the ICA problem [27,28]. PCA and ICA were further compared in the context of
denoising by Thomas et al. [29•].

To completely identify the mixing matrix and the source signals we need to go beyond mere
covariance measurements. Two general classes of algorithms use higher order statistics or
intra-source correlation. Infomax [30], JADE [31] and FastICA [32] are the most
widespread higher order statistics algorithms, whereas the most widespread de-correlation
methods are those of Molgedey and Schuster [33] and Ziehe and Muller [34].

The success of a higher order statistics based method depends on how well the source
moment structure matches the assumptions of the algorithm, in particular the sign of the
fourth central moment, the so-called `kurtosis'. For the de-correlation based methods, the
potential for separation is related to how well separated the source auto-correlation functions
are.

When a data analysis problem is approached by ICA there are number of issues to address:
what are the independent components in the data? How many components are there? In
addition, which ICA algorithm is appropriate?

In many signal processing applications the measurements represent a scene (auditory or
visual) or a receptive field in which the independent components naturally reflect
independent agents (speakers, objects, mechanical degrees of freedom etc.). When applying
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ICA to fMRI the independent source signals are interpreted as networks of similar BOLD
activity. In terms of the basic ICA model (equation 1) a single ICA component (say the kth)
consists of a spatially distributed set of pixels (Ajk) that are activated by the associated time
function (Skt). It is useful to visualize the signal reconstructed from one or more
components:

(3)

McKeown et al. [27], in the first application of ICA to fMRI, analyzed an fMRI dataset with
Infomax, arguing for spatial independence [28]. In this formulation each voxel's time course
(row of X in equation 1) is considered a T-dimensional vector, with T being the number of
time points in the experiment, and then vectors (time courses) are derived so that the derived
time courses (rows of S) have weightings (columns of A) that are as independent as
possible. With this application of the algorithm, they found good separation of modes that
were task related, transiently task related, as well as confounding modes that represented, for
example, head motion [27].

Spatial stationarity, whereby the collection of voxels used in the analysis is assumed to be
derived from a single multivariate distribution, is usually assumed by ICA. This may be
investigated with test-retest replicability [35•], and possibly addressed with mixture models
[36]. In a mixture model, the voxels are partitioned into suitable subsets, and then separate
ICA analyses are performed on each subset.

Ordering of components
As is the situation with PCA, we can order the ICA components according to the amount of
variance explained:

The total signal variance is approximately the sum of the component variances, hence these
variances form a natural ordering. Alternatively, we can order the components according to
other features of interest. The most obvious is comparing a component's time course with
the behavioral experiment, either by visual inspection [27] or by computing cross-
correlations, as mentioned above [23]. In the study by Moritz et al. [37••] components are
ranked according to frequency content. Among a total of 85 components the power spectrum
ranking method identified and ranked the task-related components high, and hence was
successful at separating these from artifacts and confounds. Furthermore, ICA was found to
be more specific in deriving activated spatial locations than performing power spectrum
analysis on the raw time course of each voxel.

A general framework for ordering of components is presented by Lu and Rajapakse [38]
enforcing constraints on the Infomax estimation procedure, either of a statistical nature (e.g.
ordering components according to kurtosis) or of other types of a priori features of interest.
In analysis of a visual stimulation fMRI dataset components were sorted according to spatial
kurtosis, equivalent to sorting according to spatial sparseness; hence, the most task related
component was selected first with high kurtosis, components corresponding to local flow
artifacts were also ranked high in the measure. More elaborate and realistic statistical
assumptions are invoked in Stone et al. and Formisano et al. [39,40] for identifying
components with asymmetric histograms, autocorrelation or spatial clustering.
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Validation of independent component analysis
Temporal versus spatial independent component analysis—New methods for
analyzing data, such as ICA, need to be tested on a wide range of problems for robustness
and sensitivity to artifacts before the results can be properly interpreted. As there are a
variety of different ICA algorithms, it is also important to compare their performance to
better understand their strengths and limitations.

Lange et al. [5] compared spatial Infomax ICA on simulated and real fMRI data with several
other data analysis methods and found that ICA could identify locations of activation not
accessible by simple correlation, t test or general linear model based methods. The simulated
data was created by adding artificial activation foci to real rest fMRI data. The quantitative
measure of performance was formed on the basis of receiver operating characteristic (ROC)
curves.

Biswal and Ulmer [41] used Infomax ICA to search for temporally independent activation
sequences; however, they limited the spatial sample to relatively small regions (30 pixels).
Temporal ICA analysis resolved two different induced effects on the fMRI signal: a task
induced effect and CO2 inhalation (hypercapnia). As hypercapnia induces a globally
enhanced BOLD signal, searching for spatial independence is not relevant.

A comparative analysis of task related components for a visual stimulation dataset (TR = 0.3
s) using three different spatial and temporal ICA algorithms was presented in Petersen et al.
[23]. The stimulus reference function was used to identify the consistently task related
component in each setup. The consistently task related components showed strong
similarities in terms of both the component time series and the spatial maps for all six
combinations. The spatial maps derived from the Molgedey-Schuster model were noisier
and the associated time courses demonstrated some traces of heartbeat, because for the given
task these signal components have similar spatial distributions. The Infomax algorithm
worked well when looking for spatially independent patterns such as those in the study by
McKeown et al. [10]. When the Infomax algorithm looked for temporally independent
waveforms, it was less efficient because the boxcar design of the experiment has negative
kurtosis. The extended Infomax ICA algorithm can separate components with mixed
positive and negative kurtosis and should perform better when looking for temporally
independent waveforms amongst voxels [42]. The algorithm developed by Attias [43] that
combines higher order statistics and decorrelation works well when looking for temporally
and spatially independent patterns, but at considerably higher computational cost. Figure 1
provides an example of ICA components isolated with temporal ICA.

Calhoun et al. [44] used the FastICA implementation of ICA and found good
correspondence between spatial and temporal modes for an activation study with a single
active region; however, for a visual paradigm in which two closely related regions were
active they found some divergence between spatial and temporal ICA. The comparison was
with the hypothesis driven regression approach using an a priori activation time series. Such
a comparison is possible for a simple, sustained, sensory stimulus for which the primary
activation is predictable. Responses can be less predictable for brief visual stimuli (Duann et
al. [45••]).

Different independent component analysis algorithms—Esposito et al. [46]
compared Infomax and FastICA for both simulated and real fMRI data (TR = 3 s) for a
standard finger tapping paradigm and visual stimulation following the approach used by
Lange et al. [5]. Infomax and FastICA produced similar results, as expected as they are
formed on the basis of similar statistical assumptions.
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The HYBrid ICA (HYBICA) scheme proposed by McKeown [47] invokes a general linear
model approach for post-processing of ICA results. This paper also addresses the crucial
issue of how many components to keep in the analysis. Similar to the situation with PCA
[48] predictive methods can be used, and in the study by McKeown [47] the so-called
predicted residual sum of squares (PRESS) statistic was used.

Hoejen-Soerensen et al. [49] assumed binary on/off source density and invoked advanced
mean-field methods for both spatial and temporal ICA analysis of fMRI. In spatial mode the
ICA model was equivalent to time series clustering with multiple concurrent assignments of
data. For the mean-field methods it was possible to determine the optimal number of
independent components using Bayesian arguments. For the analysis of a visual stimulation
dataset the optimal ICs were found to be formed on the basis of representations with less
than 10 components.

Reproducibility—Reproducibility, both intra-subject, and inter-subject is a key issue in
explorative data analysis, and data-driven methods, given their sensitivity to the underlying
structure of the data, may accentuate intersubject variability. Typically fMRI experiments
are employed to make statements indicative of a specific population (e.g. all normal subjects
greater than age 65). To compare activation across subjects, analysis methods often spatially
transform the data. Anatomical images are acquired at the time of the functional images, and
a transformation is determined which allows the anatomical images from one subject to be
spatially transformed to the anatomical images of another, or all subjects to be transformed
to a common exemplar anatomical volume. Applying the same subject-specific spatial
transformation to the functional data allows voxel time courses to be directly compared
across subjects and tested for task activation. This method may have limited applicability in
older populations, however, as they tend to exhibit more spatial variability in fMRI
activations possibly as a consequence of compensatory mechanisms [50].

Are components reproducible across subjects? Methods for performing ICA for groups of
subjects have been proposed by Calhoun et al., Lukic et al. and Svensen et al. [51,52•,53].
The basic idea is to concatenate the data from several subjects in the spatial dimension, and
perform a joint ICA to identify common activation time courses. However, it is unclear
whether greater intersubject variability exists in the spatial patterns of activation (in which
case finding common ICA time courses across subjects may be suitable) or in the actual time
courses of activation, which would support the usual method of spatial transformation.
Another way to partially address the problem of intersubject variability is to specify
anatomical regions of interest (ROIs), (e.g. `supplementary motor area') for each subject, a
rather laborious process. Presumably ROIs, as opposed to individual voxels that have been
spatially transformed to an exemplar volume, would demonstrate less subject-to-subject
variability. Covariance between specified ROIs can then be assessed with methods such as
structural equation modeling, in which known anatomical connections are used to constrain
the model and the strength of connections between regions of interest is estimated [54].

Motion effects revealed with independent component analysis
A consequence of employing a data-driven technique for fMRI data analysis is that it may
reveal unpleasant aspects of the data, such as corruption of the data with motion. fMRI data
are extremely sensitive to movement, even when it is less than 1 mm, and this may be a
limiting factor of the application of this technology in older adults or subjects with brain
diseases. As the ICA components are a sensitive reflection of the data, they also tend to be
sensitive to all types of movement including abrupt changes and slow, linear drifts [27].

Even data motion-corrected with standard motion correction schemes such as the automated
image-registration (AIR) [55] or SPM [8] still produce apparent motion-related ICA
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components (Figure 2). This possibly relates to the fact that most motion correction is
performed in isolation to the rest of the statistical analysis process, and it is often the
endpoint in the analysis pipeline. Motion-correction algorithms typically spatially transform
each volume in a time series to an exemplar volume (such as the first volume in the series)
by using a measure of similarity [56]. However, standard motion correction schemes seem to
minimally affect the predictability of the data (Figure 2), a major component of the
performance of statistical models [47,57]. Incorporating potential motion into the ICA
framework appears to be a promising approach (Figure 2; [58]).

Some of the sensitivity to movement may be related to the fact that most ICA algorithms are
sensitive to outliers, and that voxels at the interface between the brain and other regions such
as the skull have markedly different statistical properties. Resampling methods may help
assess the robustness of the derived ICA components to outliers [10,59] and robustness itself
may be aided by utilizing spatio-temporal a priori information [60•].

Applications of independent component analysis
Even with the above restrictions in mind, ICA has proved remarkably versatile in several
applications in which the brain activation has been hard to predict beforehand. Activity in
the visual [61••,62••,63,64••], auditory [65••] and cognitive [66] domains, and even complex
social interaction while simultaneously scanning more than one subject [67] have all been
investigated with ICA. In a study by Castelo-Branco et al. [62••], the data were analyzed
with ICA, and spatial components which loaded heavily on the motion-sensitive visual area
hMT(+)/V5 were further examined to determine a functionally connected network involved
in perceptual decision. Being able to meaningfully interpret fMRI experiments incorporating
very complex stimuli, such as driving [64••] or watching a movie [61••], exemplifies the
advantages of not having to specify activation profiles beforehand. ICA has also provided
insight into artifacts caused by large vessel effects in perfusion imaging [68]. The versatility
of the technique is such that ICA has been used as a preprocessing method for attempting to
visualize color multichannel magnetic resonance data [69], and has been considered within
the data mining framework used in statistics [70].

In the study by Zeki et al. [61••] an experiment is set up to explore the role of the kinetic
orbital area (KO) in humans, which is activated when we perceive shapes generated by
kinetic boundaries, for example in random dot patterns. ICA analysis was performed on
fMRI data from eight subjects while they watched 20 minutes of an action movie. Regions
were related if they appeared active in the same spatial component. Using this spatial
grouping approach it was found that the KO area was less specific to kinetic boundary
activation but activated for stimuli similar to those that activate V3, an area that represents
depth and contours.

Using a pluralistic approach involving both ICA and general linear models Calhoun et al.
[25] investigated a visual perception task that was designed to provide a reliable and valid
measure of visual perceptual capacity. The general linear model, which measures the pixel
wise correlation with the stimulus reference function, and the ICA yielded similar but not
identical results, and together suggested a significant role for the cerebellum in visual
processing. The general linear model appeared more selective and sensitive to primary
visual and cerebellar regions. However, the ICA also detected primary motor activity,
whereas the general linear model did not, the main reason being that the activation time
course showed a considerably longer duration than expected on the basis of the standard
hemodynamic response model that is invoked in the general linear model estimate. This is a
prototypical situation in which the explorative nature of ICA allows detection of an
unexpected response.
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Using ICA, Duann et al. [45••] demonstrated that the common assumption of a spatially and
temporally stationary hemodynamic response function does not hold. Subjects exhibited a
wide variety of responses to short stimuli including responses with two positive peaks.

The ability of ICA to detect transient and randomly occurring neuropsychological events
was studied by Gu et al. [66]. An auditory sentence-monitoring fMRI dataset was analyzed
and components post-processed to favor components with spatial connectivity. The ICA
time courses were shown to match well with button-press signals used to monitor subjects
listening to randomized auditory stimuli.

The complex dynamics of neural activation during simulated driving were investigated with
ICA by Calhoun et al. [64••]. The differential response of several systems including error
monitoring, motor control and vigilance could be quantified in more detail using ICA than
when using simple subtractive analyses.

If confounding components are excluded in the reconstruction of equation 3, ICA can be
viewed as a denoising filter similar to PCA and other signal processing subspace methods.
This approach was pursued for electroencephalographic (EEG) analysis by Jung et al. [19•]
and for fMRI analysis by Thomas et al. [29•]. Arfanakis et al. [71] pursued a complementary
approach and reconstructed a signal matrix without the task induced components to study
low frequency oscillations. This was previously done using fMRI resting state data,
however, Arfanikis et al. argue that as `rest' data contains ongoing cortical activity, it should
be possible to use ICA to remove the activation in a situation in which the brain is focused
on a particular task and hence, less subject to random activations [71]. ICA turned out to be
very efficient for removing task related parts of the data and the subsequent analysis of the
low frequency oscillations showed strong similarities with those observed in the resting
state. Although the authors suggest that they have isolated regions demonstrating `functional
connectivity', it is not clear what the underlying mechanism is, as a physiological origin such
as the vasculature cannot be ruled out [72].

Other data-driven methods
Rather than using ICA or clustering, a more direct way to determine the time course of
response is to use event-related designs [73]. This paradigm is adapted from the EEG and
event-related potentials (ERPs) literature, whereby many similar stimuli are presented and
the time course (of in this case, a voxel) within a specified time window is averaged, time-
locked to stimulus presentation. Unlike the EEG with its excellent temporal resolution, the
sluggishness of the hemodynamic response in fMRI (lasting several seconds in duration)
places a limit on the speed that stimuli can be presented at. In order that event-related fMRI
experiments not become excessively long, the total number of stimuli is restricted to a
hundred or so. Standard analyses of event related designs make two key assumptions, first,
that the brain response to the stimulus is independent of the brain state, and second, that
there is minimal temporal `jitter' in the fMRI response after presentation of a given stimulus.
The trial-to-trial variability has recently been shown to be fairly significant [45••,74], and
the implications this has on the overall interpretation of activation in event-related fMRI
studies is unclear. Whether or not the other structured (and possibly non-brain) signals will
tend to zero when averaged over the many fewer trials than those typically used in ERPs
may also need to be more fully investigated [74].

Still, other data-driven analysis methods have attempted to isolate task-related signals from
other sources of variability within fMRI data. With a canonical correlation analysis (CCA)
approach [75] components in the data with time courses having a broad autocorrelation can
be extracted. This method will be robust to transient noise signals caused by abrupt
movement, and will tend to isolate slowly varying components, such as those related to the
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task but also other sources of slow drifts in the signal not related to brain activation.
Investigation of the frequency spectra at each voxel with sophisticated techniques such as
multi-taper analysis has allowed the isolation of small but significant frequencies in voxels'
time series that are worthy of further investigation [76].

Perhaps reassuringly, data-driven methods like ICA often give comparable responses to
traditional hypothesis-based approaches [44], and in some cases with incorrect task
performance ICA appeared to provide more accurate maps [77••]. Methods that attempt to
combine the strengths of complementary analysis approaches may prove a powerful tool.
ICA components can be used to make reasonable determinations of task-related regressors
in a general linear model framework [47], or ICA may be used to remove the confound of
task-related activation in exploring functional connectivity [78].

However, despite the potential advantages of data-driven methods, the nature of brain
activation is inherently a spatio-temporal process. There may be advantages to investigating
the spatial patterns associated with activation, for example using spatial Gaussian mixture
models [79]. fMRI investigators do have some prior biases as to what constitutes fMRI
activation; we tend to distrust isolated single `activated' voxels as false positives. A grafting
of current data driven methods with regularized spatio-temporal solutions [80••] may prove
a powerful means to more accurately isolate presumed brain activity.

Conclusions
ICA is a promising exploratory technique that provides an alternative means to view data
and to test assumptions about traditional hypothesis-driven methods. Much technical effort
has been put into tests to ensure robust inferences about brain activity. A significant virtue
of ICA is that it allows the detection of unexpected responses to stimuli, including random
responses or transiently task related responses. Furthermore, ICA is an effective tool for
denoising fMRI, both with respect to random noise and confounding signals such as
pulsation and breathing artifacts. Such techniques will allow the full spatial-temporal aspects
of brain activation to be better isolated from the complex mixtures of (often unknown)
sources that make up the measured fMRI signal.
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Abbreviations

BOLD blood oxygenation level dependent

ERP event related potentials

fMRI functional magnetic resonance imaging

ICA independent component analysis

KO kinetic orbital area

PCA principal component analysis

ROI regions of interest

SPM statistical parametric mapping
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SVD singular value decomposition

TR repetition time
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Figure 1.
Results of applying temporal ICA to single-slice fMRI data. The subject was shown a
flashing (8 Hz) annular checkerboard pattern interleaved with periods of fixation. There
were five runs of 30 scans of fixation (10.0 s), 31 scans of stimulation (10.3 s), and 60 scans
of post-stimulus fixation (20.0 s). The power spectrum is estimated in the range 0–1.5 Hz
(Nyquist frequency). The slice is aligned with the calcarine sulcus and contains a portion of
the primary visual areas. The six independent components shown are represented by the
spatial map (the 2.5% highest and lowest values are shown as white and black pixels on a
background formed by the average of the dataset providing anatomical references). The
components are sorted according to variance contribution. (a) The first IC loads heavily in
primary visual areas (V) (left column), and its time course (middle column, thin line) closely
follows the stimuli time course (middle column, thick line). The power spectrum (right
column) of the time course and stimulus time course are closely matched. (b) The second
component contains pulsations related to the heartbeat as demonstrated in the time course
and power spectrum. (c,d) The third and fourth components appear related to slower
breathing-related periodic confounds. (e) Component five is a white noise (broad band)
component with a more spiky character, and the component image is dominated by the
(negative) boundary area (B), suggesting that this is mostly related to motion artifact. (f) The
sixth element is a low-frequency component with a period of about 10–15 s unrelated to the
stimulus sequence and possibly represents an artifact related to vasomotor oscillations [72].
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Figure 2.
Effects of motion correction on ICA components. (a) The predictability of the data,
estimated by the diagonals of the Hat matrix, H = X (X′X)−1 X′, where the columns of X
represent the largest 1/3 of the eigenvectors of the covariance matrix, is plotted. The
horizontal line is a heuristic used in regression to imply high leverage points. Note that
common motion correction schemes (AIR and SPM) do not measurably affect predictability.
MCICA = motion corrected ICA. (b) Even after standard motion correction, ICA
components indicative of movement can still be isolated.
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